
Programming Language Notes

March 4, 2009

Morgan McGuire∗

Williams College

This is a series of lecture notes for CS334 addressing some of the
theoretical topics from the course. I will extend them periodically
throughout the semester. These supplement the lectures and re-
quired reading. Those contain other topics, especially implemen-
tation details, and expand on this condensed form.

1 Introduction

A programming language is a mathematical calculus, or formal
language. Its goal is to express algorithms in a manner that is un-
ambiguous to people and machines. Like any calculus, a language
defines both syntax and semantics. Syntax is the grammar of the
language; the notation. Semantics is the meaning of that notation.
Since syntax can easily be translated, the semantics are more fun-
damental.

Church and Turing showed that the minimal semantics of the λ

calculus and Turing machine are sufficient to emulate the semantics
of any more complicated programming language or machine. How-
ever, reducing a particular language to the λ calculus may require
holistic restructuring of programs in that language. We say that
a particular language feature (e.g., continuations, macros, garbage
collection) is expressive if it cannot be emulated without restruc-
turing programs that use it.

1.1 Types and Features

Every language makes some programs easy to express and others
difficult. When a language is well-suited to a problem domain, it
the programs it makes easy to express are solutions to problems in
that domain. The programs that the language makes hard to express
are ones that are incorrect. This is desirable! One way to design a
language is to selectively add restrictions until it is hard to express
incorrect programs for the target domain. The cost of a language
design is that some correct and potentially useful programs also
become hard to express in the language.

The type system is one tool for restricting a language. A type
system associates metadata with values and the variables that can
be bound to them. A well-typed program is one where constraints
on the metadata imposed by the language and program itself are
satisfied. When these are violated, e.g., by assigning a “String”
value to an “int” variable in Java, the program is likely incorrect.
Some kinds of program errors can be detected by static analysis,
which means examining the program without executing it. Some
kinds of errors cannot be detected efficiently through static analysis,
or are statically undecidable. Many of these can be detected by
dynamic analysis, which means executing type checks while the
program is executing.

We say that a language exhibits type soundness if well-typed
programs cannot “go wrong” [Mil78], i.e., by reaching stuck
states [WF94] from which further execution rules are undefined.
Another view of this is that “A language is type-safe if the only
operations that can be performed on data in the language are those
sanctioned by the type of the data.” [Sar97]

∗morgan@cs.williams.edu, http://graphics.cs.williams.edu

By declaring undesirable behaviors–such as dereferencing a null
pointer, accessing a private member of another class, or reading
from the filesystem–to be type errors and thus unsanctioned, the
language designer can leverage type soundness to enforce safety
and security.

All languages assign a type to a value at least before it is operated
on, since operations are not well-defined without an interpretation
of the data. Most languages also assign types to values that are
simply stored in memory. One set of languages that does not is as-
sembly languages: values in memory (including registers) are just
bytes and the programmer must keep track of their interpretation
implicitly. Statically typed languages contain explicit declarations
that limit the types of values a to which a variable may be bound.
C++ and Java are statically typed languages. Dynamically typed
languages such as Scheme and Python allow a variable to be bound
to any type of value. Some languages, like ML, are dynamically
typed but the interpreter uses type inference to autonomously as-
sign static types where possible.

1.2 Imperative and Functional

The discipline of computer science grew out of mathematics largely
due to the work of Church and his students, particularly Turing.
Church and Kleene created a mathematical system called the λ cal-
culus (also written out as the lambda calculus) that treats math-
ematical functions as first-class values within mathematics. It is
minimalist in the sense that it contains the fewest possible num-
ber of expressions, yet can encode any decidable function. Turing
created the Turing machine abstraction of a minimal machine for
performing computations. These were then shown to be equiva-
lent an minimal models of computation, which is today called the
Church-Turing Thesis.

These different models of computation are inherited by different
styles of programming. Turing’s machine model leads to imper-
ative programming, which operates by mutating (changing) state
and proceeds by iteration. Java and C++ are languages that encour-
age this style. Church’s mathematical model leads to functional
programming, which operates by invoking functions and proceeds
by recursion. Scheme, ML, Unix shell commands, and Haskell are
languages that encourage this style. So-called scripting languages
like Python and Perl encourage blending of the two styles, since
they favor terseness in all expressions.

