
Programming Language Notes

April 9, 2009

Morgan McGuire∗

Williams College

This is a series of lecture notes for CS334 addressing some of the theoretical topics from the course.
I will extend them periodically throughout the semester. These supplement the lectures and required
reading. Those contain other topics, especially implementation details, and expand on this condensed
form.

1 Introduction

A well-written program is a poem. Both are powerful because their content is condensed without
being inscruitable and because the form is careful chosen to give insight into the topic. For a program,
the topic is an algorithm and the implementation should emphasize the key steps while minimizing
the details. The most elegant implementation is not always the most efficient, although it often is
within a constant factor of optimal. The choice of programming language most closely corresponds
to the choice of poem structure, e.g., sonnet or villanelle, not the choice of natural language, e.g.,
English or French. The structure of each enforces certain patterns and ways of thinking on the author
and reader.

To author elegant programs, one must master a set of languages and language features. Then, one
must subjectively but precisely choose among them to express specific algorithms. Languages are
themselves designed. A well-designed language is a meta-poem. A language designer crafts a set of
expressive tools suited to the safety, performance, and expressive demands of a problem domain. As
with literature, the difficult creative choice is often not what to include, but what to omit.

A programming language is a mathematical calculus, or formal language. Its goal is to express
algorithms in a manner that is unambiguous to people and machines. Like any calculus, a language
defines both syntax and semantics. Syntax is the grammar of the language; the notation. Seman-
tics is the meaning of that notation. Since syntax can easily be translated, the semantics are more
fundamental.

Church and Turing (and Kleene) showed that the minimal semantics of the λ calculus and Turing
machine are sufficient to emulate the semantics of any more complicated programming language or
machine. However, reducing a particular language to the λ calculus may require holistic restructuring
of programs in that language. We say that a particular language feature (e.g., continuations, macros,
garbage collection) is expressive if it cannot be emulated without restructuring programs that use it.
In these notes, our aperature on programming languages is features, which can increase and decrease
the expressiveness of the language for certain domains.

1.1 Types

Every language makes some programs easy to express and others difficult. When a language is well-
suited to a problem domain, the programs it makes easy to express are correct solutions to problems in
that domain. A well-suited language furthermore makes it hard to express programs that are incorrect.
This is desirable! One way to design a language is to selectively add restrictions until it is hard to
express incorrect programs for the target domain. The cost of a language design is that some correct
and potentially useful programs also become hard to express in the language.

The type system is one tool for restricting a language. A type system associates metadata with
values and the variables that can be bound to them. A well-typed program is one where constraints
on the metadata imposed by the language and program itself are satisfied. When these are violated,
e.g., by assigning a “String” value to an “int” variable in Java, the program is incorrect. Some
kinds of program errors can be detected by static analysis, which means examining the program
without executing it. Some kinds of errors cannot be detected efficiently through static analysis,
or are statically undecidable. Many of these can be detected by dynamic analysis, which means
executing type checks at run-time–while the program is executing.

We say that a language exhibits type soundness if well-typed programs in that language cannot
“go wrong” [Mil78]. That is, if well-typed programs cannot reach stuck states [WF94] from which
further execution rules are undefined. Another view of this is that “A language is type-safe if the
only operations that can be performed on data in the language are those sanctioned by the type of the
data.” [Sar97]

∗morgan@cs.williams.edu, http://graphics.cs.williams.edu

By declaring undesirable behaviors–such as dereferencing a null pointer, accessing a private mem-
ber of another class, or reading from the filesystem–to be type errors and thus unsanctioned, the
language designer can leverage type soundness to enforce safety and security.

All languages (even assembly languages) assign a type to a value at least before it is operated on,
since operations are not well-defined without an interpretation of the data. Most languages also assign
types to values that are simply stored in memory. One set of languages that does not is assembly
languages: values in memory (including registers) are just bytes and the programmer must keep track
of their interpretation implicitly. Statically typed languages contain explicit declarations that limit
the types of values a to which a variable may be bound. C++ and Java are statically typed languages.
Dynamically typed languages such as Scheme and Python allow a variable to be bound to any type
of value. Some languages, like ML, are dynamically typed but the interpreter uses type inference to
autonomously assign static types where possible.

1.2 Imperative and Functional

The discipline of computer science grew out of mathematics largely due to the work of Church and
his students, particularly Turing. Church and Kleene created a mathematical system called the λ

calculus (also written out as the lambda calculus) that treats mathematical functions as first-class
values within mathematics. It is minimalist in the sense that it contains the fewest possible number of
expressions, yet can encode any decidable function. Turing created the Turing machine abstraction
of a minimal machine for performing computations. These were then shown to be equivalent an
minimal models of computation, which is today called the Church-Turing Thesis.

These different models of computation are inherited by different styles of programming. Turing’s
machine model leads to imperative programming, which operates by mutating (changing) state and
proceeds by iteration. Java and C++ are languages that encourage this style. Church’s mathematical
model leads to functional programming, which operates by invoking functions and proceeds by
recursion. Scheme, ML, Unix shell commands, and Haskell are languages that encourage this style.
So-called scripting languages like Python and Perl encourage blending of the two styles, since they
favor terseness in all expressions.

2 Life of a Program

A program goes through three major stages: Source, Expressions, and Values. Formal specifications
describe the syntax of the source and the set of expressions using an grammar, typically in BNF.
This is called the expression domain of the language. The value domain is described in set notation
or as BNF grammars. Expressions are also called terms. Expressions that do not reduce to a value
are sometimes called statements.

An analogy to a person reading a book helps to make clear the three stages. The physical ink
on the printed page is source. The reader scans the page, distinguishing tokens of individual letters
and symbols from clumps of ink. In their mind, these are assigned the semantics of words–i.e.,
expressions. When those expressions are evaluated, the value (meaning) of the words arises in the
readers mind. This distinction is subtle in the case of literals. Consider a number written on the page,
such as “32”. The curvy pattern of ink is the source. The set of two digits next to each other is the
expression. The interpretation of those digits in the reader’s mind is the number value. The number
value is not something that can be written, because the act of writing it down converts it back into an
expression. Plato might say that the literal expression is a shadow on the cave wall of the true value,
which we can understand but not directly observe. 1

2.1 Source Code and Tokens

A program begins as source code. This is the ASCII (or, increasingly, unicode!) string describing
the program, which is usually in a file stored on disk. A tokenizer converts the source to a stream
of tokens in a manner that is specific to the language. For example, in Java the period character
“.” becomes a separate token if it separates two identifiers (variables) but is part of a floating-point
number if it appears in the middle of a sequence of digits, e.g., string.length() versus 3.1415. See
java.StringTokenizer or G3D::TextInput for an example of an implementation.

