
Programming Language Notes

February 24, 2009

Morgan McGuire∗

Williams College

This is a series of lecture notes for CS334 addressing some of the
theoretical topics from the course. I will extend them periodically
throughout the semester. These supplement the lectures and re-
quired reading, which contain other topics, especially implemen-
tation details, and expand on this condensed form.

1 Introduction

A programming language is a mathematical calculus, or formal
language. Its goal is to express algorithms in a manner that is un-
ambiguous to people and machines. Like any calculus, a language’s
notation contains both syntax and semantics. Since syntax can be
easily translated, the semantics are more fundamental.

Church and Turing showed that the minimal semantics of the
Lambda Calculus and Universal Turing Machine are sufficient to
emulate the semantics of any more complicated programming lan-
guage or machine. Reducing a particular language to the Lambda
Calculus may require holistic restructuring of programs in that lan-
guage. We say that a particular language feature (e.g., continua-
tions, macros, garbage collection) is expressive if it cannot be em-
ulated without restructuring programs that use it.

1.1 Types and Features

Every language makes some programs easy to express and others
difficult. When a language is well-suited to a problem domain, it the
programs it makes easy are solutions to problems in that domain.
The programs that the language makes hard to express are ones that
are incorrect. This is a feature! One way to design a language is
to selectively add restrictions until it is hard to express incorrect
programs for the target domain. The cost of a language design is
that some correct and potentially useful programs also become hard
to express in the language.

The type system is one tool for restricting a language. A type
system associates metadata with values and the variables that can
be bound to them. A well-typed program is one where constraints
on the metadata imposed by the language and program itself are
satisfied. When these are violated, e.g., by assigning a “String”
value to an “int” variable in Java, the program is likely incorrect.
Some kinds of program errors can be detected by static analysis,
which means examining the program without executing it. Some
kinds of errors cannot be detected efficiently through static analysis,
or are statically undecidable. Many of these can be detected by
dynamic analysis, which means executing type checks while the
program is executing.

We say that a language exhibits type soundness if well-typed
programs cannot create type errors. By declaring undesirable be-
haviors within the problem domain (such as dereferencing a null
pointer, accessing a private member of another class, or reading
from the filesystem) to be type errors, the language designer can
leverage type soundness to enforce safety and security.

∗morgan@cs.williams.edu, http://graphics.cs.williams.edu

1.2 Imperative and Functional

The discipline of computer science grew out of mathematics largely
due to the work of Turing and his advisor, Church. Church created
a mathematical system called the λ Calculus (also written out as
the Lambda Calculus) that treats mathematical functions as first-
class values within mathematics. It is minimalist in the sense that
it contains the fewest possible number of expressions, yet can en-
code any decidable function. Turing created the Universal Turing
Machine abstraction of a minimal machine for performing compu-
tations. These were then shown to be equivalent an minimal models
of computation, which is today called the Church-Turing Thesis.

These different models of computation are inherited by different
styles of programming. Turing’s machine model leads to imper-
ative programming, which operates by mutating (changing) state
and proceeds by iteration. Java and C++ are languages that support
this style. Church’s mathematical model leads to functional pro-
gramming, which operates by invoking functions and proceeds by
recursion. Scheme, ML, and Haskell are languages that support this
style.

2 Life of a Program

A program goes through three major stages: Source, Expressions,
and Values. Formal specifications describe the syntax of the source
and the set of expressions using an grammar, typically in BNF.
This is called the expression domain of the language. The value
domain is described in set notation or as BNF grammars.

An analogy to a person reading a book helps to make clear the
three stages. The physical ink on the printed page is source. The
reader scans the page, distinguishing tokens of individual letters
and symbols from clumps of ink. In their mind, these are assigned
the semantics of words–i.e., expressions. When those expressions
are evaluated, the value (meaning) of the words arises in the readers
mind. This distinction is subtle in the case of literals. Consider a
number written on the page, such as ”32”. The curvy pattern of
ink is the source. The set of two digits next to each other is the
expression. The interpretation of those digits in the reader’s mind
is the number value. The number value is not something that can be
written, because the act of writing it down converts it back into an
expression. Plato might say that the literal expression is a shadow
on the cave wall of the true value, which we can understand but not
directly observe. 1

2.1 Source Code and Tokens

A program begins as source code. This is the ASCII (or unicode!)
string describing the program, which is usually in a file stored on

1For the truly philosophical, what is in the mind, or what is represented
as a value by bits in a computer’s memory, is still only a representation of the
value. The actual value 32 simply exists is unique. There can be only one 32,
which means it can’t be in multiple places at once–the bits representing 32
in a computer’s memory therefore act a pointer to the ideal 32. AI, PL, and
philosophy meet when we consider whether the human mind is different, or
just shuffling around around representations like a computer.

disk. A tokenizer converts the source to a stream of tokens in
a manner that is specific to the language. For example, in Java
the period character “.” becomes a separate token if it separates
two identifiers (variables) but is part of a floating-point number if
it appears in the middle of a sequence of digits, e.g., string.length()
versus 3.1415. See java.StringTokenizer or G3D::TextInput for an
example of an implementation.