2 Life of a Program

A program goes through three major stages: Source, Expressions,
and Values. Formal specifications describe the syntax of the source
and the set of expressions using an grammar, typically in BNF.
This is called the expression domain of the language. The value
domain is described in set notation or as BNF grammars. Expres-
sions are also called terms. Expressions that do not reduce to a
value are sometimes called statements.

An analogy to a person reading a book helps to make clear the
three stages. The physical ink on the printed page is source. The
reader scans the page, distinguishing tokens of individual letters

and symbols from clumps of ink. In their mind, these are assigned
the semantics of words–i.e., expressions. When those expressions
are evaluated, the value (meaning) of the words arises in the readers
mind. This distinction is subtle in the case of literals. Consider a
number written on the page, such as “32”. The curvy pattern of
ink is the source. The set of two digits next to each other is the
expression. The interpretation of those digits in the reader’s mind
is the number value. The number value is not something that can be
written, because the act of writing it down converts it back into an
expression. Plato might say that the literal expression is a shadow
on the cave wall of the true value, which we can understand but not
directly observe. 1

2.1 Source Code and Tokens

A program begins as source code. This is the ASCII (or unicode!)
string describing the program, which is usually in a file stored on
disk. A tokenizer converts the source to a stream of tokens in
a manner that is specific to the language. For example, in Java
the period character “.” becomes a separate token if it separates
two identifiers (variables) but is part of a floating-point number if
it appears in the middle of a sequence of digits, e.g., string.length()
versus 3.1415. See java.StringTokenizer or G3D::TextInput for an
example of an implementation.

Figures 2.1 and 2.1 show an example of the source code and re-
sulting token stream for a simple factorial function implemented
in the Scheme programming language. The tokenizer is often
language-specific. For this example, the tokenizer tags each token
as a parenthesis, reserved word, identifier, or numeral. Source code
is usually stored in a string. A typical data structure for storing the
token stream is an array of instances of a token class.

Figure 1: Scheme source code for factorial.

Figure 2: Token stream for factorial.

2.2 Expressions

A parser converts the token stream into a parse tree of expres-
sions. The legal expressions are described by the expression
domain of the language, which is often specified in BNF. The
nodes of a parse tree are instances of expressions (e.g., a FOR
node, a CLASS-DEFINITION node) and their children are the sub-
expressions. The structure of the parse tree visually resembles the
indenting in the source code. Figure 2.2 shows a parse tree for the
expressions found in the token stream from figure 2.1.

1For the truly philosophical, what is in the mind, or what is represented
as a value by bits in a computer’s memory, is still only a representation of the
value. The actual value 32 simply exists is unique. There can be only one 32,
which means it can’t be in multiple places at once–the bits representing 32
in a computer’s memory therefore act a pointer to the ideal 32. AI, PL, and
philosophy meet when we consider whether the human mind is different, or
just shuffling around around representations like a computer.

Figure 3: Parse tree for factorial.

The Scheme language contains the QUOTE special form for con-
veniently specifying parse trees directly as literal values, omitting
the need for a tokenizer and parser when writing simple interpreters
for languages that have an abstract syntax. The drawback of this ap-
proach is that simply quoting the factorial code in figure 2.1 would
not produce the tree in figure 2.2. Instead, the result would be a
tree of symbols and numbers without appropriate expression types
labeling the nodes.

2.3 Values

When the program executes (if compiled, or when it is evaluated
by an interpreter if not), expressions are reduced to values. The set
of legal values that can exist during execution is called the value
domain. The value domain typically contains all of the first-class
values, although some languages have multiple value domains and
restrict what can be done to them. In general, a value is first-class
in a language if all of the following hold:

1. The value can be returned from a function

2. The value can be an argument to a function

3. A variable can be bound to the value

4. The value can be stored in a data structure

Java generics (a polymorphism mechanism) do not support prim-
itive types like int, so in some sense those primitives are second-
class in Java and should be specified in a separate domain from
Object and its subclasses, which are first-class. In Scheme and
C++, procedures (functions) and methods are first-class because all
of the above properties hold. Java methods are not first-class, so
that language contains a Method class that describes a method and
acts as a proxy for it.