Figures 2.1 and 2.1 show an example of the source code and resulting token stream for a sim-
ple factorial function implemented in the Scheme programming language. The tokenizer is often
language-specific. For this example, the tokenizer tags each token as a parenthesis, reserved word,

1For the truly philosophical, what is in the mind, or what is stored in bits in a computer’s memory, is still only
a representation of the value. The actual number that the numeral 32 represents is unique. There can be only
one 32, which means it can’t be in multiple places at once–the bits representing the numeral 32 in a computer’s
memory therefore act a pointer to the ideal number 32. AI, PL, and philosophy meet when we consider whether
the human mind is different, or just shuffling around around representations like a computer.

identifier, or numeral. Source code is usually stored in a string. A typical data structure for storing
the token stream is an array of instances of a token class.

Figure 1: Scheme source code for factorial.

Figure 2: Token stream for factorial.

2.2 Expressions

A parser converts the token stream into a parse tree of expressions. The legal expressions are
described by the expression domain of the language, which is often specified in BNF. The nodes
of a parse tree are instances of expressions (e.g., a FOR node, a CLASS-DEFINITION node) and their
children are the sub-expressions. The structure of the parse tree visually resembles the indenting in
the source code. Figure 2.2 shows a parse tree for the expressions found in the token stream from
figure 2.1.

Figure 3: Parse tree for factorial.

The Scheme language contains the QUOTE special form for conveniently specifying parse trees
directly as literal values, omitting the need for a tokenizer and parser when writing simple interpreters
for languages that have an abstract syntax. The drawback of this approach is that simply quoting the
factorial code in figure 2.1 would not produce the tree in figure 2.2. Instead, the result would be a
tree of symbols and numbers without appropriate expression types labeling the nodes.

2.3 Values

When the program executes (if compiled, or when it is evaluated by an interpreter if not), expressions
are reduced to values. The set of legal values that can exist during execution is called the value
domain. The value domain typically contains all of the first-class values, although some languages
have multiple value domains and restrict what can be done to them. In general, a value is first-class
in a language if all of the following hold:

1. The value can be returned from a function

2. The value can be an argument to a function

3. A variable can be bound to the value

4. The value can be stored in a data structure

Java generics (a polymorphism mechanism) do not support primitive types like int, so in some
sense those primitives are second-class in Java and should be specified in a separate domain from
Object and its subclasses, which are first-class. In Scheme and C++, procedures (functions) and
methods are first-class because all of the above properties hold. Java methods are not first-class, so
that language contains a Method class that describes a method and acts as a proxy for it.

The value domain can be specified using set notation, e.g.,

real = int ∪decimal
complex = real× real
number = real∪ complex

or using a BNF grammar (at least, for a substitution interpreter), which is described later.

2.4 Implementation Issues

There is a design tradeoff when implementing a language between compactness and abstraction. Us-
ing the same types in the implementation language for source, expressions, and values reduces the
amount of packing and unpacking of values that is needed, and allows procedures in the implemen-
tation language to operate directly on the values in the target language. Furthermore, in Scheme,
the READ procedure and QUOTE special form allow easy creation of tree values using literals that
are syntactically identical to Scheme source code. This avoids the need for an explicit tokenizer and
parser. Using the same types across domains violates the abstraction of those domains. This can
make the implementation of the language harder to understand (when it grows large), and limits the
ability of the type checker to detect errors in the implementation. For example, when implementing
a Scheme interpreter in Java, one could choose to implement Scheme symbols, strings, identifiers,
and source all as Java strings, without a wrapper class to distinguish them. It would be easy to ac-
cidentally pass a piece of source code to a method that expected an identifier, and the Java compiler
could not detect that error at compile time because the method was only typed to expect a String, not
a SchemeIdentifier.

3 Interpreters and Compilers

A compiler is a program that translates other programs in a high-level language to the machine lan-
guage of a specific computer. The result is sometimes called a native binary because it is in the
native language of the computer2. An interpreter is a program that executes other programs without
compiling them to native code. There is a wide range of translation within the classification of inter-
preters. At one end of this range, some interpreters continuously re-parse and interpret code as they
are moving through a program. At the other end, some interpreters essentially translate code down to
native machine language at runtime so that the program executes very efficiently.

Although most languages can be either compiled or interpreted, they tend to favor only one exe-
cution strategy. C++, C, Pascal, Fortran, Algol, and Ada are typically compiled. Scheme, Python,
Perl, ML, Matlab, JavaScript, HTML, and VisualBasic are usually interpreted. Java is an interesting
case that compiles to machine language for a computer that does not exist. That language is then
interpreted by a virtual machine (JVM).

Compilers tend to take advantage of the fact that they are run once for a specific instance of a
program and perform much more static analysis. This allows them to produce code that executes
efficiently and to detect many program errors at compile time. Detecting errors before a program
actually runs is important because it reduces the space of possible runtime errors, which in turn
increases reliability. Compiled languages often have features, such as static types, that have been
added specifically to support this kind of compile-time analysis.

Interpreters tend to take advantage of the fact that code can be easily modified while it is executing
to allow extensive interaction and debugging of the source program. This also makes it easier to patch
a program without halting it, for example, when upgrading a web server. Many interpreted languages
were designed with the knowledge that they would not have extensive static analysis and therefore
omit the features that would support it. This can increase the likelihood of errors in the programs, but
can also make the source code more readable and compact. Combined with the ease of debugging,

2Although in practice, most modern processors actually emulate their published interface using a different set
of operations and registers. This allows them include new architectural optimizations without changing the public
interface, for compatibility.

this makes interpreted languages often feel “friendlier” to the programmer. This typically comes at
the cost of decreased runtime performance cost increased runtime errors.

Compiled programs are favored for distributing proprietary algorithms because it is hard to reverse
engineer a high-level algorithm from machine language. Interpreted programs by their nature require
that the source be distributed, although it is possible to obfuscate or, in some languages, encrypt the
source to discourage others from reading it.

