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1 Introduction

A well-written program is a poem. Both are powerful because their content is condensed without being in-
scruitable and because the form is careful chosen to give insight into the topic. For a program, the topic is
an algorithm and the implementation should emphasize the key steps while minimizing the details. The most
elegant implementation is not always the most efficient, although it often is within a constant factor of optimal.
The choice of programming language most closely corresponds to the choice of poem structure, e.g., sonnet or
villanelle, not the choice of natural language, e.g., English or French. Structure enforces certain patterns and
ways of thinking on the author and reader, thus aiding certain kinds of expression and inhibiting others.

To author elegant programs, one must master a set of languages and language features. Then, one must sub-
jectively but precisely choose among them to express specific algorithms. Languages are themselves designed.
A well-designed language is a meta-poem. A language designer crafts a set of expressive tools suited to the
safety, performance, and expressive demands of a problem domain. As with literature, the difficult creative
choice is often not what to include, but what to omit.

A programming language is a mathematical calculus, or formal language. Its goal is to express algorithms
in a manner that is unambiguous to people and machines. Like any calculus, a language defines both syntax
and semantics. Syntax is the grammar of the language; the notation. Semantics is the meaning of that notation.
Since syntax can easily be translated, the semantics are more fundamental.

Church and Turing (and Kleene) showed that the minimal semantics of the A calculus and Turing machine
are sufficient to emulate the semantics of any more complicated programming language or machine. However,
reducing a particular language to the A calculus may require holistic restructuring of programs in that language.
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We say that a particular language feature (e.g., continuations, macros, garbage collection) is expressive if it
cannot be emulated without restructuring programs that use it.

In these notes, features are our aperture on programming languages. These features can increase and de-
crease the expressiveness of the language for certain domains. Why would we want to decrease expressiveness?
The primary reason is to make it easier to automatically reject invalid programs, thus aiding the debugging and
verification process. Compilers print error messages when they automatically detected (potential) errors in your
program. You might have previously considered such errors to be bad. But they are good! When this happens,
the compiler saves you trouble of finding the errors by testing (as well as the risk of not finding them at all). A
major challenge and theme of programming language design is simultaneously pushing the boundaries of what
is checkable and expressive in a language.

1.1 Types

Every language makes some programs easy to express and others difficult. When a language is well-suited to
a problem domain, the programs it makes easy to express are correct solutions to problems in that domain. A
well-suited language furthermore makes it hard to express programs that are incorrect. This is desirable! One
way to design a language is to selectively add restrictions until it is hard to express incorrect programs for the
target domain. The cost of a language design is that some correct and potentially useful programs also become
hard to express in the language.

The type system is one tool for restricting a language. A type system associates metadata with values and the
variables that can be bound to them. A well-typed program is one where constraints on the metadata imposed
by the language and program itself are satisfied. When these are violated, e.g., by assigning a “String” value
to an “int” variable in Java, the program is incorrect. Some kinds of program errors can be detected by static
analysis, which means examining the program without executing it. Some kinds of errors cannot be detected
efficiently through static analysis, or are statically undecidable. Many of these can be detected by dynamic
analysis, which means executing type checks at run-time—while the program is executing.

We say that a language exhibits type soundness if well-typed programs in that language cannot “go
wrong” [Mil78]. That is, if well-typed programs cannot reach stuck states [WF94] from which further exe-
cution rules are undefined. Another view of this is that “A language is type-safe if the only operations that can
be performed on data in the language are those sanctioned by the type of the data.” [Sar97]

By declaring undesirable behaviors—such as dereferencing a null pointer, accessing a private member of
another class, or reading from the filesystem—to be type errors and thus unsanctioned, the language designer
can leverage type soundness to enforce safety and security.

All languages (even assembly languages) assign a type to a value at least before it is operated on, since
operations are not well-defined without an interpretation of the data. Most languages also assign types to
values that are simply stored in memory. One set of languages that does not is assembly languages: values
in memory (including registers) are just bytes and the programmer must keep track of their interpretation
implicitly. Statically typed languages contain explicit declarations that limit the types of values a to which
a variable may be bound. C++ and Java are statically typed languages. Dynamically typed languages such
as Scheme and Python allow a variable to be bound to any type of value. Some languages, like ML, are
dynamically typed but the interpreter uses type inference to autonomously assign static types where possible.

1.2 Imperative and Functional

The discipline of computer science grew out of mathematics largely due to the work of Church and his students,
particularly Turing. Church and Kleene created a mathematical system called the A calculus (also written out as
the lambda calculus) that treats mathematical functions as first-class values within mathematics. It is minimalist
in the sense that it contains the fewest possible number of expressions, yet can encode any decidable function.
Turing created the Turing machine abstraction of a minimal machine for performing computations. These
were then shown to be equivalent an minimal models of computation, which is today called the Church-Turing
Thesis.

These different models of computation are inherited by different styles of programming. Turing’s machine
model leads to imperative programming, which operates by mutating (changing) state and proceeds by itera-
tion. Java and C++ are languages that encourage this style. Church’s mathematical model leads to functional
programming, which operates by invoking functions and proceeds by recursion. Scheme, ML, Unix shell
commands, and Haskell are languages that encourage this style. So-called scripting languages like Python and
Perl encourage blending of the two styles, since they favor terseness in all expressions.
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2 Computability

2.1 The Incompleteness Theorem

At the beginning of the 20th century, mathematicians widely believed that all true theorems could be reduced
to a small set of axioms. The assumption was that mathematics was sufficiently powerful to prove all true
theorems. Hilbert’s program! was to actually reduce the different fields of mathematics to a small and consistent
set of axioms, thus putting them all on a solid and universal foundation.

In 1931 Godel [G31][vH67, 595] proved that in any sufficiently complex system of mathematics (i.e., formal
language capable of expressing at least arithmetic), there exist true statements that cannot be proven using that
system, and that the system is therefore incomplete (unable to prove its own consistency). This Incompleteness
Theorem was a surprising result and indicated that a consistent set of axioms could not exist. That result
defeated Hilbert’s program? and indicated for the first time the limitations of mathematics. This is also known
as the First Incompleteness Theorem; there is a second theorem that addresses the inconsistency of languages
that claim to prove their own consistency.

Here is a proof of the Incompleteness Theorem following Godel’s argument. Let every statement in the
language be encoded by a natural number, which is the Godel Number of that statement. This encoding can be
satisfied by assigning every operator, variable, and constant to a number with a unique prefix and then letting
each statement be the concatenation of the digits of the numbers in it. (This is roughly equivalent to treating the
text of a program as a giant number containing the concatenation of all of its bits in an ASCII representation.)
For example, the statement “x > 4 might be encoded by number g:

Sg(x) ="“x>4” ))
Now consider the self-referential (“recursive”) statement,
Si(n) = S, is not provable.” 2)

evaluated at n = i. This statement is a formal equivalent of the Liar’s Paradox, which in natural language is
the statement, “This sentence is not true.” S, (n) creates an inconsistency. As a paradox, it can neither be proved
(true), nor disproved (false).

As a result of the Incompleteness Theorem, we know that there exist functions whose results cannot be
computed. These non-computable functions (also called undecidable) are interesting for computer science
because they indicate that there are mathematical statements whose validity cannot be determined mechanically.
For computer science, we define computability as:

A function f is computable if there exists a program P that computes f, i.e., for any input x, the
computation P(x) halts with output f(x).

Unfortunately, many of undecidable statements are properties of programs that we would like a compiler to
check. A constant challenge in programming language development is that it is mathematically impossible to
prove certain properties about arbitrary programs, such as whether a program does not contain an infinite loop.

2.2 The Halting Problem

Let the Halting Function H (P, x) be the function that, given a program P and an input x to P, has value “halts”
if P(x) would halt (terminate in finite time) were it to be run, and has value “does not halt” otherwise (i.e., if
P(x) would run infinitely, if run). The Halting Problem is that of solving H; Turing [Tur36] proved in 1936 that
H is undecidable in general.

“program” as in plan of action, not code

2...and answered Hilbert’s “second problem”: prove that arithmetic is self-consistent. Whitehead and Russell’s Principia
Mathematica previously attempted to derive all mathematics from a set of axioms.
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Theorem 1. H(P,x) is undecidable.

Proof. Assume program Q(P,x) computes H (somehow). Construct another program D(P) such
that

D(P):
if Q(P,P) = “halts” then loop
else halt

In other words, D(P) exhibits the opposite halting behavior of P(P).

Now, consider the effect of executing D(D). According to the program definition, D(D) must
halt if D(D) would run forever, and D(D) must run forever if D(D) would halt. Because D(D)
cannot both halt and run forever, this is a contradiction. Therefore the assumption that Q com-
putes H is false. We made no further assumption beyond H being decidable, therefore H must be
undecidable. O

The proof only holds when H must determine the status of every program and every input. It is possible to
prove that a specific program with a specific input halts. For a sufficiently limited language, it is possible to
solve the Halting Problem. For example, every finite program in a language without recursion or iteration must
halt.