The value domain can be specified using set notation, e.g.,

real = int ∪decimal
complex = real× real
number = real∪ complex

or using a BNF grammar (at least, for a substitution interpreter),
which is described later.

2.4 Implementation Issues

There is a design tradeoff when implementing a language between
compactness and abstraction. Using the same types in the imple-
mentation language for source, expressions, and values reduces the
amount of packing and unpacking of values that is needed, and al-
lows procedures in the implementation language to operate directly
on the values in the target language. Furthermore, in Scheme, the
READ procedure and QUOTE special form allow easy creation of
tree values using literals that are syntactically identical to Scheme
source code. This avoids the need for an explicit tokenizer and

parser. Using the same types across domains violates the abstrac-
tion of those domains. This can make the implementation of the
language harder to understand (when it grows large), and limits the
ability of the type checker to detect errors in the implementation.
For example, when implementing a Scheme interpreter in Java, one
could choose to implement Scheme symbols, strings, identifiers,
and source all as Java strings, without a wrapper class to distin-
guish them. It would be easy to accidentally pass a piece of source
code to a method that expected an identifier, and the Java compiler
could not detect that error at compile time because the method was
only typed to expect a String, not a SchemeIdentifier.

3 Interpreters and Compilers

A compiler is a program that translates other programs in a high-
level language to the machine language of a specific computer. The
result is sometimes called a native binary because it is in the na-
tive language of the computer2. An interpreter is a program that
executes other programs without compiling them to native code.
There is a wide range of translation within the classification of in-
terpreters. At one end of this range, some interpreters continuously
re-parse and interpret code as they are moving through a program.
At the other end, some interpreters essentially translate code down
to native machine language at runtime so that the program executes
very efficiently.

Although most languages can be either compiled or interpreted,
they tend to favor only one execution strategy. C++, C, Pascal,
Fortran, Algol, and Ada are typically compiled. Scheme, Python,
Perl, ML, Matlab, JavaScript, HTML, and VisualBasic are usually
interpreted. Java is an interesting case that compiles to machine
language for a computer that does not exist. That language is then
interpreted by a virtual machine (JVM).

Compilers tend to take advantage of the fact that they are run
once for a specific instance of a program and perform much more
static analysis. This allows them to produce code that executes ef-
ficiently and to detect many program errors at compile time. De-
tecting errors before a program actually runs is important because
it reduces the space of possible runtime errors, which in turn in-
creases reliability. Compiled languages often have features, such as
static types, that have been added specifically to support this kind
of compile-time analysis.

Interpreters tend to take advantage of the fact that code can be
easily modified while it is executing to allow extensive interaction
and debugging of the source program. This also makes it easier to
patch a program without halting it, for example, when upgrading
a web server. Many interpreted languages were designed with the
knowledge that they would not have extensive static analysis and
therefore omit the features that would support it. This can increase
the likelihood of errors in the programs, but can also make the
source code more readable and compact. Combined with the ease of
debugging, this makes interpreted languages often feel “friendlier”
to the programmer. This typically comes at the cost of decreased
runtime performance cost increased runtime errors.

Compiled programs are favored for distributing proprietary algo-
rithms because it is hard to reverse engineer a high-level algorithm
from machine language. Interpreted programs by their nature re-
quire that the source be distributed, although it is possible to obfus-
cate or, in some languages, encrypt the source to discourage others
from reading it.

2Although in practice, most modern processors actually emulate their
published interface using a different set of operations and registers. This
allows them include new architectural optimizations without changing the
public interface, for compatibility.

4 Syntax

Although we largely focus on semantics, some notable points about
syntax:

• A parser converts source code to expressions

• Backus-Naur Form (BNF) formal grammars are a way of de-
scribing syntax using recursive patterns

• Infix syntax places an operator between its arguments, e.g.,
“1 + 2”. Java uses infix syntax for arithmetic and member
names, but prefix syntax for method application.

• Prefix syntax places the operator before the operands, e.g.,
“add(1, 2)”, which conveniently allows more than one
or two operands and unifies operator and function syntax.
Scheme uses prefix syntax for all expressions.

• Postfix places the operator after the operands, which allows
nested expressions where the operators take a fixed number
of arguments, without requiring parentheses. Postscript and
some calculators use postfix.