4 Syntax

Although we largely focus on semantics, some notable points about syntax:

• A parser converts source code to expressions

• Backus-Naur Form (BNF) formal grammars are a way of describing syntax using recursive
patterns

• Infix syntax places an operator between its arguments, e.g., “1 + 2”. Java uses infix syntax for
arithmetic and member names, but prefix syntax for method application.

• Prefix syntax places the operator before the operands, e.g., “add(1, 2)”, which conveniently
allows more than one or two operands and unifies operator and function syntax. Scheme uses
prefix syntax for all expressions.

• Postfix places the operator after the operands, which allows nested expressions where the op-
erators take a fixed number of arguments, without requiring parentheses. Postscript and some
calculators use postfix.

• Scheme’s “abstract syntax” makes it easy to parse

• Macros allow a programmer to introduce new syntax into a language

• Python has an interesting syntax in which whitespace is significant. This reduces visual clutter
but makes the language a little difficult to parse and to edit (in some cases)

• Syntactic sugar makes a language sweeter to use without increasing its expressive power

4.1 Backus-Naur Form

Backus-Naur Form (BNF) is a formal way of describing context-free grammars for formal lan-
guages. A grammar is context-free when the the grammar is consistent throughout the entire lan-
guage (i.e., the rules don’t change based on context). BNF was first used to specify the ALGOL
programming language.

Beyond its application to programming language syntax, BNF and related notations are useful
for representing the grammars of any kind of structured data. Examples include file formats, types,
database records, and string search patterns.

A BNF grammar contains a series of rules (also known as productions). These are patterns that
legal programs in the specified language must follow. The patterns are typically recursive. In the BNF
syntax, the nonterminal being defined is enclosed in angular brackets, followed by the “::=” operator,
followed by an expression pattern. The expression pattern contains other nonterminals, terminals
enclosed in quotation marks, and the vertical-bar operator “|” that indicates a choice between two
patterns. For example,

〈digit〉 ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
〈digits〉 ::= 〈digit〉 | 〈digit〉〈digits〉

In this document, these are typeset using an unofficial (but common) variation, where terminals are
typeset as x and nonterminals as x. This improves readability for dense expressions. With this
convention, digits are:

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
digits ::= digit | digit digits

It is common to extend BNF with regular expression patterns to avoid the need for helper produc-
tions. These include the following notation:

(x) = x; parentheses are for grouping only

[x] = zero or one instances of x (i.e., x is optional)

x∗ = zero or more instances of x

x+ = one or more instances of x

An example of these patterns for expressing a simple programming language literal expression do-
main (e.g., a subset of Scheme’s literals):

boolean ::= #t | #f

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
integer ::= [+ | -] digit+

rational ::= integer / digit+

decimal ::= [+ | -] digit∗ . digit+

real ::= integer | rational | decimal

BNF can be applied at both the character level (e.g., to describe a lexer/tokenizer) and the token
level (e.g., to describe a parser). The preceding example operates on individual characters within a
string and is useful to a tokenizer. An example of a subset of Scheme’s expression domain represented
in BNF at the token level is:

variable ::= id
let ::= (let (

(
[id exp]

)∗
) exp)

lambda ::= (lambda (id∗) exp)

exp ::= variable
∣∣ let

∣∣ lambda
(1)

4.2 Syntactic Sugar

Some expressions make a language’s syntax more convenient and compact without actually adding
expressivity: they make the language sweeter to use. We say that an expression is syntactic sugar
and adds no expressive power if it can be reduced to another expression with only local changes.
That is, without rewriting the entire body of the expression or making changes to other parts of the
program. Such expressions are also referred to as being macro-expressive. They can naturally be
implemented entirely within the parser or as macros in languages with reasonable macro systems.

For example, in Java any FOR statement, which has the form:

for (init ; test ; incr) body

can be rewritten as a WHILE statement of the form:

init ; while (test) { body incr ; }

FOR therefore does not add expressivity to the language and is syntactic sugar. In Scheme, LET
adds no power over LAMBDA, and LET* adds no power over LET. Java exceptions are an example of
an expressive form that cannot be eliminated without completely rewriting programs in the language.

We can express the Java FOR loop’s reduction in more formal notation as:

for (expinit ; exptest ; expincr) expbody

⇒
expinit ; while (exptest) { expbody expincr ; } (2)

Here the pattern on the left may be reduced to the simpler form on the left during evaluation. This is
an example of a general mechanism for ascribing formal semantics to syntax that is described further
in the following section.

5 Semantics

5.1 Operational Semantics

An operational semantics is a mathematical representation of the semantics of a language. It defines
how expressions are reduced to other expressions by applying a set of rules. Equivalently, it gives a
set of progress rules for progressing from complex expressions to simpler ones, and eventually to
values. Each rule has preconditions: to be applied, the rule must match the pattern of the expression.

Any rule whose preconditions are met can be applied. When no rule applies the program halts. If it
halts with a value, that is the result of the computation. If the semantics are self-consistent and rule
expansion halts with an expression that is not a value, that indicates an error in the target program.
The nature and location of the error are determined by the remaining expression and the last rule
applied.

Note that the semantics influence but ultimately do not imply the implementation. For example,
an operation that requires O(n2) rule applications may require only O(n) operations on an actual
computer. Likewise, eager and lazy substitution are often interchangeable at the semantic level. We
say that two implementations are semantically equivalent if they always reduce identical expressions
to identical vales, even if they use different underlying algorithms to implement the semantics.

The rules are expressed using a notation for reductions, conditional reductions, and substitutions.
The most general form of a rule is:

x ⇒ y (3)

“Expressions matching x reduce to y”

where x is a placeholder in this notation, not a variable in the programming language. These place-
holders will be filled by terms, or by term variables such as expsubscript and valsubscript . Here, the
name of the variable indicates its domain (often, expression or value), and the subscript is a tag to dis-
tinguish multiple variables in the same statement3 Sometimes rules are written more casually using
the subscripts as the variables and ignoring the domains, when the domain is irrelevant.

A specific example of a reduction rule is the additive identity in arithmetic:

expx + 0 ⇒ expx (4)

We can specify general addition by:

numx + numy ⇒ ̂numx +numy (5)

The addition sign on the right of the reduction indicates actual addition of value; the one on the left
denotes syntax for an expression. Variables numx and numy are expressions; the hat on the right side
indicates that we mean the value corresponding to that operation.