The theorem and proof can be extended to most observable properties of programs. For example, within
the same structure one can prove that it is undecidable whether a program prints output or reaches a specific
line in execution. Note that it is critical to the proof that Q(P,x) does not actually run P; instead, it must
decide what behavior P would exhibit, were it to be run, presumably by examining the source code of P. See
http://www.cgl.uwaterloo.ca/ csk/halt/ for a nice explanation of the Halting Problem using the C programming language.
Two straightforward ways to prove that a property is undecidable are:

e Show that the Halting Problem reduces to this property. That is, if you can solve static checking of the
property, then you can solve the Halting Problem, therefore the property is at least as hard as the Halting
Problem and is undecidable.

e Rewrite a Halting Problem proof, substituting the property for halting. Note that this is not the same as
reducing the property to the Halting Problem.

2.3 Significance of Decidability

Language designers are faced with a dilemma because, like halting, most properties of a program in a suf-
ficiently powerful language are undecidable. One choice is to abandon checking certain properties until run
time. We call run-time checking dynamic checking. The enables a language to easily express many kinds of
programs, however, it means that the programmer has little assurance that the program is actually correct. Only
extensive testing will find errors in such programs, and extensive testing is expensive, time consuming, and
impractical for programs with large branch factors. Python and Scheme are two languages that defer almost all
checking until run time. It is easy to write programs in these languages and hard to find errors in them.

Another choice is to restrict the expressive power of the language somewhat, so that more properties can
be checked before a program is run. This is called static checking (a.k.a. compile-time checking). This
makes it harder to construct programs, however it enables much stronger guarantees than testing can provide—
the checker can prove that a program does not have certain kinds of errors, without ever running it. C++ and
ML are languages that provide significant static checking facilities. A language like Java is somewhere in
between. It performs some checks statically, but in order to make the language more flexible the designers
made many other checks dynamic. The one of the most common check is the null-pointer dereference, which
many programmers will recognize as their most common error as well. Java programmers may be pleasantly
surprised to discover that there are many languages (unfortunately none of the popular ones mentioned in this
paragraph) in which most null-pointer checks can be made statically, and therefore appear very infrequently as
run-time errors.

A third choice is to restrict the expressive power of the language so severely that certain kinds of errors are
simply not expressible. This is useful for metalanguages, like type systems, and for embedded languages, like
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early versions of the 3D graphics DirectX HLSL and OpenGL GLSL languages. Once can guarantee that pro-
grams in such languages always halt, for example, by simply not providing the mechanisms for function calls
or variable-length loops. Of course, programmers often find those restrictions burdensome and most practical
languages eventually evolve features that expand the expressive power to defeat their static checkability. This
has already occurred in the C++ type system with the template feature and in both the aforementioned HLSL
and GLSL languages.

3 Life of a Program

A program goes through three major stages: Source, Expressions, and Values. Formal specifications describe
the syntax of the source and the set of expressions using an grammar, typically in BNF. This is called the
expression domain of the language. The value domain is described in set notation or as BNF grammars.
Expressions are also called terms. Expressions that do not reduce to a value are sometimes called statements.

An analogy to a person reading a book helps to make clear the three stages. The physical ink on the printed
page is source. The reader scans the page, distinguishing tokens of individual letters and symbols from clumps
of ink. In their mind, these are assigned the semantics of words—i.e., expressions. When those expressions are
evaluated, the value (meaning) of the words arises in the readers mind. This distinction is subtle in the case
of literals. Consider a number written on the page, such as “32”. The curvy pattern of ink is the source. The
set of two digits next to each other is the expression. The interpretation of those digits in the reader’s mind is
the number value. The number value is not something that can be written, because the act of writing it down
converts it back into an expression. Plato might say that the literal expression is a shadow on the cave wall of
the true value, which we can understand but not directly observe. 4

3.1 Source Code and Tokens

A program begins as source code. This is the ASCII (or, increasingly, unicode!) string describing the program,
which is usually in a file stored on disk. A tokenizer converts the source to a stream of tokens in a manner that is
specific to the language. For example, in Java the period character “.” becomes a separate token if it separates
two identifiers (variables) but is part of a floating-point number if it appears in the middle of a sequence of
digits, e.g., string.length() versus 3.1415. See java.StringTokenizer or G3D::TextInput for an example of an
implementation.

Figures 3.1 and 3.1 show an example of the source code and resulting token stream for a simple factorial
function implemented in the Scheme programming language. The tokenizer is often language-specific. For this
example, the tokenizer tags each token as a parenthesis, reserved word, identifier, or numeral. Source code is
usually stored in a string. A typical data structure for storing the token stream is an array of instances of a token
class.

(define (factorial n)

(if (< n 2)
; Base:
1
; Recurse:

(* n (factorial (- n 1)))))

Figure 1: Scheme source code for factorial.

3 A language in which programs always halt is called strongly normalizing.

“4For the truly philosophical, what is in the mind, or what is stored in bits in a computer’s memory, is still only a repre-
sentation of the value. The actual number that the numeral 32 represents is unique. There can be only one 32, which means
it can’t be in multiple places at once—the bits representing the numeral 32 in a computer’s memory therefore act a pointer to
the ideal number 32. Al, PL, and philosophy meet when we consider whether the human mind is different, or just shuffling
around around representations like a computer.
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Figure 2: Token stream for factorial.

3.2 Expressions

A parser converts the token stream into a parse tree of expressions. The legal expressions are described by the
expression domain of the language, which is often specified in BNF. The nodes of a parse tree are instances
of expressions (e.g., a FOR node, a CLASS-DEFINITION node) and their children are the sub-expressions. The
structure of the parse tree visually resembles the indenting in the source code. Figure 3.2 shows a parse tree for
the expressions found in the token stream from figure 3.1.

IF
T
APP LITERAL: 1 APP
- T e T
VAR: < VAR:n  LITERAL: 2 VAR: * VAR: n APP

TN

VAR: factorial APP

VAR: - VAR:n LITERAL:1

Figure 3: Parse tree for factorial.

The Scheme language contains the QUOTE special form for conveniently specifying parse trees directly as
literal values, omitting the need for a tokenizer and parser when writing simple interpreters for languages that
have an abstract syntax. The drawback of this approach is that simply quoting the factorial code in figure 3.1
would not produce the tree in figure 3.2. Instead, the result would be a tree of symbols and numbers without
appropriate expression types labeling the nodes.

3.3 Values

When the program executes (if compiled, or when it is evaluated by an interpreter if not), expressions are
reduced to values. The set of legal values that can exist during execution is called the value domain. The value
domain typically contains all of the first-class values, although some languages have multiple value domains
and restrict what can be done to them. In general, a value is first-class in a language if all of the following hold:

1. The value can be returned from a function
2. The value can be an argument to a function
3. A variable can be bound to the value

4. The value can be stored in a data structure

Java generics (a polymorphism mechanism) do not support primitive types like int, so in some sense those
primitives are second-class in Java and should be specified in a separate domain from Object and its subclasses,
which are first-class. In Scheme and C++, procedures (functions) and methods are first-class because all of the
above properties hold. Java methods are not first-class, so that language contains a Method class that describes
a method and acts as a proxy for it.



4 INTERPRETERS AND COMPILERS 7

The value domain can be specified using set notation, e.g.,

real = intUdecimal
complex = real X real
number = real Ucomplex

or using a BNF grammar (at least, for a substitution interpreter), which is described later.

3.4 Implementation Issues

There is a design tradeoff when implementing a language between compactness and abstraction. Using the same
types in the implementation language for source, expressions, and values reduces the amount of packing and
unpacking of values that is needed, and allows procedures in the implementation language to operate directly on
the values in the target language. Furthermore, in Scheme, the READ procedure and QUOTE special form allow
easy creation of tree values using literals that are syntactically identical to Scheme source code. This avoids the
need for an explicit tokenizer and parser. Using the same types across domains violates the abstraction of those
domains. This can make the implementation of the language harder to understand (when it grows large), and
limits the ability of the type checker to detect errors in the implementation. For example, when implementing
a Scheme interpreter in Java, one could choose to implement Scheme symbols, strings, identifiers, and source
all as Java strings, without a wrapper class to distinguish them. It would be easy to accidentally pass a piece of
source code to a method that expected an identifier, and the Java compiler could not detect that error at compile
time because the method was only typed to expect a String, not a Schemeldentifier.

4 Interpreters and Compilers

A compiler is a program that translates other programs in a high-level language to the machine language of a
specific computer. The result is sometimes called a native binary because it is in the native language of the
computer. An interpreter is a program that executes other programs without compiling them to native code.
There is a wide range of translation within the classification of interpreters. At one end of this range, some
interpreters continuously re-parse and interpret code as they are moving through a program. At the other end,
some interpreters essentially translate code down to native machine language at runtime so that the program
executes very efficiently.

Although most languages can be either compiled or interpreted, they tend to favor only one execution strat-
egy. C++, C, Pascal, Fortran, Algol, and Ada are typically compiled. Scheme, Python, Perl, ML, Matlab,
JavaScript, HTML, and VisualBasic are usually interpreted. Java is an interesting case that compiles to ma-
chine language for a computer that does not exist. That language is then interpreted by a virtual machine
JVM).