• Scheme’s “abstract syntax” makes it easy to parse

• Macros allow a programmer to introduce new syntax into a
language

• Python has an interesting syntax in which whitespace is sig-
nificant. This reduces visual clutter but makes the language a
little difficult to parse and to edit (in some cases)

• Syntactic sugar makes a language sweeter to use without in-
creasing its expressive power

4.1 Backus-Naur Form

Backus-Naur Form (BNF) is a formal way of describing context-
free grammars for formal languages. A grammar is context-free
when the the grammar is consistent throughout the entire language
(i.e., the rules don’t change based on context). BNF was first used
to specify the ALGOL programming language.

Beyond its application to programming language syntax, BNF
and related notations are useful for representing the grammars of
any kind of structured data. Examples include file formats, types,
database records, and string search patterns.

A BNF grammar contains a series of rules (also known as pro-
ductions). These are patterns that legal programs in the specified
language must follow. The patterns are typically recursive. In the
BNF syntax, the nonterminal being defined is enclosed in angular
brackets, followed by the “::=” operator, followed by an expression
pattern. The expression pattern contains other nonterminals, termi-
nals enclosed in quotation marks, and the vertical-bar operator “|”
that indicates a choice between two patterns. For example,

〈digit〉 ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
〈digits〉 ::= 〈digit〉 | 〈digit〉〈digits〉

In this document, these are typeset using an unofficial (but com-
mon) variation, where terminals are typeset as x and nontermi-
nals as x. This improves readability for dense expressions. With
this convention, digits are:

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
digits ::= digit | digit digits

It is common to extend BNF with regular expression patterns to
avoid the need for helper productions. These include the following
notation:

(x) = x; parentheses are for grouping only

[x] = zero or one instances of x (i.e., x is optional)

x∗ = zero or more instances of x

x+ = one or more instances of x

An example of these patterns for expressing a simple programming
language literal expression domain (e.g., a subset of Scheme’s lit-
erals):

boolean ::= #t | #f

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
integer ::= [+ | -] digit+

rational ::= integer / digit+

decimal ::= [+ | -] digit∗ . digit+

real ::= integer | rational | decimal

BNF can be applied at both the character level (e.g., to describe a
lexer/tokenizer) and the token level (e.g., to describe a parser). The
preceding example operates on individual characters within a string
and is useful to a tokenizer. An example of a subset of Scheme’s
expression domain represented in BNF at the token level is:

variable ::= id
let ::= (let (

(
[id exp]

)∗
) exp)

lambda ::= (lambda (id∗) exp)

exp ::= variable
∣∣ let

∣∣ lambda
(1)

4.2 Syntactic Sugar

Some expressions make a language’s syntax more convenient and
compact without actually adding expressivity: they make the lan-
guage sweeter to use. We say that an expression is syntactic sugar
and adds no expressive power if it can be reduced to another ex-
pression with only local changes. That is, without rewriting the
entire body of the expression or making changes to other parts of
the program.

For example, in Java any FOR statement, which has the form:

for (init ; test ; incr) body

can be rewritten as a WHILE statement of the form:

init ; while (test) { body incr }

FOR therefore does not add expressivity to the language and is syn-
tactic sugar. In Scheme, LET adds no power over LAMBDA, and
LET* adds no power over LET. Java exceptions are an example of
an expressive form that cannot be eliminated without completely
rewriting programs in the language.

5 Semantics

5.1 Operational Semantics

An operational semantics is a mathematical representation of the
semantics of a language. It defines how expressions are reduced to
other expressions by applying a set of rules. Each rule has precon-
ditions. Any rule whose preconditions are met can be applied. Note
that the semantics do not imply the implementation. For example,

an operation that requires O(n2) rule applications may require only
O(n) operations on an actual computer. Likewise, eager and lazy
substitution are often ambiguous at the semantic level.

The rules are expressed using a notation for reductions, condi-
tional reductions, and substitutions. The most general form of a
rule is:

x ⇒ y (2)

“Expressions matching x reduce to y”

where x is a variable of the notation itself, not necessarily a vari-
able in the programming language. Variables in operational
semantics notation correspond to expressions, so they follow the
BNF notation. Recall that in this document, I’m typesetting BNF
nonterminals as x and terminals as x . Where multiple expressions
of the same kind appear in a rule, subscripts3 distinguish them,
e.g., exp1, exp2, expbody.