To make this more concrete, we could give a very specific reduction:

1 + 2 ⇒ 3̂ (6)

Here, 1 and 2 on the left of the arrow are syntax for literals, i.e., they are numerals. The hat on the 3
to the right of the arrow indicates that it is a value, i.e., it represents an actual number and not just the
syntax for a number. See [Kri07, 231] for further discussion of this hat notation. We will see some
cases in which the line between the expression domain and the value domain is blurry. In those, the
hat notation is unnecessary.

Sometimes we have complicated conditions on a rule that constrain the pattern on the left side of
⇒. These are notated with a conditional statement the form:

a
b

(7)

“If mathematical statement a is true, then statement b is true (applicable).”

In general, both a and b are reductions. Furthermore, there may be multiple conditions in a, nota-
tionally separated by spaces, that must all be true for the reduction(s) in b to be applied. These rules
are useful for making progress when no other rule directly applies. For example, to evaluate the
mathematical expression 1+(7+2), we must first resolve (7+2). The rule for making progress on
addition with nested subexpression on the right of the plus sign is:

exp2⇒ num2

exp1 + exp2⇒ exp1 + num2
(8)

which reads, “if expression #2 can be reduced to some number (by some other rules), then the entire
sum can be reduced to the sum of expression #1 and that number.” We of course need some way of
reducing expressions on the left of the plus sign as well:

exp1⇒ num1

exp1 + exp2⇒ num1 + exp2
(9)

3This is admittedly a suboptimal notation, since the “name” that carries the meaning for the reader but is buried
in the subscript, while the “type” dominates. However, it is standard in the field.

Applying combinations of these rules allows us to simplify arbitrarily nested additions to simple
number additions.

There are two major interpreter designs: substitution and evaluation interpreters. Substitution
interpreters transform expressions to expressions and terminate when the final expression is a literal.
Their value domain is their literal domain. Evaluation/environment interpreters are implemented
with an EVAL procedure that reduces expressions directly to values. Such a procedure recursively
invokes itself, but program execution involves a single top-level EVAL call. These two models of
implementation correspond to two styles of semantics:

1. Small-step operational semantics rules reduce expressions to expressions (like a substitution
interpreter)

2. Big-step operational semantics rules reduce expressions to values (like an EVAL interpreter)

The following two subsections demonstrate how semantics are assigned in each. We use the con-
text of a simple language that contains only single-argument procedure definition, variable, condi-
tional, application, and booleans. Let these have the semantics of the equivalent forms in the Scheme
language:

exp ::= (λ (id) exp)
∣∣

id
∣∣

(i f exp exp exp)
∣∣

(exp exp)
∣∣

true
∣∣ false (10)

5.2 Small-step Example

5.2.1 Rules

Small-step operational semantics rules reduce expressions to expressions. Although the choice of
implementation is not constrained by the style of semantics (much), small step maps most directly
to a substitution-based interpreter (e.g., [Kri07, 15]). Under small-step semantics the value domain
is merely the terminal subset of the expression domain, plus procedure values. That is, literals are
values. It is useful to us later to define a subdomains in this definition:

ok ::= true
∣∣ (λ (id) exp)

val ::= false
∣∣ ok (11)

Those expressions require no progress rules because they are values. Variable expressions require
no progress rules because variables are always substituted away by applications. Only conditional
and application need be defined. Conditionals naturally have two obvious rules, that I name E-IfOk
and E-IfFalse (the “E” stands for “Evaluate”):

E-IfOk: (if ok expthen expelse) ⇒ expthen (12)

E-IfFalse: (if false expthen expelse) ⇒ expelse (13)

Had Scheme’s semantics dictated that the test expression must be a boolean, the first rule would
have replaced ok with true , which is likely what you first expected to see there. However, recall
that Scheme treats any non-false value as true for the purpose of an IF expression.

A perhaps less obvious rule, E-IfProgress, is required as well to complete the semantics of IF.
When the test expression for the conditional is not in the value domain, we need some way of making
progress on reducing the expression.

E-IfProgress:
exptest ⇒ valtest

(if exptest expthen expelse) ⇒ (if valtest expthen expelse)
(14)

Application requires a notation for expressing variable substitution. This is:

[id � v]body (15)

“Substitute v for id in body”.

The body is the expression in which all instances of variable named id are to be replaced with the
expression v. In an eager language, the v expression must be in the value domain. In a lazy language,
v can be any expression. For semantic purposes the distinction between eager and lazy is irrelevant
in a language without mutation and small step semantics are almost always restricted to languages
without mutation.

Using this notation we can express application as a reduction. If we choose lazy evaluation, it is:

E-Applazy : ((λ (id) expbody) exparg) ⇒
[
id � exparg

]
expbody (16)

plus a progress rule:

E-AppProgress1 :
exp1 ⇒ val1

(exp1 exp2) ⇒ (val1 exp2)
(17)

To specify eager evaluation, we simply require the argument to be a value:

E-Appeager : ((λ (id) expbody) valarg) ⇒
[
id � valarg

]
expbody (18)

and introduce another progress rule (we still require rule E-AppProgress1):

E-AppProgress2eager :
exp2 ⇒ val2

(exp1 exp2) ⇒ (exp1 val2)
(19)

5.2.2 A Proof

Because each rule is a mathematical statement, we can prove that a complex expression reduces to a
simple value by listing the rules that apply. That is, by giving a list of true statements that reduce the
expression to a specific value. Operational semantics are used this way, but they are more often used
as a rigorous way of specifying what an interpreter should do. The reason for exploring this proof
structure is that we will later us the same structure on type judgements (another kind of rule set) to
prove that an expression has some interesting property, rather than a specific value.

We list the statements in the order they are applied. When reaching a conditional we must prove
its antecedants. To do this, we replace each antecedant with its own proof; that is, we start nesting
the conditional statements until all are satisfied.

Theorem 1. (if ((λ (x) x) true) false true) reduces to false .