Compilers tend to take advantage of the fact that they are run once for a specific instance of a program and
perform much more static analysis. This allows them to produce code that executes efficiently and to detect
many program errors at compile time. Detecting errors before a program actually runs is important because it
reduces the space of possible runtime errors, which in turn increases reliability. Compiled languages often have
features, such as static types, that have been added specifically to support this kind of compile-time analysis.

Interpreters tend to take advantage of the fact that code can be easily modified while it is executing to allow
extensive interaction and debugging of the source program. This also makes it easier to patch a program without
halting it, for example, when upgrading a web server. Many interpreted languages were designed with the
knowledge that they would not have extensive static analysis and therefore omit the features that would support
it. This can increase the likelihood of errors in the programs, but can also make the source code more readable
and compact. Combined with the ease of debugging, this makes interpreted languages often feel “friendlier”
to the programmer. This typically comes at the cost of decreased runtime performance cost increased runtime
errors.

Compiled programs are favored for distributing proprietary algorithms because it is hard to reverse engineer
a high-level algorithm from machine language. Interpreted programs by their nature require that the source be

5 Although in practice, most modern processors actually emulate their published interface using a different set of oper-
ations and registers. This allows them include new architectural optimizations without changing the public interface, for
compatibility.
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distributed, although it is possible to obfuscate or, in some languages, encrypt the source to discourage others
from reading it.

5 Syntax
Although we largely focus on semantics, some notable points about syntax:

e A parser converts source code to expressions
e Backus-Naur Form (BNF) formal grammars are a way of describing syntax using recursive patterns

o Infix syntax places an operator between its arguments, e.g., “1 + 2”. Java uses infix syntax for arithmetic
and member names, but prefix syntax for method application.

e Prefix syntax places the operator before the operands, e.g., “add(1, 2)”, which conveniently allows
more than one or two operands and unifies operator and function syntax. Scheme uses prefix syntax for
all expressions.

e Postfix places the operator after the operands, which allows nested expressions where the operators take
a fixed number of arguments, without requiring parentheses. Postscript and some calculators use postfix.

e Scheme’s “abstract syntax” makes it easy to parse
e Macros allow a programmer to introduce new syntax into a language

e Python has an interesting syntax in which whitespace is significant. This reduces visual clutter but makes
the language a little difficult to parse and to edit (in some cases)

e Syntactic sugar makes a language sweeter to use without increasing its expressive power

5.1 Backus-Naur Form

Backus-Naur Form (BNF) is a formal way of describing context-free grammars for formal languages. A
grammar is context-free when the the grammar is consistent throughout the entire language (i.e., the rules
don’t change based on context). BNF was first used to specify the ALGOL programming language.

Beyond its application to programming language syntax, BNF and related notations are useful for represent-
ing the grammars of any kind of structured data. Examples include file formats, types, database records, and
string search patterns.

A BNF grammar contains a series of rules (also known as productions). These are patterns that legal
programs in the specified language must follow. The patterns are typically recursive. In the BNF syntax, the
nonterminal being defined is enclosed in angular brackets, followed by the “::=" operator, followed by an
expression pattern. The expression pattern contains other nonterminals, terminals enclosed in quotation marks,
and the vertical-bar operator “|” that indicates a choice between two patterns. For example,

(digit) == O |‘U|2]3|4|5]6 T8O
(digits) == (digit) | (digit)(digits)

In this document, these are typeset using an unofficial (but common) variation, where terminals are typeset as
x and nonterminals as x. This improves readability for dense expressions. With this convention, digits are:

digit == 0] 1]2]|3]|4]|]5]|6]|7]|8]|9
digits = digit | digit digits

It is common to extend BNF with regular expression patterns to avoid the need for helper productions. These
include the following notation:

(x ) = x; parentheses are for grouping only

[x] = zero or one instances of x (i.e., x is optional)
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x* = zero or more instances of x
xT = one or more instances of x

An example of these patterns for expressing a simple programming language literal expression domain (e.g., a
subset of Scheme’s literals):

boolean = #t | #f
digit == 0]1]|2|3|4|5|6]|7]|8]29
integer = [ + |- ]digit"
rational = integer / digit™
decimal = [ + |- ]digit* . digit™
real = integer | rational | decimal

BNF can be applied at both the character level (e.g., to describe a lexer/tokenizer) and the token level (e.g.,
to describe a parser). The preceding example operates on individual characters within a string and is useful to
a tokenizer. An example of a subset of Scheme’s expression domain represented in BNF at the token level is:

variable = id
let == ( let ( ( [ idexp ] )* ) exp )
lambda == ( lambda ( id" ) exp )

exp = variable | let | lambda

3

5.2 Syntactic Sugar

Some expressions make a language’s syntax more convenient and compact without actually adding expressivity:
they make the language sweeter to use. We say that an expression is syntactic sugar and adds no expressive
power if it can be reduced to another expression with only local changes. That is, without rewriting the entire
body of the expression or making changes to other parts of the program. Such expressions are also referred
to as being macro-expressive. They can naturally be implemented entirely within the parser or as macros in
languages with reasonable macro systems.

For example, in Java any FOR statement, which has the form:

for (init ; test ; incr ) body
can be rewritten as a WHILE statement of the form:
init ; while (test) { body incr; }

FOR therefore does not add expressivity to the language and is syntactic sugar. In Scheme, LET adds no
power over LAMBDA, and LET* adds no power over LET. Java exceptions are an example of an expressive form
that cannot be eliminated without completely rewriting programs in the language.

We can express the Java FOR loop’s reduction in more formal notation as:

for ( expinir ; €XPrest 5 €XPincr ) €XPbody
=
expiniy ; Wwhile ( €XPtest ) { €XPbody €XPincr 3 } “4)

Here the pattern on the left may be reduced to the simpler form on the left during evaluation. This is an example
of a general mechanism for ascribing formal semantics to syntax that is described further in the following
section.
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6 Semantics

6.1 Operational Semantics

An operational semantics is a mathematical representation of the semantics of a language. It defines how
expressions are reduced to other expressions by applying a set of rules. Equivalently, it gives a set of progress
rules for progressing from complex expressions to simpler ones, and eventually to values. Each rule has
preconditions: to be applied, the rule must match the pattern of the expression. Any rule whose preconditions
are met can be applied. When no rule applies the program halts. If it halts with a value, that is the result of
the computation. If the semantics are self-consistent and rule expansion halts with an expression that is not a
value, that indicates an error in the target program. The nature and location of the error are determined by the
remaining expression and the last rule applied.

Note that the semantics influence but ultimately do not imply the implementation. For example, an operation
that requires O(nz) rule applications may require only O(n) operations on an actual computer. Likewise, eager
and lazy substitution are often interchangeable at the semantic level. We say that two implementations are
semantically equivalent if they always reduce identical expressions to identical vales, even if they use different
underlying algorithms to implement the semantics.

The rules are expressed using a notation for reductions, conditional reductions, and substitutions. The most
general form of a rule is:

X =y &)

“Expressions matching x reduce to y”

where x is a placeholder in this notation, not a variable in the programming language. These placeholders will
be filled by terms, or by term variables such as expgupscripr and valgpserip- Here, the name of the variable
indicates its domain (often, expression or value), and the subscript is a tag to distinguish multiple variables
in the same statement® Sometimes rules are written more casually using the subscripts as the variables and
ignoring the domains, when the domain is irrelevant.

A specific example of a reduction rule is the additive identity in arithmetic:

expy + 0 = expy 6)
We can specify general addition by:
numy + numy, = numx/Jr\numy (@)

The addition sign on the right of the reduction indicates actual addition of value; the one on the left denotes
syntax for an expression. Variables num, and num, are expressions; the hat on the right side indicates that we
mean the value corresponding to that operation.

To make this more concrete, we could give a very specific reduction:

1+ 2 =3 ®)

Here, 1 and 2 on the left of the arrow are syntax for literals, i.e., they are numerals. The hat on the 3 to the
right of the arrow indicates that it is a value, i.e., it represents an actual number and not just the syntax for a
number. See [Kri07, 231] for further discussion of this hat notation. We will see some cases in which the line
between the expression domain and the value domain is blurry. In those, the hat notation is unnecessary.

Sometimes we have complicated conditions on a rule that constrain the pattern on the left side of =. These
are notated with a conditional statement the form:

a
— 9
b ® In gen-

“If mathematical statement a is true, then statement b is true (applicable).”

SThis is admittedly a suboptimal notation, since the “name” that carries the meaning for the reader but is buried in the
subscript, while the “type” dominates. However, it is standard in the field.
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eral, both a and b are reductions. Furthermore, there may be multiple conditions in a, notationally separated by
spaces, that must all be true for the reduction(s) in b to be applied. These rules are useful for making progress
when no other rule directly applies. For example, to evaluate the mathematical expression 1+ (74 2), we must
first resolve (7 +2). The rule for making progress on addition with nested subexpression on the right of the
plus sign is:

expy = numy

(10
expy| + expy = expy + numy

which reads, “if expression #2 can be reduced to some number (by some other rules), then the entire sum can
be reduced to the sum of expression #1 and that number.” We of course need some way of reducing expressions

on the left of the plus sign as well:
exp| = num,

exp) + expy = numj + exp; (an
Applying combinations of these rules allows us to simplify arbitrarily nested additions to simple number addi-
tions.