A specific example of a reduction rule is the additive identity in
arithmetic:

0 + exp ⇒ exp (3)

Raw reduction rules are rare. Often a reduction can only be ap-
plied when some precondition is met. These conditional rules are
expressed as:

a
b

(4)

“If mathematical statement a is true, then reduction b may be ap-
plied.” There may be multiple conditions in a, separated by space,
that must all be true for b to be applied.

For example,

exp1⇒ 0

exp2 / exp2⇒ divide by zero error
(5)

means, “if an expression can be reduced to zero (by some other
rules), then any division with that expression in the denominator
can be reduced to a divide-by-zero error.”

Variable substitution is handled by the notation:

[id � val]body (6)

“Substitute val for id in body”.

The body is the expression in which all instances of variable named
id are to be replaced with the expression val. In an eager language,
the val expression is only in the value domain. In a lazy language,
val does not need to be reduced first.

6 Computability

6.1 The Incompleteness Theorem

At the beginning of the 20th century, mathematicians widely be-
lieved that all true theorems could be reduced to a small set of ax-
ioms. The assumption was that mathematics was sufficiently pow-
erful to prove all true theorems. Hilbert’s program4 was to actually
reduce the different fields of mathematics to a small and consistent

3This is admittedly a suboptimal notation, since the “name” that carries
the meaning for the reader but is buried in the subscript, while the “type”
dominates. However, it is standard in the field.

4“program” as in plan of action, not code

set of axioms, thus putting them all on a solid and universal foun-
dation.

In 1931 Gödel [G3̈1][vH67, 595] proved that in any sufficiently
complex system of mathematics (i.e., formal language capable of
expressing at least arithmetic), there exist true statements that can-
not be proven using that system, and that the system is therefore in-
complete (unable to prove its own consistency). This Incomplete-
ness Theorem was a surprising result and indicated that a consis-
tent set of axioms could not exist. That result defeated Hilbert’s
program5 and indicated for the first time the limitations of mathe-
matics. This is also known as the First Incompleteness Theorem;
there is a second theorem that addresses the inconsistency of lan-
guages that claim to prove their own consistency.

Here is a proof of the Incompleteness Theorem following
Gödel’s argument. Let every statement in the language be encoded
by a natural number, which is the Gödel Number of that statement.
This encoding can be satisfied by assigning every operator, vari-
able, and constant to a number with a unique prefix and then letting
each statement be the concatenation of the digits of the numbers in
it. (This is roughly equivalent to treating the text of a program as
a giant number containing the concatenation of all of its bits in an
ASCII representation.) For example, the statement “x > 4” might
be encoded by number g:

Sg(x) = “x > 4” (7)

Now consider the self-referential (“recursive”) statement,

Si(n) = “Sn is not provable.” (8)

evaluated at n = i. This statement is a formal equivalent of the
Liar’s Paradox, which in natural language is the statement, “This
sentence is not true.” Sn(n) creates an inconsistency. As a paradox,
it can neither be proved (true), nor disproved (false).

As a result of the Incompleteness Theorem, we know that there
exist functions whose results cannot be computed. These non-
computable functions (also called undecidable) are interesting for
computer science because they indicate that there are mathematical
statements whose validity cannot be determined mechanically. For
computer science, we define computability as:

A function f is computable if there exists a program P that com-
putes f , i.e., for any input x, the computation P(x) halts with out-
put f (x).

Unfortunately, many of undecidable statements are properties of
programs that we would like a compiler to check. A constant chal-
lenge in programming language development is that it is mathemat-
ically impossible to prove certain properties about arbitrary pro-
grams, such as whether a program does not contain an infinite loop.

6.2 The Halting Problem

Let the Halting Function H(P,x) be the function that, given a pro-
gram P and an input x to P, has value “halts” if P(x) would halt
(terminate in finite time) were it to be run, and has value “does not
halt” otherwise (i.e., if P(x) would run infinitely, if run). The Halt-
ing Problem is that of solving H; Turing [Tur36] proved in 1936
that H is undecidable in general.