Proof.
((λ (x) x) true)

(E-App)⇒
[
x � true

]
x

(subst.)⇒ true

(if ((λ (x) x) true) false true) ⇒ false
(E-IfTrue)

5.3 Big-step Example

5.3.1 Rules

Under big-step operational semantics, the left side of the progress arrow is always an expression and
the right side of the arrow is always a value. Thus, each rule takes a “big step” to the final value of
an expression. The value and expression domains must be disjoint to make this distinction, so we
define the value domain more carefully here. For our simple language from eq. 10, the big-step value
domain is:

proc ::= 〈id,exp,E 〉

ok ::= proc
∣∣ t̂

val ::= ok
∣∣ f̂ (20)

The angle brackets in the procedure notation 〈id,exp,E 〉 denote a tuple, in this case, a 3-tuple.
That is simply a mathematical vector of values, or equivalently, a list in an interpreter implementa-
tion. The specific tuple we’re defining here is a 1-argument closure value, which has the expected
three parts: formal parameter identifier, body expression, and captured environment. Big step op-
erational semantics use environments in the same way that interpreters do for representing deferred
substitutions. The environment is placed on the left side of the progress arrow and separated by an
expression by a comma.

Now that the value domain is disjoint from the expression domain, we need some trivial rules for
reducing literal and LAMBDA expressions to their corresponding values.

Forget all of the previous small-step rules. We begin big step with:

E-True : true ,E ⇒ t̂

E-False : false ,E ⇒ f̂

E-Lambda : (λ (id) exp) ,E ⇒ 〈id,exp,E 〉 (21)

Note that LAMBDA captures the identifier and environment, and saves and delays the expression, and
that the literals ignore the environment in which they are reduced.

The rules for evaluating IF expressions are largely the same as for small step, but we can ignore
the progress rules because they are implicit in the big steps:

E-IfOk:
¬
(

expt ,E ⇒ f̂
)

expc,E ⇒ valc

(if expt expc expa) ,E ⇒ valc

E-IfFalse:
expt ,E ⇒ f̂ expa,E ⇒ vala

(if expt expc expa) ,E ⇒ vala
(22)

Each reduction, whether a conditional or a simple a⇒ b, is a mathematical statement. Statements
are either true or false4 in the mathematical sense. Each progress rule is really a step within a proof
whose theorem is “this program reduces to (whatever the final value is).” The ¬ operator negates the
truth value of a statement. Thus the E-IfOk rule has as an antecedent “the test expression does not

reduce to f̂ ”. We need to express it this way because our desired semantics follow Scheme’s, which

allow any value other than f̂ to act like “true” for the purpose of an IF expression.
To express the semantics of APP we need a notation for extending an environment with a new

binding. Since environments and substitutions are not used simultaneously, the substitution notation
is repurposed to denote extending an environment:

E [id � val] (23)

“Environment E extended with id bound to val”.

Note that the arrow inside the brackets points in the opposite direction as for substitution, following
the convention of [Kri07, 223]. The application rule for our toy language under big step semantics is:

E-App :
expp,E1⇒ 〈id,expb,Eb〉 expa,E1⇒ vala expb,Eb [id � vala]⇒ valb

(expp expa) ,E1⇒ valb
(24)

This reads,

“if(expression expp reduces to a procedure in the current environment (E1),

and argument expression expa reduces to value in the current environment, and

and the body of that procedure evaluated in the procedure’s stored environment (Eb)
extended with id bound to the argument’s value reduces to value valb,)

then the application of the procedure expression to the argument expression in the current
environment is valb.”

Observe that the body expression is evaluated in the stored environment extended with the new
binding, creating lexical scoping. Were we to accidentally use the current environment there we
would have created dynamic scope. We conclude with the trivial variable rule:

E-Var : id,E [id � val]⇒ val (25)

4...although the function to evaluate the truth value of a statement may be non-computable, as in the case of
the Halting Problem.

Examining our big-step rules, we see that they map one-to-one to the implementation of an inter-
preter for the language. Each rule is one case inside the EVAL procedure, or inside the parser for ones
that we choose to rewrite at parse time. Within a rule, each antecedant corresponds to one recursive
call to EVAL. For example in the E-App rule, there are three antecedants. These correspond to the
recursive calls to evaluate the first subexpression (which should evaluate to a procedure), the second
(i.e., the argument), and then the body. That last call to evaluate the body is usually burried inside
APPLY. The environments specified on the left sides of the antecedants tell us which environments to
pass to EVAL.

See [Kri07] chapter 23 for an excellent set of examples of progress rules for big-step operational
semantics.

5.3.2 A Proof

This is a proof of the same statement from the small-step example, now proven with the big-step
semantics. Because the nesting gets too deep to fit the page width, I created a separate lemma for the
conditional portion of the proof.

Lemma 1. ((λ (x) x) true) , E reduces to t̂

Proof.
(λ (x) x) ,E

(E-Lambda)⇒ 〈 x , x ,E 〉 true ,E
(E-True)⇒ t̂ x , [x � t̂]E

(E-Var)⇒ t̂

((λ (x) x) true) ,E ⇒ t̂
(E-App) �

Theorem 2. (if ((λ (x) x) true) false true) , E reduces to f̂ .

Proof.

1. Because ((λ (x) x) true) ,E
(Lemma 1)⇒ t̂ , and t̂ 6= f̂

the negation of the contradiction of Lemma 1, ¬
(

((λ (x) x) true) ,E ⇒ f̂
)

, is also

true.

2.
¬
(

((λ (x) x) true) ,E ⇒ f̂
)

false ,E ⇒ f̂

(if ((λ (x) x) true) false true) ,E ⇒ f̂
E-IfOk

6 Computability

6.1 The Incompleteness Theorem

At the beginning of the 20th century, mathematicians widely believed that all true theorems could be
reduced to a small set of axioms. The assumption was that mathematics was sufficiently powerful to
prove all true theorems. Hilbert’s program5 was to actually reduce the different fields of mathematics
to a small and consistent set of axioms, thus putting them all on a solid and universal foundation.

In 1931 Gödel [G3̈1][vH67, 595] proved that in any sufficiently complex system of mathematics
(i.e., formal language capable of expressing at least arithmetic), there exist true statements that cannot
be proven using that system, and that the system is therefore incomplete (unable to prove its own
consistency). This Incompleteness Theorem was a surprising result and indicated that a consistent
set of axioms could not exist. That result defeated Hilbert’s program6 and indicated for the first
time the limitations of mathematics. This is also known as the First Incompleteness Theorem; there
is a second theorem that addresses the inconsistency of languages that claim to prove their own
consistency.