There are two major interpreter designs: substitution and evaluation interpreters. Substitution interpreters
transform expressions to expressions and terminate when the final expression is a literal. Their value domain is
their literal domain. Evaluation/environment interpreters are implemented with an EVAL procedure that reduces
expressions directly to values. Such a procedure recursively invokes itself, but program execution involves a
single top-level EVAL call. These two models of implementation correspond to two styles of semantics:

1. Small-step operational semantics rules reduce expressions to expressions (like a substitution
interpreter)

2. Big-step operational semantics rules reduce expressions to values (like an EVAL interpreter)

The following two subsections demonstrate how semantics are assigned in each. We use the context of a
simple language that contains only single-argument procedure definition, variable, conditional, application, and
booleans. Let these have the semantics of the equivalent forms in the Scheme language:

exp::—(l(id)exp)!
id |
( if expexpexp ) }
( expexp ) |

true | false (12)

6.2 Small-step Example
6.2.1 Rules

Small-step operational semantics rules reduce expressions to expressions. Although the choice of implementa-
tion is not constrained by the style of semantics (much), small step maps most directly to a substitution-based
interpreter (e.g., [Kri07, 15]). Under small-step semantics the value domain is merely the terminal subset of
the expression domain, plus procedure values. That is, literals are values. It is useful to us later to define a
subdomains in this definition:

ok

true | C A Cid ) exp)
val :=  false {ok (13)

Those expressions require no progress rules because they are values. Variable expressions require no
progress rules because variables are always substituted away by applications. Only conditional and appli-
cation need be defined. Conditionals naturally have two obvious rules, that I name E-IfOk and E-IfFalse (the
“E” stands for “Evaluate”):
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E-IfOk: ( if ok expipen €xPeise ) = €XPthen (14)

E-IfFalse:  ( if false expien €XPeise ) = €XPelse (15)

Had Scheme’s semantics dictated that the test expression must be a boolean, the first rule would have replaced
ok with true , which is likely what you first expected to see there. However, recall that Scheme treats any
non-false value as true for the purpose of an IF expression.

A perhaps less obvious rule, E-IfProgress, is required as well to complete the semantics of IF. When the test
expression for the conditional is not in the value domain, we need some way of making progress on reducing
the expression.

exprest = Valiest

E-IfProgress: (16)
¢ if €XPrest €XPthen €XPelse ) = ( if valey €XPthen €XPelse )
Application requires a notation for expressing variable substitution. This is:
id bod 17
lid = v]body an The

“Substitute v for id in body”.

body is the expression in which all instances of variable named id are to be replaced with the expression v. In
an eager language, the v expression must be in the value domain. In a lazy language, v can be any expression.
For semantic purposes the distinction between eager and lazy is irrelevant in a language without mutation and
small step semantics are almost always restricted to languages without mutation.

Using this notation we can express application as a reduction. If we choose lazy evaluation, it is:

E'Applazy: ¢ C A Cid) €XPbody ) expag ) = [id’_’exparg] €XPbody (18)
plus a progress rule:

[
E-AppProgress| : Xp1 = val (19)

( exprexpy ) = ( valjexpy )

To specify eager evaluation, we simply require the argument to be a value:

E-Appeyger: (€ A Cid ) exppogy ) valarg ) = [id — valarg] exppoay (20)
and introduce another progress rule (we still require rule E-AppProgress1):

expy = valp

E-AppProgress2, 2D

eager
( exprexpr ) = ( expyval )

6.2.2 A Proof

Because each rule is a mathematical statement, we can prove that a complex expression reduces to a simple
value by listing the rules that apply. That is, by giving a list of true statements that reduce the expression to
a specific value. Operational semantics are used this way, but they are more often used as a rigorous way of
specifying what an interpreter should do. The reason for exploring this proof structure is that we will later us
the same structure on type judgements (another kind of rule set) to prove that an expression has some interesting
property, rather than a specific value.

We list the statements in the order they are applied. When reaching a conditional we must prove its ante-
cedants. To do this, we replace each antecedant with its own proof; that is, we start nesting the conditional
statements until all are satisfied.

Theorem 2. (if ((A (z) z) true) false true) reducesto false.
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E-A; subst.
(A (%) x) true) ( :>pp) X — true | x (bu:;[) true

Proof. (E-IfTrue)
(if ((A (x) x) true) false true) = false

6.3 Big-step Example
6.3.1 Rules

Under big-step operational semantics, the left side of the progress arrow is always an expression and the right
side of the arrow is always a value. Thus, each rule takes a “big step” to the final value of an expression. The
value and expression domains must be disjoint to make this distinction, so we define the value domain more
carefully here. For our simple language from eq. 12, the big-step value domain is:

proc = (id,exp,&)
ok = proc } f
val = ok | f (22)

The angle brackets in the procedure notation (id,exp,&’) denote a tuple, in this case, a 3-tuple. That is
simply a mathematical vector of values, or equivalently, a list in an interpreter implementation. The specific
tuple we’re defining here is a 1-argument closure value, which has the expected three parts: formal parameter
identifier, body expression, and captured environment. Big step operational semantics use environments in the
same way that interpreters do for representing deferred substitutions. The environment is placed on the left side
of the progress arrow and separated by an expression by a comma.

Now that the value domain is disjoint from the expression domain, we need some trivial rules for reducing
literal and LAMBDA expressions to their corresponding values.

Forget all of the previous small-step rules. We begin big step with:

~

E-True : true ,& =1
E-False : false ,& = f
E-Lambda : ( A Cid) exp ), & =(id,exp,&) (23)

Note that LAMBDA captures the identifier and environment, and saves and delays the expression, and that the
literals ignore the environment in which they are reduced.

The rules for evaluating IF expressions are largely the same as for small step, but we can ignore the progress
rules because they are implicit in the big steps:

ﬂ(expt,é" = f) expe,& = val,

E-IfOk:
( if exp; expc exp, ) ,& = val,

expy, &8 = f expy, & = val,
E-IfFalse: (24)
( if exp; expcexps ) ,& = val,

Each reduction, whether a conditional or a simple a = b, is a mathematical statement. Statements are either
true or false’ in the mathematical sense. Each progress rule is really a step within a proof whose theorem is

7...although the function to evaluate the truth value of a statement may be non-computable, as in the case of the Halting
Problem.
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“this program reduces to (whatever the final value is).” The — operator negates the truth value of a statement.

Thus the E-IfOk rule has as an antecedent “the test expression does not reduce to f ”. We need to express

it this way because our desired semantics follow Scheme’s, which allow any value other than f to act like

“true” for the purpose of an IF expression.

To express the semantics of APP we need a notation for extending an environment with a new binding. Since
environments and substitutions are not used simultaneously, the substitution notation is repurposed to denote
extending an environment:

& [id — val] (25)

“Environment & extended with id bound to val”.

Note that the arrow inside the brackets points in the opposite direction as for substitution, following the con-
vention of [Kri07, 223]. The application rule for our toy language under big step semantics is:

_expp, &1 = (id,expy, &) expa, & = valy  expy, & [id —valy) = valy

E-App (26)

C expp expq ) ,61 = valy
This reads,
“if(expression exp, reduces to a procedure in the current environment (&7),
and argument expression exp, reduces to value in the current environment, and

and the body of that procedure evaluated in the procedure’s stored environment (&},)
extended with id bound to the argument’s value reduces to value valp,)

then the application of the procedure expression to the argument expression in the current environment is
valp.”

Observe that the body expression is evaluated in the stored environment extended with the new binding,
creating lexical scoping. Were we to accidentally use the current environment there we would have created
dynamic scope. We conclude with the trivial variable rule:

E-Var: id, & [id < val] = val (27)

Examining our big-step rules, we see that they map one-to-one to the implementation of an interpreter for
the language. Each rule is one case inside the EVAL procedure, or inside the parser for ones that we choose to
rewrite at parse time. Within a rule, each antecedant corresponds to one recursive call to EVAL. For example
in the E-App rule, there are three antecedants. These correspond to the recursive calls to evaluate the first
subexpression (which should evaluate to a procedure), the second (i.e., the argument), and then the body. That
last call to evaluate the body is usually burried inside APPLY. The environments specified on the left sides of
the antecedants tell us which environments to pass to EVAL.

See [Kri07] chapter 23 for an excellent set of examples of progress rules for big-step operational semantics.

6.3.2 A Proof

This is a proof of the same statement from the small-step example, now proven with the big-step semantics.
Because the nesting gets too deep to fit the page width, I created a separate lemma for the conditional portion
of the proof.

Lemmal. ((A (z) z) true) , & reducesto t

A @0 T (5 x 8 e s"TYF x[x =16
Proof. E-App) O
(A (x) x) true) &= 1
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Theorem 3. (if ((A (z) z) true) false true) , & reducesto f .

Proof.

Lemmal) . ~
¢ = ) t,and ¢

#f

the negation of the contradiction of Lemma 1, — ( ((A (x) x) true) &= f ), is also true.