5...and answered Hilbert’s “second problem”: prove that arithmetic is
self-consistent. Whitehead and Russell’s Principia Mathematica previously
attempted to derive all mathematics from a set of axioms.

Theorem 1. H(P,x) is undecidable.

Proof. Assume program Q(P,x) computes H (somehow). Con-
struct another program D(P) such that

D(P):
if Q(P,P) = “halts” then loop
else halt

In other words, D(P) exhibits the opposite halting behavior of
P(P).

Now, consider the effect of executing D(D). According to the
program definition, D(D) must halt if D(D) would run forever,
and D(D) must run forever if D(D) would halt. Because D(D)
cannot both halt and run forever, this is a contradiction. Therefore
the assumption that Q computes H is false. We made no further
assumption beyond H being decidable, therefore H must be un-
decidable.

The proof only holds when H must determine the status of every
program and every input. It is possible to prove that a specific pro-
gram with a specific input halts. For a sufficiently limited language,
it is possible to solve the Halting Problem. For example, every finite
program in a language without recursion or iteration must halt.

The theorem and proof can be extended to most observable prop-
erties of programs. For example, within the same structure one
can prove that it is undecidable whether a program prints output or
reaches a specific line in execution. Note that it is critical to the
proof that Q(P,x) does not actually run P; instead, it must decide
what behavior P would exhibit, were it to be run, presumably by
examining the source code of P. See http://www.cgl.uwaterloo.ca/ csk/halt/
for a nice explanation of the Halting Problem using the C program-
ming language.

7 The λ Calculus

The λ calculus is Church’s [Chu32] minimalist functional model
of computation. Church showed that all other programming con-
structs can eliminated by reducing them to single-argument proce-
dure definition (i.e., abstraction; lambda), variables, and procedure
application. Variations of λ calculus are heavily used in program-
ming language research as a vehicle for proofs. Outside research,
there are several motivations for studying λ calculus and reductions
to it from more complex languages.

Philosophically, λ calculus is the6 foundation for our under-
standing of computation and highlights the power of abstraction.
Practically, understanding the language and how to reduce others
to it changes the way that one thinks about (and applies) constructs
in other languages. This leads the way to emulating constructs that
are missing in a language at hand, which makes for a better pro-
grammer. For example, Java lacks lambda. The Java API design-
ers quickly learned to use anonymous classes to create anonymous
closures, enabling the use of first-class function-like objects in a
language that does not support functions. C++ programmers dis-
covered a way to use the polymorphic mechanism of templates as a
complete macro language.

On learning a new language, the sophisticated programmer does
not learn the specific forms of that language blindly but instead
asks, “which forms create closures, recursive bindings, iteration,
etc. in this language?”. If any of the desired features are missing,
that programmer then emulates them, using techniques learned by
emulating complex features in the minimalist λ calculus. So, al-
though implementing Church Booleans is just an academic puzzle

6or at least, one of the two...

for most programmers, that kind of thought process is valuable in
implementing practical applications.

André van Meulebrouck describes an alternative motivation:

Perhaps you might think of Alonzo Church’s λ -calculus
(and numerals) as impractical mental gymnastics, but
consider: many times in the past, seemingly impractical
theories became the underpinnings of future technolo-
gies (for instance: Boolean Algebra [i.e., today’s com-
puters that operate in binary build massive abstractions
using only Boole’s theoretical logic!]).

Perhaps the reader can imagine a future much brighter
and more enlightened than today. For instance, imag-
ine computer architectures that run combinators or λ -
calculus as their machine instruction sets.7

7.1 Syntax

The λ calculus is a language with surprisingly few primitives in the
expression domain8:

var ::= id

abs ::= λ id . exp
app ::= exp exp

exp ::= var | abs | app | (exp)

The last expression on the right simply states that parentheses may
be used for grouping.

The language contains single value type, the single-argument
procedure, in the value domain. In set notation this is:

val = proc = var× exp

and in BNF:

val ::= λ id . exp

The abbreviated names used here and in the following discussions
are mnemonics for: ‘id’ = ‘identifier’, ‘abs’ = ‘abstraction’ (since λ

creates a procedure, which is an abstraction of computation), ‘app’
= ‘procedure application’, ‘exp’ = ‘expression’, ‘proc’ = ‘proce-
dure’, and ‘val’ = ‘value’.