Figures 2.1 and 2.1 show an example of the source code and re-
sulting token stream for a simple factorial function implemented
in the Scheme programming language. The tokenizer is often
language-specific. For this example, the tokenizer tags each token
as a parenthesis, reserved word, identifier, or numeral. Source code
is usually stored in a string. A typical data structure for storing the
token stream is an array of instances of a token class.

Figure 1: Scheme source code for factorial.

Figure 2: Token stream for factorial.

2.2 Expressions

A parser converts the token stream into a parse tree of expres-
sions. The legal expressions are described by the expression
domain of the language, which is often specified in BNF. The
nodes of a parse tree are instances of expressions (e.g., a FOR
node, a CLASS-DEFINITION node) and their children are the sub-
expressions. The structure of the parse tree visually resembles the
indenting in the source code. Figure 2.2 shows a parse tree for the
expressions found in the token stream from figure 2.1.

Figure 3: Parse tree for factorial.

The Scheme language contains the QUOTE special form for con-
veniently specifying parse trees directly as literal values, omitting
the need for a tokenizer and parser when writing simple interpreters
for languages that have an abstract syntax. The drawback of this ap-
proach is that simply quoting the factorial code in figure 2.1 would
not produce the tree in figure 2.2. Instead, the result would be a
tree of symbols and numbers without appropriate expression types
labeling the nodes.

2.3 Values

When the program executes (if compiled, or when it is evaluated
by an interpreter if not), expressions are reduced to values. The set
of legal values that can exist during execution is called the value
domain. The value domain typically contains all of the first-class
values, although some languages have multiple value domains and
restrict what can be done to them. In general, a value is first-class
in a language if all of the following hold:

1. The value can be returned from a function

2. The value can be an argument to a function

3. A variable can be bound to the value

4. The value can be stored in a data structure

Java generics (a polymorphism mechanism) do not support prim-
itive types like int, so in some sense those primitives are second-
class in Java and should be specified in a separate domain from
Object and its subclasses, which are first-class. In Scheme and
C++, procedures (functions) and methods are first-class because all
of the above properties hold. Java methods are not first-class, so
that language contains a Method class that describes a method and
acts as a proxy for it.

The value domain can be specified using set notation, e.g.,

real = int ∪decimal
complex = real× real
number = real∪ complex

or using a BNF grammar (at least, for a substitution interpreter),
which is described later.

2.4 Implementation Issues

There is a design tradeoff when implementing a language between
compactness and abstraction. Using the same types in the imple-
mentation language for source, expressions, and values reduces the
amount of packing and unpacking of values that is needed, and al-
lows procedures in the implementation language to operate directly
on the values in the target language. Furthermore, in Scheme, the
READ procedure and QUOTE special form allow easy creation of
tree values using literals that are syntactically identical to Scheme
source code. This avoids the need for an explicit tokenizer and
parser. Using the same types across domains violates the abstrac-
tion of those domains. This can make the implementation of the
language harder to understand (when it grows large), and limits the
ability of the type checker to detect errors in the implementation.
For example, when implementing a Scheme interpreter in Java, one
could choose to implement Scheme symbols, strings, identifiers,
and source all as Java strings, without a wrapper class to distin-
guish them. It would be easy to accidentally pass a piece of source
code to a method that expected an identifier, and the Java compiler
could not detect that error at compile time because the method was
only typed to expect a String, not a SchemeIdentifier.

3 Interpreters and Compilers

A compiler is a program that translates other programs in a high-
level language to the machine language of a specific computer. The
result is sometimes called a native binary because it is in the na-
tive language of the computer2. An interpreter is a program that

2Although in practice, most modern processors actually emulate their
published interface using a different set of operations and registers. This
allows them include new architectural optimizations without changing the
public interface, for compatibility.

executes other programs without compiling them to native code.
There is a wide range of translation within the classification of in-
terpreters. At one end of this range, some interpreters continuously
re-parse and interpret code as they are moving through a program.
At the other end, some interpreters essentially translate code down
to native machine language at runtime so that the program executes
very efficiently.

Although most languages can be either compiled or interpreted,
they tend to favor only one execution strategy. C++, C, Pascal,
Fortran, Algol, and Ada are typically compiled. Scheme, Python,
Perl, ML, Matlab, JavaScript, HTML, and VisualBasic are usually
interpreted. Java is an interesting case that compiles to machine
language for a computer that does not exist. That language is then
interpreted by a virtual machine (JVM).