1. Because ((A (x) x) true) ,&

—|( ((A (x) x) true) ,& = f) false ,&= f

2. E-IfOk

(if ((A () x) true) false true) ,&= f

7 The A Calculus

The A calculus is Church’s [Chu32] minimalist functional model of computation. Church showed that all
other programming constructs can be eliminated by reducing them to single-argument procedure definition
(i.e., abstraction; lambda), variables, and procedure application. Variations of A calculus are heavily used in
programming language research as a vehicle for proofs. Outside research, there are several motivations for
studying A calculus and reductions to it from more complex languages.

Philosophically, A calculus is the® foundation for our understanding of computation and highlights the power
of abstraction. Practically, understanding the language and how to reduce others to it changes the way that one
thinks about (and applies) constructs in other languages. This leads the way to emulating constructs that are
missing in a language at hand, which makes for a better programmer. For example, Java lacks lambda. The
Java API designers quickly learned to use anonymous classes to create anonymous closures, enabling the use
of first-class function-like objects in a language that does not support functions. C++ programmers discovered
a way to use the polymorphic mechanism of templates as a complete macro language.

On learning a new language, the sophisticated programmer does not learn the specific forms of that language
blindly but instead asks, “which forms create closures, recursive bindings, iteration, etc. in this language?”.
If any of the desired features are missing, that programmer then emulates them, using techniques learned by
emulating complex features in the minimalist A calculus. So, although implementing Church Booleans is just
an academic puzzle for most programmers, that kind of thought process is valuable in implementing practical
applications.

André van Meulebrouck describes an alternative motivation:

“Perhaps you might think of Alonzo Church’s A-calculus (and numerals) as impractical mental
gymnastics, but consider: many times in the past, seemingly impractical theories became the under-
pinnings of future technologies (for instance: Boolean Algebra [i.e., today’s computers that operate
in binary build massive abstractions using only Boole’s theoretical logic!]).

Perhaps the reader can imagine a future much brighter and more enlightened than today. For in-
stance, imagine computer architectures that run combinators or A-calculus as their machine instruc-
: »9

tion sets.

8or at least, one of the two...

9http://www.maclech.com: 16080/articles/mactech/Vol.07/07.06/ChurchNumerals/
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7.1 Syntax

The A calculus is a language with surprisingly few primitives in the expression domain!:
var = id
abs = A id . exp
app = exp exp

exp var | abs | app| Cexp )
The last expression on the right simply states that parentheses may be used for grouping.
The language contains single value type, the single-argument procedure, in the value domain. In set notation
this is:
val = proc = var x exp

and in BNF:
val == A id . exp
The abbreviated names used here and in the following discussions are mnemonics for: ‘id’ = ‘identifier’,
‘abs’ = ‘abstraction’ (since A creates a procedure, which is an abstraction of computation), ‘app’ = ‘procedure
application’, ‘exp’ = ‘expression’, ‘proc’ = ‘procedure’, and ‘val’ = ‘value’.
7.2 Semantics
The formal semantics are simply those of substitution [Pie02, 72]:
App-Part 1: (reduce the procedure expression towards a value)
expp = exp),
L (28)
exppexpa = expl,expq
App-Part 2: (reduce the actual parameter towards a value)
expy = exp),
Pa pa y (29)
exppexpq = exppexp,
App-Abs: (apply a procedure to a value)
A id . exppogy val = [id — val]exppoqy (30)

The App-Abs rule relies on the same syntax for the val value and abs expression, which is fine in A calculus
because we’re using pure textural substitution. In the context of a true value domain that is distinct from the
expression domain, we could express it as an abs evaluation rule for reducing a procedure expression to a
procedure value and and an application rule written something like:

valy = A id . exppogy a1

valp val, = [id — valy] exppogy

7.3 Examples

For the sake of giving simple examples, momentarily expand A calculus with the usual infix arithmetic opera-
tions and integers. Consider the evaluation of the following expression:

Ax.(x+3)7 (32)

10This is specifically a definition of the untyped A-calculus.
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This is an app expression. The left sub-expression is a abs, the right sub-expression is an integer (7). Rule
App-Abs is the only rule that applies here, since both the procedure and the integer cannot be reduced further.
App-Abs replaces all instances of x in the body expression (x + 3) with the right argument expression, 7:

Ax.(x+3)7 (33)
= [ T)(x+3) (34)
= (7+3) (35)
=10 (36)

Arithmetic then reduces this to 10.
Now consider using a procedure as an argument:

(Af-(f3) Ax.(14x)) (37

This is again an app. In this case, both the left and right are abs expressions. Applying rule App-Abs substitutes
the right expression for f in the body of the left procedure, and then we apply App-Abs again:

(Af - (f3)) (Ax.(1+x)) (38)
=[f = Ax.(1+x))](f3)) (39)
=Ax.(1+x)3 (40)
= [x—=3](1+x) 1)
=(1+3) (42)
—4 (43)

7.4 Partial Function Evaluation
Because procedure application is left associative and requires no function application operator:
fxy=(fx)y (44)

we can emulate the functionality of multiple-argument procedures using single argument procedures. For
example, the “two-argument” procedure that sums its arguments is:

Ax.Ay.(x+y) (45)

The outer expression is an abs (procedure definition), whose body is another abs. This is a first-order
procedure. When placed into nested app expressions, the procedure returns another procedure, which then
consumes the second app’s argument:

(AxAy.(x+y)) 12 (46)
= Ay.(1+y) 2 47)
=142 (48)
=3 (49)

The process of converting a Oth-order function of n arguments into an nth-order function of one argument,
like the one above, is called currying. It is named for the logician Haskell Curry, who was not its inventor!!.

When an nth-order function is applied to k < n arguments, in A calculus, the result reduces to an (n — k)th
order function. The resulting function “remembers” the arguments that have been provided because they have
already been substituted, and it will complete the computation when later applied to the remaining arguments.
This is called partial function evaluation, and is a feature of some languages including Haskell (which is
also named for Haskell Curry, who did not invent it either.) For example, the addition function above can be
partially evaluated to create an “add 5 function:

(AxAy.(x+y)) 5 (50)
= Ay.(5+y) (G

"'The idea is commonly credited to Schonfinkel in the 20th century, and was familiar to Frege and Cantor in the
19th [Pie02, 73]
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7.5 Creating Recursion

A fixed point of a function f is a value v such that f(v) = v (in mathematical notation; in A calculus, we
would say f v =v. A function may have zero or more fixed points. For example, the identity function Ax.x has
infinitely many fixed points. Let s = Ax.x? be the function that squares its argument; it has fixed points at 0 and
1.

A fixed point combinator is a function that computes a fixed point of another function. This is interesting
because it is related to recursion. Consider the problem of defining a recursive function in A calculus. For
example, define factorial (for convenience, we temporarily extend the language with conditionals and integers;
those can be reduced as shown previously):

An.(if (iszero n)
1
(nx(f (n=1))))

The problem with this definition is that we need the f embedded inside the recursive case to be bound to the
function itself, but that value does not exist at the time that the function is being defined. Alternatively, the
problem is that f is a free variable. Adding another abs expression captures f:

ln.(if (iszero n)

1
(nx(f (n—=1))))

This just says that if we already had the factorial function that operated on values less than n, we could imple-
ment the factorial function for n. That’s close to the idea of recursion, but is not fully recursive because we’ve
only implemented one inductive step. We need to handle all larger values. To let this inductive step run further,
say that f is the function that we’re defining, which means that the inner call requires two arguments: f and
n—1:

Af.An.(if (iszero n)

1
(n+ (F[ £ [ (n=1))))

Call this entire function g. It is a function that, given a factorial function, creates the factorial function. At first
this does not sound useful-if we had the factorial function, we wouldn’t need to write it! However, consider
that what we have defined g such that (gf) = f...in other words, the factorial function is the fixed point of g.
For this particular function, we can find the fixed point by binding it and then calling it on itself. Binding and
applying values are accomplished using abs and app expressions. An expression of the form:

(Azzz)g = g¢ (52)

applies g to itself. Wrapping our entire definition with this:

(Az.z2)

(Af.An.(if (iszero n)
1
(nx(f f (n=1)))))

produces a function that is indeed factorial, albeit written in a strange manner. Convince yourself of this by
running it in Scheme, using the following translation and application to 4:

(
((lambda (z) (z 2z))
(lambda (f)
(lambda (n)
(if (zero? n)
1
Gen (£ £) (- n 1))

4)
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When run, this correctly produces 4! =4 3% 2% 1 = 24.

This exercise demonstrates that it is possible to implement a recursive function without an explicit recursive
binding construct like LETREC. For the factorial case, we manually constructed a generator function g and its
fixed point. Using a fixed point combinator we can automatically produce such fixed points, simplifying and
generalizing the process.

Curry discovered the simplest known fixed point combinator for this application. It is known as the Y
combinator (a.k.a. applicative-order Z combinator as expressed here), and is defined as:

Y = Af.
((Az.z2)
(Ax. f(Ay.xxy))) (53)

When applied to a generator function, Y finds its fixed point and produces that recursive function. The Y
combinator is formulated so that the generator need not apply its argument to itself. That is, the step where we
rewrote (f (n—1)) as (f f (n— 1)) in our derivation is no longer necessary.