7.2 Semantics

The formal semantics are simply those of substitution [Pie02, 72]:

App-Part 1: (reduce the procedure expression towards a value)

expp⇒ exp′p
exppexpa⇒ exp′pexpa

(9)

App-Part 2: (reduce the actual parameter towards a value)

expa⇒ exp′a
exppexpa⇒ exppexp′a

(10)

App-Abs: (apply a procedure to a value)

λ id . expbody val ⇒ [id � val]expbody (11)

The App-Abs rule relies on the same syntax for the val value and
abs expression, which is fine in λ calculus because we’re using pure

7http://www.mactech.com:16080/articles/mactech/Vol.07/07.06/ChurchNumerals/
8This is specifically a definition of the untyped λ -calculus.

textural substitution. In the context of a true value domain that is
distinct from the expression domain, we could express it as an abs
evaluation rule for reducing a procedure expression to a procedure
value and and an application rule written something like:

valp = λ id . expbody

valp vala⇒ [id � vala]expbody
(12)

7.3 Examples

For the sake of giving simple examples, momentarily expand λ cal-
culus with the usual infix arithmetic operations and integers. Con-
sider the evaluation of the following expression:

λ x . (x+3) 7 (13)

This is an app expression. The left sub-expression is a abs, the
right sub-expression is an integer (7). Rule App-Abs is the only rule
that applies here, since both the procedure and the integer cannot
be reduced further. App-Abs replaces all instances of x in the body
expression (x+3) with the right argument expression, 7:

λ x . (x+3) 7 (14)
⇒ [x � 7](x+3) (15)
= (7+3) (16)
= 10 (17)

Arithmetic then reduces this to 10.
Now consider using a procedure as an argument:

(λ f . (f 3)) (λx.(1+ x)) (18)

This is again an app. In this case, both the left and right are abs ex-
pressions. Applying rule App-Abs substitutes the right expression
for f in the body of the left procedure, and then we apply App-Abs
again:

(λ f . (f 3)) (λx.(1+ x)) (19)
⇒ [f � (λx.(1+ x))](f 3)) (20)
= λx.(1+ x) 3 (21)
⇒ [x � 3](1+ x) (22)
= (1+3) (23)
= 4 (24)

7.4 Partial Function Evaluation

Because procedure application is left associative and requires no
function application operator:

f x y = (f x) y (25)

we can emulate the functionality of multiple-argument proce-
dures using single argument procedures. For example, the “two-
argument” procedure that sums its arguments is:

λx.λy.(x+ y) (26)

The outer expression is an abs (procedure definition), whose
body is another abs. This is a first-order procedure. When placed
into nested app expressions, the procedure returns another proce-
dure, which then consumes the second app’s argument:

(λx.λy.(x+ y)) 1 2 (27)
⇒ λy.(1+ y) 2 (28)
⇒ 1+2 (29)
= 3 (30)

The process of converting a 0th-order function of n arguments
into an nth-order function of one argument, like the one above, is
called currying. It is named for the logician Haskell Curry, who
was not its inventor9.

When an nth-order function is applied to k < n arguments, in
λ calculus, the result reduces to an (n− k)th order function. The
resulting function “remembers” the arguments that have been pro-
vided because they have already been substituted, and it will com-
plete the computation when later applied to the remaining argu-
ments. This is called partial function evaluation, and is a fea-
ture of some languages including Haskell (which is also named for
Haskell Curry, who did not invent it either.) For example, the addi-
tion function above can be partially evaluated to create an “add 5”
function:

(λx.λy.(x+ y)) 5 (31)
⇒ λy.(5+ y) (32)

7.5 Creating Recursion

A fixed point of a function f is a value v such that f (v) = v (in
mathematical notation; in λ calculus, we would say f v = v. A
function may have zero or more fixed points. For example, the
identity function λx.x has infinitely many fixed points. Let s =
λx.x2 be the function that squares its argument; it has fixed points
at 0 and 1.