Compilers tend to take advantage of the fact that they are run
once for a specific instance of a program and perform much more
static analysis. This allows them to produce code that executes ef-
ficiently and to detect many program errors at compile time. De-
tecting errors before a program actually runs is important because
it reduces the space of possible runtime errors, which in turn in-
creases reliability. Compiled languages often have features, such as
static types, that have been added specifically to support this kind
of compile-time analysis.

Interpreters tend to take advantage of the fact that code can be
easily modified while it is executing to allow extensive interaction
and debugging of the source program. This also makes it easier to
patch a program without halting it, for example, when upgrading
a web server. Many interpreted languages were designed with the
knowledge that they would not have extensive static analysis and
therefore omit the features that would support it. This can increase
the likelihood of errors in the programs, but can also make the
source code more readable and compact. Combined with the ease of
debugging, this makes interpreted languages often feel “friendlier”
to the programmer. This typically comes at the cost of decreased
runtime performance cost increased runtime errors.

Compiled programs are favored for distributing proprietary algo-
rithms because it is hard to reverse engineer a high-level algorithm
from machine language. Interpreted programs by their nature re-
quire that the source be distributed, although it is possible to obfus-
cate or, in some languages, encrypt the source to discourage others
from reading it.

4 Syntax

Although we largely focus on semantics, some points about syntax
covered in the course:

• A parser converts source code to expressions

• Backus-Naur Form (BNF) formal grammars are a way of de-
scribing syntax using recursive patterns

• Infix syntax places an operator between its arguments, e.g.,
“1 + 2”. Java uses infix syntax for arithmetic and member
names, but prefix syntax for method application.

• Prefix syntax places the operator before the operands, e.g.,
“add(1, 2)”, which conveniently allows more than one
or two operands and unifies operator and function syntax.
Scheme uses prefix syntax for all expressions.

• Postfix places the operator after the operands, which allows
nested expressions where the operators take a fixed number
of arguments, without requiring parentheses. Postscript and
some calculators use postfix.

• Scheme’s “abstract syntax” makes it easy to parse

• Macros allow a programmer to introduce new syntax into a
language

• Python has an interesting syntax in which whitespace is sig-
nificant. This reduces visual clutter but makes the language a
little difficult to parse and to edit (in some cases)

• Syntactic sugar makes a language sweeter to use without in-
creasing its expressive power

4.1 Backus-Naur Form

Backus-Naur Form (BNF) is a formal way of describing context-
free grammars for formal languages. A grammar is context-free
when the the grammar is consistent throughout the entire language
(i.e., the rules don’t change based on context). BNF was first used
to specify the ALGOL programming language.

A BNF grammar contains a series of rules (also known as pro-
ductions). These are patterns that legal programs in the specified
language must follow. The patterns are typically recursive. In the
BNF syntax, the nonterminal being defined is enclosed in angular
brackets, followed by the “::=” operator, followed by an expression
pattern. The expression pattern contains other nonterminals, termi-
nals enclosed in quotation marks, and the vertical-bar operator “|”
that indicates a choice between two patterns. For example,

〈digit〉 ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
〈digits〉 ::= 〈digit〉 | 〈digit〉〈digits〉

It is common to extend BNF with regular expression patterns to
avoid the need for helper productions. These include the following
notation:

(x) = x; parentheses are for grouping only

[x] = zero or one instances of x (i.e., x is optional)

x∗ = zero or more instances of x

x+ = one or more instances of x

An example of these digits for expressing a simple programming
language literal expression domain (e.g., a subset of Scheme’s lit-
erals):

〈boolean〉 ::= ‘#t’ | ‘#f’
〈digit〉 ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

〈integer〉 ::= [‘+’|‘-’]〈digit〉+

〈rational〉 ::= 〈integer〉‘/’〈digit〉+

〈decimal〉 ::= [‘+’|‘-’]〈digit〉∗ ‘.’ 〈digit〉+

〈real〉 ::= 〈integer〉 | 〈rational〉 | 〈decimal〉

4.2 Syntactic Sugar

Some expressions make a language’s syntax more convenient and
compact without actually adding expressivity: they make the lan-
guage sweeter to use. We say that an expression is syntactic sugar
and adds no power if it can be reduced to another expression with
only local changes. That is, without rewriting the entire body of the
expression or making changes to other parts of the program.

For example, in Java any FOR statement, which has the form:

for (init ; test ; incr) body

can be rewritten as a WHILE statement of the form:

init ; while (test) { body incr }

FOR therefore does not add expressivity to the language and is syn-
tactic sugar. In Scheme, LET adds no power over LAMBDA, and
LET* adds no power over LET. Java exceptions are an example of
an expressive form that cannot be eliminated without completely
rewriting programs in the language.