A Scheme implementation of ¥ and its use to compute factorial are below. The use of the DEFINE state-
ment is merely to make the implementation more readable. Those can be reduced to LAMBDA and application
expressions.

; Creates the fixed point of its argument
(define Y
(lambda (f)
((lambda (z) (z 2z))
(lambda (x) (f (lambda (y) ((x x) y)))))))

; Given the factorial function, returns the factorial function
(define generator
(lambda (fact)
(lambda (n)
(if (zero? n)
1
(* n (fact (subl n)))))))

; The factorial function: prints (lambda...)
(Y generator)

; Example: prints 24
((Y generator) 4)

8 Macros

We’ve seen that a parser can reduce macro-expressive forms to other forms to minimize the number of cases
that need to be handled in the compiler/interpreter. For example, a short-circuiting OR expression like the one
in Scheme can be reduced within the parser by the small-step rule:

( or expyexpp ) = ( let ( [idexpy 1 ) ( if ididexp, ) ) (54)

Languages with a macro system feature allow the programmer to add rules such as this to the parser. They
are effectively plugin-modules for the parser. Macros are written in a separate language that is often similar
to the base language, and they generally describe pattern matching behavior. They extend the syntax of the
language in ways that cannot be achieved using procedures alone. For example, a short-circuiting OR cannot be
written using only procedures, IF, and application in a language with eager evaluation of procedure arguments.

In the OR example, it is important that the identifier id does not appear as a free variable on the other
expressions. If it did, the macro would accidentally capture that variable and change the meaning of exp; and
expy. A hygienic macro system is one in which identifiers injected into code by the macro system cannot
conflict with ones already present in expressions. One way to achieve this is to append the level of evaluation
at which an identifier was inserted to the end of its name. Identifiers in the original source code are at level O,
those created by first-level macro expansion are at level 1, those created by macros emitted by the first-level



8 MACROS 20

macros are at level 2, and so on. Not all macro systems are hygienic. While Scheme’s macro system is (since
R5R6) and is generally considered both clean and powerful, the most frequently used macro system—that of
C/C++ —is not. This does not mean that C macros are useless, just that extreme care must be taken when using
them.

8.1 C Macros

The C macro system contains two kinds of statements: #if and #define. Without defining its semantics here,
an example'?2 illustrates how they are typically employed:

-#include <stdio .h>

#if defined (.MSC_VER)

// Windows

# define BREAK ::DebugBreak ();

#elif defined(__i386__) && defined (__GNUC_.)

// gcc on some Intel processor

# define BREAK __asm__ __volatile__ ( ”int.$3” );
#else

// Hopefully , some other gcc

# define BREAK :: abort ()

#endif

#define ASSERT(test_expr , message) \
if (! (test_expr)) {\
printf (”%s\nAssertion.\"%s\”.failed.in %s.at.line %d.\n", \

message , #test_expr, __FILE__, __LINE__);\
BREAK; \
}
int main(int argc, charxx argv) {
int x = 3;
ASSERT(x > 4, ”Something._bad”);
return 0;

The #if statements are used to determine, based on expressions including variables such as "MSC_VER that
are defined at compile time, what compiler and operating system the code is being compiled for. They allow the
program to function differently on different machines without the expense of a run-time check. Furthermore,
certain statements that are not legal on one compiler can be avoided entirely, such as the inline assembly syntax
used for gcc. The #define statement creates a new macro. By convention, macros are given all uppercase
names in C. Here, two macros are defined: BREAK, which halts execution of the program when the code it emits
is invoked, and ASSERT, which conditionally halts execution if a test expression returns false. ASSERT cannot
be a procedure for two reasons: first, it would be nice to define it so that in an optimized build the assertions
are removed (not shown here), and second, because we do not want to evaluate the message expression if the
test passes.

Within the body of the ASSERT definition we see several techniques that are typical of macro usage. The
special variables __FILE__ and __LINE__ indicate the location at which the macro was invoked. Unlike proce-
dures in most languages, macros have access to the source code context from which they were invoked. This
allows them to customize error reporting behavior. The expression #test_expr is applying the # operator to
the test_expr macro variable. This operator quotes the source code, converting it from code into a string that
may then be printed. Procedures have no way of accessing the expressions that produced their arguments, let
alone the source code for those expressions. Note that where it is used as the conditional for if, test_expr
is wrapped in parentheses. This is necessary because C macros operate at a pre-parse (in fact, pre-tokenizer!)
level, unlike Scheme macros. Without these extra parentheses, the application of the not operator (!) might
be parsed differently depending on the operator precedence of other operators inside the expression. This is

12 Adapted from the G3D source code, http://g3d-cpp.sf.net.
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generally considered a poor design decision of the C language, not a feature, although it can be exploited in
useful ways to create tokens at compile time.

C’s macro system is practical, though ugly. The C++ language addresses many of its shortcomings by intro-
ducing two other language features for creating new syntax: templates and operator overloading. Templates
were originally introduced as a straightforward polymorphic type mechanism, but have since been exploited by
programmers as a general metaprogramming mechanism that has Turing-equivalent computational power.

9 Type Systems

9.1 Types

A type is any property of a program that we might like to check, regardless of whether it is computable.
Examples of such properties are “Function f returns an even integer”, “Program P halts on input x”, and
“Program P never dereferences a NULL pointer”. We will restrict ourselves to properties of values, which
is what is commonly meant by programers when they refer to “types”. In this context, a type is any of the
following equivalent representations:

Definition | Example

Set of values x={0,1,2,...}

Specific subset of the value domain | uint = {x € num C val | x > 0}

Condition x€numand x >0

Predicate (define (uint? x) (and (number? x) (>= x 0)))
Precise description non-negative integers

Values have types in all programming languages. This is necessary to define the semantics of operations on
the values. In some implementations of some languages, types are explicitly stored with the values at runtime.
This is the case for Java Objects and Python and Scheme values, as well as C++ classes under most compilers.
In other implementations and languages, types are implicit in the code produced by a compiler. This is the
case in C. For an implementation to avoid storing explicit type values at runtime, it must ascribe static types
to variables, meaning that each variable can be bound to values of a single type that is determined at compile
time. Languages that retain run-time type information may have either static or dynamic types for variables.
Dynamically typed variables can be bound to any type of value. Few languages allow the type of a value
to change at runtime. One exception is C++, where the reinterpret_cast operator allows the program to
reinterpret the bits stored in memory of a value as if they were a value of another type.

9.2 Type Checking

Recall that an operational semantics is a set of rules for reducing expressions to values. Although they are
generally employed as a formal method for specifying how to write an interpreter or compiler, those rules can
be used to prove that a specific expression evaluates to a specific value. Type judgements are a parallel set of
rules for reducing expressions to fypes. They are used to prove that an expression must evaluate to a specific
type. An interpreter would encounter an error condition under operational semantics if it was unable to apply
any rule to reduce an expression further. Likewise, a type checker encounters an error condition under a set of
type judgements if it is unable to apply any rule to reduce an expression further. In both cases, that situation
indicates an error in the program being checked.

Types are more general than values, so proving that an expression reduces to some value in a type is less
powerful than proving that it reduces to a specific value. However, proving that it reduces to a value is exactly
as hard as executing the program, which means that it is undecidable in general. It is easier to prove that an
expression reduces to some value in a type, without determining the exact value. Furthermore, this proof can
be undertaken in the form of a derivation, where the result type and a proof of its correctness are discovered
simultaneously. This process is called type checking.

If the types and judgements are carefully defined, type checking is decidable. That means we can guarantee
that the type checker will terminate. Because they are just rules, the type judgements are a kind of meta-
language. This is an example of intentionally designing a language to be less computationally powerful in
order to avoid the incompleteness theorem.

A type system comprises the types, the type judgments, and the algorithm for applying the type judgments
to form a proof/discover the result type. Note that type systems reduce the expressivity of a programming
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language by restricting the kinds of expressions that are legal, beyond the restrictions imposed by the grammar
itself. This is desirable because a well-defined type system generally prohibits programs that would have been
incorrect anyway. Of course, we always run the risk that some correct programs will be excluded by this choice.
Furthermore, when we limit the type system in order to make type checking decidable, we lose the ability to
eliminate all incorrect programs. Therefore, a decidable type system can only guarantee that a program is valid,
and not correct.

9.3 Type Judgment Notation

Consider a simple language:

bool-lit = true | false
lit = num-lit | bool-lit
and = ( and expexp )
equal = ( equal expexp )
plus = ( + expexp )
if == ( if expexpexp )
exp u= lit|and |equal | plus|if
bool = f { 7
val = num ’ bool (55)

We could use the operational semantics notation to express type judgements, e.g.,

Teand: expi,& = bool expy,& = bool (56)

( and expjexp; ) ,& = bool

However, there would be two drawbacks to that approach. First, it looks like an operational semantics, so we
might be confused as to what we were seeing. Second, environments don’t exist during static evaluation (i.e.,
at “compile time”), so & is not useful. That is, environments store values that we’ve already discovered, but for
type checking we aren’t discovering values. We need a different kind of environment for type-checking: one
that stores types we’ve already discovered. Therefore, type judgements use a slightly different notation than
operational semantics. The above statement is written as:

Toand : I'expy : bool TFexpr : bool 57)

' ( and expyexpy ) : bool

This reads, “if gamma proves that expression 1 has type bool and gamma proves that expression 2 has
type bool, then gamma proves that (and expression 1 expression 2) has type bool”. Gamma (I') is a variable
representing a type environment. Just as the root value environment contains the library functions, the root
type environment contains the types of literals and the library functions. It is then extended with other types
that are discovered. The turnstile'> operator “ is the part that reads “proves”. It replaces the comma from
operational semantics notation. The colon reads “has type”; it replaces the arrow from operational semantics
(except for the colon right next to “T-and”; that’s just a natural language colon indicating the name of the
judgement). The T-plus and T-equal judgments are similar to T-and, but with the appropriate types inserted.