5“program” as in plan of action, not code
6...and answered Hilbert’s “second problem”: prove that arithmetic is self-consistent. Whitehead and Russell’s

Principia Mathematica previously attempted to derive all mathematics from a set of axioms.

Here is a proof of the Incompleteness Theorem following Gödel’s argument. Let every statement
in the language be encoded by a natural number, which is the Gödel Number of that statement.
This encoding can be satisfied by assigning every operator, variable, and constant to a number with
a unique prefix and then letting each statement be the concatenation of the digits of the numbers in
it. (This is roughly equivalent to treating the text of a program as a giant number containing the
concatenation of all of its bits in an ASCII representation.) For example, the statement “x > 4” might
be encoded by number g:

Sg(x) = “x > 4” (26)

Now consider the self-referential (“recursive”) statement,

Si(n) = “Sn is not provable.” (27)

evaluated at n = i. This statement is a formal equivalent of the Liar’s Paradox, which in natural
language is the statement, “This sentence is not true.” Sn(n) creates an inconsistency. As a paradox,
it can neither be proved (true), nor disproved (false).

As a result of the Incompleteness Theorem, we know that there exist functions whose results
cannot be computed. These non-computable functions (also called undecidable) are interesting for
computer science because they indicate that there are mathematical statements whose validity cannot
be determined mechanically. For computer science, we define computability as:

A function f is computable if there exists a program P that computes f , i.e., for any input x, the
computation P(x) halts with output f (x).

Unfortunately, many of undecidable statements are properties of programs that we would like a
compiler to check. A constant challenge in programming language development is that it is mathe-
matically impossible to prove certain properties about arbitrary programs, such as whether a program
does not contain an infinite loop.

6.2 The Halting Problem

Let the Halting Function H(P,x) be the function that, given a program P and an input x to P, has
value “halts” if P(x) would halt (terminate in finite time) were it to be run, and has value “does not
halt” otherwise (i.e., if P(x) would run infinitely, if run). The Halting Problem is that of solving H;
Turing [Tur36] proved in 1936 that H is undecidable in general.

Theorem 3. H(P,x) is undecidable.

Proof. Assume program Q(P,x) computes H (somehow). Construct another program D(P) such
that

D(P):
if Q(P,P) = “halts” then loop
else halt

In other words, D(P) exhibits the opposite halting behavior of P(P).
Now, consider the effect of executing D(D). According to the program definition, D(D) must

halt if D(D) would run forever, and D(D) must run forever if D(D) would halt. Because D(D)
cannot both halt and run forever, this is a contradiction. Therefore the assumption that Q com-
putes H is false. We made no further assumption beyond H being decidable, therefore H must be
undecidable.

The proof only holds when H must determine the status of every program and every input. It
is possible to prove that a specific program with a specific input halts. For a sufficiently limited
language, it is possible to solve the Halting Problem. For example, every finite program in a language
without recursion or iteration must halt.

The theorem and proof can be extended to most observable properties of programs. For example,
within the same structure one can prove that it is undecidable whether a program prints output or
reaches a specific line in execution. Note that it is critical to the proof that Q(P,x) does not actually
run P; instead, it must decide what behavior P would exhibit, were it to be run, presumably by
examining the source code of P. See http://www.cgl.uwaterloo.ca/ csk/halt/ for a nice explanation of the
Halting Problem using the C programming language.

7 The λ Calculus

The λ calculus is Church’s [Chu32] minimalist functional model of computation. Church showed
that all other programming constructs can eliminated by reducing them to single-argument procedure
definition (i.e., abstraction; lambda), variables, and procedure application. Variations of λ calculus
are heavily used in programming language research as a vehicle for proofs. Outside research, there
are several motivations for studying λ calculus and reductions to it from more complex languages.

Philosophically, λ calculus is the7 foundation for our understanding of computation and highlights
the power of abstraction. Practically, understanding the language and how to reduce others to it
changes the way that one thinks about (and applies) constructs in other languages. This leads the way
to emulating constructs that are missing in a language at hand, which makes for a better programmer.
For example, Java lacks lambda. The Java API designers quickly learned to use anonymous classes
to create anonymous closures, enabling the use of first-class function-like objects in a language that
does not support functions. C++ programmers discovered a way to use the polymorphic mechanism
of templates as a complete macro language.

On learning a new language, the sophisticated programmer does not learn the specific forms of
that language blindly but instead asks, “which forms create closures, recursive bindings, iteration,
etc. in this language?”. If any of the desired features are missing, that programmer then emulates
them, using techniques learned by emulating complex features in the minimalist λ calculus. So,
although implementing Church Booleans is just an academic puzzle for most programmers, that kind
of thought process is valuable in implementing practical applications.

André van Meulebrouck describes an alternative motivation:

Perhaps you might think of Alonzo Church’s λ -calculus (and numerals) as impractical
mental gymnastics, but consider: many times in the past, seemingly impractical theories
became the underpinnings of future technologies (for instance: Boolean Algebra [i.e.,
today’s computers that operate in binary build massive abstractions using only Boole’s
theoretical logic!]).

Perhaps the reader can imagine a future much brighter and more enlightened than today.
For instance, imagine computer architectures that run combinators or λ -calculus as their
machine instruction sets.8

7.1 Syntax

The λ calculus is a language with surprisingly few primitives in the expression domain9:

var ::= id

abs ::= λ id . exp
app ::= exp exp

exp ::= var | abs | app | (exp)

The last expression on the right simply states that parentheses may be used for grouping.
The language contains single value type, the single-argument procedure, in the value domain. In

set notation this is:
val = proc = var× exp

and in BNF:

val ::= λ id . exp

The abbreviated names used here and in the following discussions are mnemonics for: ‘id’ = ‘iden-
tifier’, ‘abs’ = ‘abstraction’ (since λ creates a procedure, which is an abstraction of computation),
‘app’ = ‘procedure application’, ‘exp’ = ‘expression’, ‘proc’ = ‘procedure’, and ‘val’ = ‘value’.

7.2 Semantics

The formal semantics are simply those of substitution [Pie02, 72]:

App-Part 1: (reduce the procedure expression towards a value)

expp⇒ exp′p
exppexpa⇒ exp′pexpa

(28)

7or at least, one of the two...
8http://www.mactech.com:16080/articles/mactech/Vol.07/07.06/ChurchNumerals/
9This is specifically a definition of the untyped λ -calculus.