A fixed point combinator is a function that computes a fixed
point of another function. This is interesting because it is related to
recursion. Consider the problem of defining a recursive function in
λ calculus. For example, define factorial (for convenience, we tem-
porarily extend the language with conditionals and integers; those
can be reduced as shown previously):

λn.(if (iszero n)
1
(n∗ (f (n−1))))

The problem with this definition is that we need the f embedded
inside the recursive case to be bound to the function itself, but that
value does not exist at the time that the function is being defined.
Alternatively, the problem is that f is a free variable. Adding an-
other abs expression captures f :

λ f . λn.(if (iszero n)

1
(n∗ (f (n−1))))

This just says that if we already had the factorial function that op-
erated on values less than n, we could implement the factorial func-
tion for n. That’s close to the idea of recursion, but is not fully
recursive because we’ve only implemented one inductive step. We
need to handle all larger values. To let this inductive step run fur-
ther, say that f is the function that we’re defining, which means that
the inner call requires two arguments: f and n−1:

λ f .λn.(if (iszero n)
1
(n∗ (f f (n−1))))

Call this entire function g. It is a function that, given a facto-
rial function, creates the factorial function. At first this does not
sound useful–if we had the factorial function, we wouldn’t need to
write it! However, consider that what we have defined g such that

9The idea is commonly credited to Schönfinkel in the 20th century, and
was familiar to Frege and Cantor in the 19th [Pie02, 73]

(g f) = f ...in other words, the factorial function is the fixed point
of g. For this particular function, we can find the fixed point by
binding it and then calling it on itself. Binding and applying values
are accomplished using abs and app expressions. An expression of
the form:

(λ z.z z) g ⇒ g g (33)

applies g to itself. Wrapping our entire definition with this:

(λ z.z z)

(λ f .λn.(if (iszero n)
1
(n∗ (f f (n−1)))))

produces a function that is indeed factorial, albeit written in a
strange manner. Convince yourself of this by running it in Scheme,
using the following translation and application to 4:

(

((lambda (z) (z z))

(lambda (f)

(lambda (n)

(if (zero? n)

1

(* n ((f f) (- n 1)))))))

4)

When run, this correctly produces 4! = 4∗3∗2∗1 = 24.
This exercise demonstrates that it is possible to implement a re-

cursive function without an explicit recursive binding construct like
LETREC. For the factorial case, we manually constructed a genera-
tor function g and its fixed point. Using a fixed point combinator
we can automatically produce such fixed points, simplifying and
generalizing the process.

Curry discovered the simplest known fixed point combinator
for this application. It is known as the Y combinator (a.k.a.
applicative-order Z combinator as expressed here), and is defined
as:

Y = λ f .
((λ z . z z)
(λx . f (λy . x x y))) (34)

When applied to a generator function, Y finds its fixed point and
produces that recursive function. The Y combinator is formulated
so that the generator need not apply its argument to itself. That
is, the step where we rewrote (f (n− 1)) as (f f (n− 1)) in our
derivation is no longer necessary.

A Scheme implementation of Y and its use to compute factorial
are below. The use of the DEFINE statement is merely to make the
implementation more readable. Those can be reduced to LAMBDA
and application expressions.

; Creates the fixed point of its argument

(define Y

(lambda (f)

((lambda (z) (z z))

(lambda (x) (f (lambda (y) ((x x) y)))))))

; Given the factorial function, returns the factorial function

(define generator

(lambda (fact)

(lambda (n)

(if (zero? n)

1

(* n (fact (sub1 n)))))))

; The factorial function: prints (lambda...)

(Y generator)

; Example: prints 24

((Y generator) 4)

References

Alonzo Church. A set of postulates for the foundation of logic. Annals of
Mathematics, 33:346–366, 1932.

Kurt Gödel. Über formal unentscheidbare sätze der principia mathematica
und verwandter systeme. I. Monatshefte für Mathematik und Physik,
38:173–198, 1931.

Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348–375, 1978.

Benjamin C. Pierce. Types and programming languages. MIT Press, Cam-
bridge, MA, USA, 2002.

Vijay Saraswat. Java is not type-safe. Technical report, AT&T Research,
1997. http://www.research.att.com/ vj/bug.html.

Alan Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society,
42:230–265, 1936. http://www.turingarchive.org/browse.php/B/12.

Jean van Heijenoort, editor. From Frege to Gdel: A Source Book in Mathe-
matical Logic, 1979-1931. Harvard University Press, 1967.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115:38–94, 1994.