We need a set of trivial judgements for the literals:

T-num: num-lit : num
T-bool: bool-lit : bool (58)

13\ vdash in Latex
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All that remains is IF. The type of a conditional depends on what the types of the consequent and alternate
expressions are. Since we don’t statically know which branch will be taken, we are unable to ascribe a single
type to an IF expression if it allows those expressions to have different types as Scheme does. This will limit
the number of invalid programs that we can detect. So let us choose to define our language in the same manner
as C and Java, where both branches of the IF must have the same type, but there is no restriction on what that
type must be:

Tif I'texps : bool Thexp.: 1 Thkexp, : 7
-if

(59
't ( if expyexpcexps ) : 7T

Given type judgments for all of the expressions in our language, we can now discover/prove the type of any
expression. For example, the following is a proof that (if (and true false) 1 4) has type bool:

(T-b'ool) (T—b'ool) (T—num) (T-n'um) (T—nym)
I+ : bool Ttfal :_bool . I't4 -2 :
tnis%(a.nd (Z?fue falie??bool ° (T-and) I'F1 . num FFn(Limél 2) :num e (T-plus) (T-if)
' (if (and true false) 1 (+ 4 2)) : num
9.4 Procedure Types
Extend the little language from the previous section with procedures:
lambda == ( A (Cid" ) exp )
app = (expt )
exp = .. ‘ lambda ! app
proc == ({id" exp,evt)
val = .. ‘ proc (60)
Recall our earlier notation for procedure types, e.g.:
A xy) (+x (if y 1 2))) : num X bool — num (61)

Here, “x” denotes the Cartesian set product, which is equivalent to denoting the set of all possible tuples of
values from its operand sets and the arrow indicates that this is a procedure mapping the argument types to the
return type.

The application rule is straightforward. For one argument it is:

I'expy,:(a—r) Thexpg:a

T-app: (62)

' C expp expy ) :r

For multiple arguments it generalizes with n+ 1 terms in the condition:

Toapp: Ckexpy:(a; x...xa, —r) Vi,I'Fexp; : a;

(63)

'k ( exp, expy ... exp, ) :r

It is difficult to write a type judgement for LAMBDA without additional information. Some languages, like
ML, tackle that challenge using a process called type inference. For the moment, let us avoid the problem and
require the programmer to specify additional information in the form of an annotation. This is the strategy
taken by languages like Java and C++. For our annotations, change the syntax of LAMBDA to be:

type == bool | mum | ( [type] ( x type)* —type )

lambda

C A C (id : type) ) : typeexp ) (64)
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An example of a correct procedure definition in this new syntax is:

(A (x:num y:bool):bool (if (equal x 3) y false)) (65)

Note that this is essentially the same as C++/Java syntax, except that we write types after identifiers instead of
before them. Now we can express a type judgement for procedure creation:

T-lambda: F[ldl —ay,...,idy, — an} Fexpp:r

(66)
't ¢ A Cidy :ay...idy : ay expp ) :r:(apX...Xap—r)

This reads, “If gamma extended such that id; has type aj, and so on for all other identifiers, proves that the
body expression has type r, then gamma proves that the procedure has type (a X ... x a, — r)”.

T-app and T-lambda each check one half of the type contract, and together ensure that procedures are cor-
rectly typed:

e “When typing the function declaration, we assume the argument will have the right type and
guarantee that the body, or result, will have the promised type.

e When typing a function application, we guarantee the argument has the type that the function
demands, and assume the result will have the type the function promises.” [Kri07, 245]

Observe that because we already have a mechanism for determining the type of an arbitrary expression the
return type annotations are spurious.

From a theoretical perspective, type annotations are merely a crutch for the type checker and would not
be required in any language. From the perspective of a practical programmer, they are a feature and not a
drawback. The type annotations are a form of documentation. Many programmers feel that they are likely to
get the annotations right and instead make mistakes in the implementation of a procedure. If this is true, then
a system that infers procedure types will tend to generate misleading error messages that blame the application
and not the procedure when the argument types do not match due to an error in the procedure.

9.5 Inference

The following is an alternative discussion of [KriO7] chapter 30.

Type inference solves the problem of typing LAMBDA and APP without requiring explicit annotations on
LAMBDA. A Hindley-Milner-Damas type system operates by discovering constraints on the types of expressions
and then unifying those constraints. This process is used by languages such as ML and Haskell.

The unification process corresponds to running a substitution interpreter in a metalanguage where the values
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are types. Say we have the following language for our programs:

bool-lit 1=  true | false
num-lit == .| -1 |0 | 1 |..
lit = num-lit | bool-lit
app == ( expexp )
lambda == ( A (Cid ) exp )
var = id
exp == lit|app | lambda var
bool == t | £
num = .| -1 ] 0| 1.
proc == (id,exp,evt)

val num | bool ! proc 67)

There is a corresponding metalanguage on the types:

tlit = ;u;| bool
tvar = exp
tproc = texp —texp
texp = tlit|tvar|tproc
tval = tlit | tval — tval (68)

(69)

Note that the metalanguage isn’t quite so clear about distinguishing its expression and value domains. That’s
because we’re going to write a substitution interpreter (i.e., no mutation!) for the metalanguage, and for a
substitution interpreter the expression/value distinction is less significant. rval is essentially the same as rexp,
except it requires that there be no variables nested anywhere in a type.

A type inference system assigns types to all bound program variables. In the process of doing so, it also finds
the types of all other expressions in the same way as a type checker. Thus it checks types while discovering
them.

Within the inference system, the type variables (1var) are program expressions (exp), because the type vari-
ables are what we want to find the type values of, and those are expressions. For example, we might describe
the program:

(A x) x) 7N (70)
as having the following variables:
Let n = [[ (A x) %) 7) ] (71)
h o= [ @ 0] (72)
no= [7] (73)
uo= [[=]] (74)
where [[ ... ]] means “the type of” the enclosed expression. In solving for these variables, we encounter the

following constraints, from the application, the lambda, and the literal expressions:
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[A & x])=7]=[ A & =) 7)] (75)
[A @0 ]=[x]]—[x] (76)
[7] = num )

Writing these in terms of the type variables, we have:

h = 1B—1
nh = 4=
—_—
t3 = num (78)

This is a set of simultaneous constraints, which we can solve by substitution (much like solving simultaneous
equations in algebra!) A substitution type interpreter solves for their values. This type interpreter maintains
a stack of constraints and a type environment (a.k.a. a substitution). These are analogous to the stack of
expressions and the environments in a program interpreter. The type environment initially contains the types of
the built-in procedures. The stack initially contains the constraints obtained directly from the program. While
the stack is not empty, the interpreter pops a constraint of the form X =Y off the top, where X and Y are both
texp, and processes that constraint as follows:

e If X € tvar and X =Y, do nothing. This constraint just said a type variable was equal to itself.

e If X € tvar, replace all occurrences of X with Y in the stack and the environment and let extend the
environment with [X — Y] (N.B. that arrow denotes a binding of a type variable, not a procedure type).
We have found an expansion of X, so we want to immediately expand it everywhere we encountered it
and save the expansion for future use in the environment.

e If Y € tvar, replace all occurrences of ¥ with X in the stack and the environment and let extend the
environment with [Y — X].

e If X and Y are both in tproc, such that X =X, — X, and Y =Y, — Y,, push X, =Y, and X, =Y, onto
the stack. These are both procedure type expressions, so their argument and return types must match each
other. This is the type inference system’s analog of APPLY.

e In any other case, the constraint X =Y is unsatisfiable, indicating an error in the target program. Report
this error and abort unification.

Constraint solving is a general problem in computer science. See the union-find algorithm for a generalized
discussion of the problem and popular approach.