App-Part 2: (reduce the actual parameter towards a value)

expa⇒ exp′a
exppexpa⇒ exppexp′a

(29)

App-Abs: (apply a procedure to a value)

λ id . expbody val ⇒ [id � val]expbody (30)

The App-Abs rule relies on the same syntax for the val value and abs expression, which is fine in
λ calculus because we’re using pure textural substitution. In the context of a true value domain that
is distinct from the expression domain, we could express it as an abs evaluation rule for reducing a
procedure expression to a procedure value and and an application rule written something like:

valp = λ id . expbody

valp vala⇒ [id � vala]expbody
(31)

7.3 Examples

For the sake of giving simple examples, momentarily expand λ calculus with the usual infix arith-
metic operations and integers. Consider the evaluation of the following expression:

λ x . (x+3) 7 (32)

This is an app expression. The left sub-expression is a abs, the right sub-expression is an integer
(7). Rule App-Abs is the only rule that applies here, since both the procedure and the integer cannot
be reduced further. App-Abs replaces all instances of x in the body expression (x +3) with the right
argument expression, 7:

λ x . (x+3) 7 (33)
⇒ [x � 7](x+3) (34)
= (7+3) (35)
= 10 (36)

Arithmetic then reduces this to 10.
Now consider using a procedure as an argument:

(λ f . (f 3)) (λx.(1+ x)) (37)

This is again an app. In this case, both the left and right are abs expressions. Applying rule App-Abs
substitutes the right expression for f in the body of the left procedure, and then we apply App-Abs
again:

(λ f . (f 3)) (λx.(1+ x)) (38)
⇒ [f � (λx.(1+ x))](f 3)) (39)
= λx.(1+ x) 3 (40)
⇒ [x � 3](1+ x) (41)
= (1+3) (42)
= 4 (43)

7.4 Partial Function Evaluation

Because procedure application is left associative and requires no function application operator:

f x y = (f x) y (44)

we can emulate the functionality of multiple-argument procedures using single argument procedures.
For example, the “two-argument” procedure that sums its arguments is:

λx.λy.(x+ y) (45)

The outer expression is an abs (procedure definition), whose body is another abs. This is a first-
order procedure. When placed into nested app expressions, the procedure returns another procedure,
which then consumes the second app’s argument:

(λx.λy.(x+ y)) 1 2 (46)
⇒ λy.(1+ y) 2 (47)
⇒ 1+2 (48)
= 3 (49)

The process of converting a 0th-order function of n arguments into an nth-order function of one
argument, like the one above, is called currying. It is named for the logician Haskell Curry, who was
not its inventor10.

When an nth-order function is applied to k < n arguments, in λ calculus, the result reduces to an
(n− k)th order function. The resulting function “remembers” the arguments that have been provided
because they have already been substituted, and it will complete the computation when later applied
to the remaining arguments. This is called partial function evaluation, and is a feature of some
languages including Haskell (which is also named for Haskell Curry, who did not invent it either.)
For example, the addition function above can be partially evaluated to create an “add 5” function:

(λx.λy.(x+ y)) 5 (50)
⇒ λy.(5+ y) (51)

7.5 Creating Recursion

A fixed point of a function f is a value v such that f (v) = v (in mathematical notation; in λ calculus,
we would say f v = v. A function may have zero or more fixed points. For example, the identity
function λx.x has infinitely many fixed points. Let s = λx.x2 be the function that squares its argument;
it has fixed points at 0 and 1.

A fixed point combinator is a function that computes a fixed point of another function. This is
interesting because it is related to recursion. Consider the problem of defining a recursive function in
λ calculus. For example, define factorial (for convenience, we temporarily extend the language with
conditionals and integers; those can be reduced as shown previously):

λn.(if (iszero n)
1
(n∗ (f (n−1))))

The problem with this definition is that we need the f embedded inside the recursive case to be
bound to the function itself, but that value does not exist at the time that the function is being defined.
Alternatively, the problem is that f is a free variable. Adding another abs expression captures f :

λ f . λn.(if (iszero n)

1
(n∗ (f (n−1))))

This just says that if we already had the factorial function that operated on values less than n, we
could implement the factorial function for n. That’s close to the idea of recursion, but is not fully
recursive because we’ve only implemented one inductive step. We need to handle all larger values.
To let this inductive step run further, say that f is the function that we’re defining, which means that
the inner call requires two arguments: f and n−1:

λ f .λn.(if (iszero n)
1
(n∗ (f f (n−1))))

Call this entire function g. It is a function that, given a factorial function, creates the factorial function.
At first this does not sound useful–if we had the factorial function, we wouldn’t need to write it!
However, consider that what we have defined g such that (g f) = f ...in other words, the factorial
function is the fixed point of g. For this particular function, we can find the fixed point by binding
it and then calling it on itself. Binding and applying values are accomplished using abs and app
expressions. An expression of the form:

(λ z.z z) g ⇒ g g (52)

applies g to itself. Wrapping our entire definition with this:

(λ z.z z)

(λ f .λn.(if (iszero n)
1
(n∗ (f f (n−1)))))

10The idea is commonly credited to Schönfinkel in the 20th century, and was familiar to Frege and Cantor in
the 19th [Pie02, 73]

produces a function that is indeed factorial, albeit written in a strange manner. Convince yourself of
this by running it in Scheme, using the following translation and application to 4:

(

((lambda (z) (z z))

(lambda (f)

(lambda (n)

(if (zero? n)

1

(* n ((f f) (- n 1)))))))

4)

When run, this correctly produces 4! = 4∗3∗2∗1 = 24.
This exercise demonstrates that it is possible to implement a recursive function without an explicit

recursive binding construct like LETREC. For the factorial case, we manually constructed a generator
function g and its fixed point. Using a fixed point combinator we can automatically produce such
fixed points, simplifying and generalizing the process.

Curry discovered the simplest known fixed point combinator for this application. It is known as
the Y combinator (a.k.a. applicative-order Z combinator as expressed here), and is defined as:

Y = λ f .
((λ z . z z)
(λx . f (λy . x x y))) (53)

When applied to a generator function, Y finds its fixed point and produces that recursive function.
The Y combinator is formulated so that the generator need not apply its argument to itself. That is,
the step where we rewrote (f (n−1)) as (f f (n−1)) in our derivation is no longer necessary.