5 Computability

5.1 The Incompleteness Theorem

At the beginning of the 20th century, mathematicians widely be-
lieved that all true theorems could be reduced to a small set of ax-
ioms. The assumption was that mathematics was sufficiently pow-
erful to prove all true theorems. Hilbert’s program3 was to actually
reduce the different fields of mathematics to a small and consistent
set of axioms, thus putting them all on a solid and universal foun-
dation.

In 1931 Gödel [G3̈1][vH67, 595] proved that in any sufficiently
complex system of mathematics (i.e., formal language), there exist
true statements that cannot be proven using that system. This In-
completeness Theorem was a surprising result and indicated that
a consistent set of axioms could not exist. That result defeated
Hilbert’s program and indicated for the first time the limitations of
mathematics. This is also known as the First Incompleteness The-
orem; there is a second theorem that addresses the inconsistency of
languages that claim to prove their own consistency.

Here is a proof of the Incompleteness Theorem following
Gödel’s argument. Let every statement in the language be encoded
by a natural number, which is the Gödel Number of that statement.
This encoding can be satisfied by assigning every operator, vari-
able, and constant to a number with a unique prefix and then letting
each statement be the concatenation of the digits of the numbers in
it. (This is roughly equivalent to treating the text of a program as
a giant number containing the concatenation of all of its bits in an
ASCII representation.) For example, the statement “x > 4” might
be encoded by number g:

Sg(x) = “x > 4” (1)

Now consider the self-referential (“recursive”) statement,

Si(n) = “Sn is not provable.” (2)

evaluated at n = i. This statement is a formal equivalent of the
Liar’s Paradox, which in natural language is the statement, “This
sentence is not true.” Sn(n) creates an inconsistency. As a paradox,
it can neither be proved (true), nor disproved (false).

As a result of the Incompleteness Theorem, we know that there
exist functions whose results cannot be computed. These non-
computable functions (also called undecidable) are interesting for
computer science because they indicate that there are mathematical
statements whose validity cannot be determined mechanically. For
computer science, we define computability as:

A function f is computable if there exists a program P that com-
putes f , i.e., for any input x, the computation P(x) halts with out-
put f (x).

Unfortunately, many of undecidable statements are properties of
programs that we would like a compiler to check. A constant chal-
lenge in programming language development is that it is mathemat-
ically impossible to prove certain properties about arbitrary pro-
grams, such as whether a program does not contain an infinite loop.

3“program” as in plan of action, not code

5.2 The Halting Problem

Let the Halting Function H(P,x) be the function that, given a pro-
gram P and an input x to P, has value “halts” if P(x) would halt
(terminate in finite time) were it to be run, and has value “does not
halt” otherwise (i.e., if P(x) would run infinitely, if run). The Halt-
ing Problem is that of solving H; Turing [Tur36] proved in 1936
that H is undecidable in general.

Theorem 1. H(P,x) is undecidable.

Proof. Assume program Q(P,x) computes H (somehow). Con-
struct another program D(P) such that

D(P):
if Q(P,P) = “halts” then loop
else halt

In other words, D(P) exhibits the opposite halting behavior of
P(P).

Now, consider the effect of executing D(D). According to the
program definition, D(D) must halt if D(D) would run forever,
and D(D) must run forever if D(D) would halt. Because D(D)
cannot both halt and run forever, this is a contradiction. Therefore
the assumption that Q computes H is false. We made no further
assumption beyond H being decidable, therefore H must be un-
decidable.

The proof only holds when H must determine the status of every
program and every input. It is possible to prove that a specific pro-
gram with a specific input halts. For a sufficiently limited language,
it is possible to solve the Halting Problem. For example, every finite
program in a language without recursion or iteration must halt.

The theorem and proof can be extended to most observable prop-
erties of programs. For example, within the same structure one
can prove that it is undecidable whether a program prints output or
reaches a specific line in execution. Note that it is critical to the
proof that Q(P,x) does not actually run P; instead, it must decide
what behavior P would exhibit, were it to be run, presumably by
examining the source code of P. See http://www.cgl.uwaterloo.ca/ csk/halt/
for a nice explanation of the Halting Problem using the C program-
ming language.

References

Kurt Gödel. Über formal unentscheidbare sätze der principia mathematica
und verwandter systeme. I. Monatshefte für Mathematik und Physik,
38:173–198, 1931.

Alan Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society,
42:230–265, 1936. http://www.turingarchive.org/browse.php/B/12.

Jean van Heijenoort, editor. From Frege to Gdel: A Source Book in Mathe-
matical Logic, 1979-1931. Harvard University Press, 1967.