9.6 Subtypes

There are many ways of defining types; therefore there are many ways of defining a subtypes ¢’ of ¢, which is
written t' <:t ort’ C t. Here are a few:

o Informally, ' <: 7 if you can use an instance of ¢ anywhere that you can use an instance of ¢

e Considering types as sets of values, the subset notation holds literally: ¢’ is a subtype of ¢ if it is also a
subset of ¢

e By the Liskov substitution principle, if g(x) is a property provable about objects x of type ¢, then g(y)
should be true for objects y of type t', where ¢’ <: t [Lis87].

e If ¢ is defined by a predicate function g(x) that returns true for x € ¢, then ¢(y) must also return true for
everyyct'.

o ¢! <:tift' isasortoft
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The subtype rule is:

/

I'kexp:t' t
' exp:t

<:t

T-sub: (79)

9.6.1 Procedure Subtypes

Because ((A () exp1)) = expy, it must be the case that both sides of the reduction arrow have the same type. Let
this type be r. By rule T-sub, we can substitute any expression exp; for expy if exp; : ' and ¥ <: r. Therefore
a procedure of type (a — r') must be a subtype of a procedure of type (a — r). This is not surprising. We’ve
just said that procedure return types are covariant: if a subtype relation holds on two procedure types, the
same relationship must also hold on their return types. Procedure subtype argument types have a contravari-
ant relationship, however: the procedure subtype must accept at least all values that the procedure base type
accepted.
The procedure subtype rule is:

Ttexp:(a—r) d<ia VY<r
't exp:(d —r)

T-proc-sub: (80)

9.6.2 Polymorphic Subtypes

In C++, Java, and most OOP languages, pointers are covariant.

In Java, arrays are covariant. This is a design flaw because it makes type checking of array access statically
undecidable. Java must therefore check every array assignment at runtime, which makes it both inefficient and
less checkable than languages that have no subtype relationship between arrays of subtypes.

Polymorphic types don’t have a direct mathematical relationship in general.

10 Memory Management

Early languages had no memory management, e.g., FORTRAN required all arrays to have static size and pro-
hibited recursive procedure calls. Later languages (notably first Algol, and soon thereafter, LISP) split memory
into a dynamically controlled stack and heap. The stack grows and shrinks (...like a “stack” data structure)
primarily in response to procedure calls. Values on the stack are no longer available after that stack frame is
popped, e.g., when the procedure that created the frame returns. The heap is a giant block of random access
memory (...unfortunately, unlike a “heap” data structure). Values on the heap are available until deallocated.

With the introduction of the heap, a language needs a process for managing heap memory to ensure that
programs don’t ever allocate the same block of memory twice, and reclaim memory once it is no longer in
use. Let a block of memory be a contiguous heap region, which can be described by a starting address and
a size (e.g., in bytes). Let the free list and allocated list are each lists of block descriptors that have been,
respectively, not allocated (i.e., are free) or allocated. Assume an implementation of these as doubly-linked lists.
A manual memory management scheme provides the programmer with explicit procedures for allocating and
deallocating heap memory. These might look like:

def alloc (numBytes):
global freeList, allocList
cur = freeList.firstNode ()
while cur != None:
if cur.size greater than or equal to numBytes:
block = BlockDescriptor(cur.start , numBytes)
if (cur.size greater than numBytes):
# Shrink the remaining block
cur.size —= numBytes
cur.start 4+= numBytes
else:
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# We used up the whole block
freeList .remove(cur)

allocList.insert(block)
# return the block
return block

# We’re._out_of _memory!
—~wooreturn .None

def free (block):
global freeList, allocList
allocList.remove(block)
freeList.insert (block)

Many languages don’t actually give you a block descriptor back from alloc; they return only the start address.
In order to recover the block size, they often stash it (by convention) in the bytes right before that start address.
In C, malloc and free implement manual memory management. e.g.,

MyObj* ptr = (MyObj*)malloc(sizeof (MyObj));
free (ptr);

You can see why the implementation of memory allocation might be somewhat slow—the functions have to
walk a linked list that initially contains one element, but increasingly becomes filled with lots of small block
descriptors, and the most straightforward algorithm will not guarantee that sequentially allocated blocks are

near enough each other in memory for hardware caches to function effectively.
Some problems with manual memory management:

1. Object initialization: type safety cannot be maintained if the program is free to treat objects and blocks of
memory as interchangable.

2. Dangling pointers: If you hang onto an address to a block of freed memory and later try to use it, the
result is undefined! That memory might have been allocated to some other object in the mean time.

3. Memory leaks: If you forget to free blocks of memory, eventually the program will run out of memory
and be unable to continue (in practice, it will start swapping to disk memory and become unusuably slow
before this occurs).

4. Memory management is boilerplate that clutters the program, without adding algorithmic insight.

In C++, new and delete allow for proper initialization of heap allocated objects. new allocates memory
for an object and then invokes its constructor. Delete invokes the destructor and then frees memory. The
destructor typically invokes delete recursively on all objects referenced by the one undergoing destruction.
As aresult, most C++ programmers will try to allocate objects on the stack whenever possible and create chains
of destructors that automate much of the heap memory management. This addresses the first problem. But can
we do better, building this type-safety automation right into the language and addressing the other drawbacks
of memory management?

The allocation part is easy—values have to be explicitly created, so their allocation is necessarily part of the
program. But when is the right time to free a block of memory? When the values in it will never be used again
by the program. Unfortunately,

the function that determines whether a value will be used in the future is noncomputable

..t is as hard as evaluating the rest of the program and equivalent to the halting function. So we can at best
conservatively approximate this function. One good approximation is that if no other variable is pointing at a
value in the heap, then we know it can never be used again and can be freed. Algorithms for implementing this
strategy are called garbage collection algorithms.

Reference counting is one garbage collection algorithm. In it, each object maintains a count of the number
of incoming references (pointers). When this hits zero, the object automatically frees its own memory. This
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is used by many implementations of the Python language, by operating systems for managing shared libraries,
and can be implemented in C++ using operator overloading to implement faux-pointers. Reference counting
is very efficient and predictable because the program’s action of setting a pointer to nulll triggers collection of
exactly the objects that action allows to be freed. Reference counting has a key weakness: cycles of pointers
ensure that even a completely disconnected component appears to always be in use. This is like two people
each floating in space by holding the other one up...really the entire structure should crash (in our case, be
deallocated).
One algorithm that can handle cycles is called mark-sweep:

def alloc2(size):
x = alloc(size)
if x == None:
# Out of memory! Time to collect.
ge ()
x = alloc(size)
if x == None:
# After collecting, still not enough memory.
growHeap ()
x = alloc(size)
return x

def free2 (block)
# Do nothing!
None

def gc():
for x in programStack:
mark (X)
sweep ()

def mark(block):
if not block.marked:
block . marked = True
for x in block.pointers:
mark (x)

def sweep ():
for x in allocList:
if not x.marked:
allocList.remove(x)
freeList.add(x)
else:
x.marked = False

This is much more accurate than reference counting for identifying dead objects, but some problems remain.
The first is that it has made the timing of garbage collection unpredictable. Some calls to alloc may take a
very long time to return as they sweep the allocated part of the heap. The resulting pauses at runtime make this
kind of garbage collection unacceptable for many realtime systems. In addition:

e Free memory becomes fragmented into little blocks over time.

e Memory becomes incoherent—structures allocated closely in time may be far apart in space, leading to
poor cache behavior.

e We need run-time type information to identify pointers within blocks.

e How big should the heap initially be? If it is all of memory, that isn’t fair to other programs in a multi-
tasking OS. If it is too small, then we’ll garbage collect too frequently in the beginning.
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There are other algorithms that address some of these problems, like the stop-and-copy collector algorithm,
which compacts all marked memory by moving objects around during collection, and generational collector
algorithms that predict the lifetime of objects to minimize the size of the traced heap.

One interesting side note is conservative collection, which allows gc to operate on an implementation that
does not provide run-time types. The way that it works is to treat every four bytes of allocated memory as if
it were a legal pointer. Assuming block sizes are stashed right in front of the first byte of the block and that
we have an allocated list, we can quickly reject many false pointers and for the rest can trace them through
the system with mark-sweep. This is even more conservative than regular mark-sweep because sometimes four
bytes will happen to match a valid block address when they are not in fact a pointer. Recall that mark-sweep
could not determine whether a block will actually be used in the future, only whether it is referenced. So,
the conservative collector is more conservative than regular mark-sweep, but neither is perfect. One popular
implementation is the Boehm-Demers-Weiser collector http://www.hpl.hp.com/personal/Hans_Boehm/gc/, which is used
to add garbage collection to C/C++.
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11 Some Popular Languages

Every language is a point in a large design space
of possible legal semantics (and syntax). Itis in-
teresting to compare some of the languages that
have been heavily used in the past because they
likely represent local maxima of practicality in
that space. Furthermore, if we consider general
use, both in production systems and for theoret-
ical analysis, to be a large testing environment,
then we can have the hope that the environment
exerts a kind of natural selection on languages
and that over time they are hopefully becoming
better at trading expressivity and static checka-
bility.

The table on the right summarizes the de-
sign choices of some popular language. Every
language has many variants and implementa-
tions. Each evolves over time, and furthermore
has particular subtleties that make such a table-
summary fraught, at best. So please take this
table as the broad overview that it is intended.
The lack of version numbers is specifically in-
tended to point up the “gist of the language” as-
pect, rather than detailing a particular version.

Often, no single language is appropriate for a
project. For example, a computer graphics ap-
plication like a video game might be built using
Python and Make as scripting tools for the build
system, Java or C# for building the 3D devel-
opment tools, OpenGL and GLSL for graphics,
Lua for Al scripting, and C++ as the glue code
capable of interfacing with all of these and pro-
viding both high performance and syntax appro-
priate for expressing 3D mathematics.
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