A Scheme implementation of Y and its use to compute factorial are below. The use of the DEFINE
statement is merely to make the implementation more readable. Those can be reduced to LAMBDA and
application expressions.

; Creates the fixed point of its argument

(define Y

(lambda (f)

((lambda (z) (z z))

(lambda (x) (f (lambda (y) ((x x) y)))))))

; Given the factorial function, returns the factorial function

(define generator

(lambda (fact)

(lambda (n)

(if (zero? n)

1

(* n (fact (sub1 n)))))))

; The factorial function: prints (lambda...)

(Y generator)

; Example: prints 24

((Y generator) 4)

8 Macros

We’ve seen that a parser can reduce macro-expressive forms to other forms to minimize the num-
ber of cases that need to be handled in the compiler/interpreter. For example, a short-circuiting OR
expression like the one in Scheme can be reduced within the parser by the small-step rule:

(or exp1 exp2) ⇒ (let ([id exp1]) (if id id exp2)) (54)

Languages with a macro system feature allow the programmer to add rules such as this to the
parser. They are effectively plugin-modules for the parser. Macros are written in a separate language
that is often similar to the base language, and they generally describe pattern matching behavior.
They extend the syntax of the language in ways that cannot be achieved using procedures alone.
For example, a short-circuiting OR cannot be written using only procedures, IF, and application in a
language with eager evaluation of procedure arguments.

In the OR example, it is important that the identifier id does not appear as a free variable on the other
expressions. If it did, the macro would accidentally capture that variable and change the meaning of
exp1 and exp2. A hygienic macro system is one in which identifiers injected into code by the macro
system cannot conflict with ones already present in expressions. One way to achieve this is to append
the level of evaluation at which an identifier was inserted to the end of its name. Identifiers in the
original source code are at level 0, those created by first-level macro expansion are at level 1, those
created by macros emitted by the first-level macros are at level 2, and so on. Not all macro systems
are hygienic. While Scheme’s macro system is (since R5R6) and is generally considered both clean
and powerful, the most frequently used macro system–that of C/C++ –is not. This does not mean that
C macros are useless, just that extreme care must be taken when using them.

8.1 C Macros

The C macro system contains two kinds of statements: #if and #define. Without defining its
semantics here, an example11 illustrates how they are typically employed:

i n c l u d e <s t d i o . h>

i f d e f i n e d (MSC VER)
/ / Windows
d e f i n e BREAK : : DebugBreak () ;
e l i f d e f i n e d (i 3 8 6) && d e f i n e d (GNUC)
/ / gcc on some I n t e l p r o c e s s o r
d e f i n e BREAK a s m v o l a t i l e (” i n t $3 ”) ;
e l s e
/ / H o p e f u l l y , some o t h e r gcc
d e f i n e BREAK : : a b o r t ()
e n d i f

d e f i n e ASSERT(t e s t e x p r , message) \
i f (! (t e s t e x p r)) {\

p r i n t f (”%s\ n A s s e r t i o n \”%s \” f a i l e d i n %s a t l i n e %d .\ n ” , \
message , # t e s t e x p r , F ILE , LINE) ; \
BREAK;\

}

i n t main (i n t argc , char∗∗ a rgv) {
i n t x = 3 ;
ASSERT(x > 4 , ” Something bad ”) ;
re turn 0 ;

}
The #if statements are used to determine, based on expressions including variables such as

MSC VER that are defined at compile time, what compiler and operating system the code is being
compiled for. They allow the program to function differently on different machines without the ex-
pense of a run-time check. Furthermore, certain statements that are not legal on one compiler can be
avoided entirely, such as the inline assembly syntax used for gcc. The #define statement creates a
new macro. By convention, macros are given all uppercase names in C. Here, two macros are defined:
BREAK, which halts execution of the program when the code it emits is invoked, and ASSERT, which
conditionally halts execution if a test expression returns false. ASSERT cannot be a procedure for two
reasons: first, it would be nice to define it so that in an optimized build the assertions are removed
(not shown here), and second, because we do not want to evaluate the message expression if the test
passes.

Within the body of the ASSERT definition we see several techniques that are typical of macro
usage. The special variables FILE and LINE indicate the location at which the macro was
invoked. Unlike procedures in most languages, macros have access to the source code context from
which they were invoked. This allows them to customize error reporting behavior. The expression
#test expr is applying the # operator to the test expr macro variable. This operator quotes
the source code, converting it from code into a string that may then be printed. Procedures have
no way of accessing the expressions that produced their arguments, let alone the source code for
those expressions. Note that where it is used as the conditional for if, test expr is wrapped in
parentheses. This is necessary because C macros operate at a pre-parse (in fact, pre-tokenizer!) level,
unlike Scheme macros. Without these extra parentheses, the application of the not operator (!) might
be parsed differently depending on the operator precedence of other operators inside the expression.
This is generally considered a poor design decision of the C language, not a feature, although it can
be exploited in useful ways to create tokens at compile time.

11Adapted from the G3D source code, http://g3d-cpp.sf.net.

C’s macro system is practical, though ugly. The C++ language addresses many of its shortcomings
by introducing two other language features for creating new syntax: templates and operator over-
loading. Templates were originally introduced as a straightforward polymorphic type mechanism,
but have since been exploited by programmers as a general metaprogramming mechanism that has
Turing-equivalent computational power.

8.2 Scheme Macros

References

Alonzo Church. A set of postulates for the foundation of logic. Annals of Mathematics, 33:346–366, 1932.

Kurt Gödel. Über formal unentscheidbare sätze der principia mathematica und verwandter systeme. I. Monatshefte
für Mathematik und Physik, 38:173–198, 1931.

Shriram Krishnamurthi. Programming Languages: Application and Interpretation. 04 2007.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System Sciences,
17:348–375, 1978.

Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge, MA, USA, 2002.

Vijay Saraswat. Java is not type-safe. Technical report, AT&T Research, 1997.
http://www.research.att.com/ vj/bug.html.

Alan Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the
London Mathematical Society, 42:230–265, 1936. http://www.turingarchive.org/browse.php/B/12.

Jean van Heijenoort, editor. From Frege to Gdel: A Source Book in Mathematical Logic, 1979-1931. Harvard
University Press, 1967.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information and Computation,
115:38–94, 1994.

