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Preface

Python is a fun language for writing small programs. This book is about writing
larger programs in Python. In more significant programs there begins to be a
concern about how to structure and manipulate the data for efficient access.
Python enjoys a rich set of data types for holding data—arrays, lists, dictionar-
ies, and others—but our eventual focus will be what to do when these initial
types are insufficient for the kinds of abstractions you might need in more com-
plex tasks.

Python is frequently used to support the quick development of small pro-
grams that generate or filter data, or that coordinate the interactions of other
programs. In this regard, Python can be thought of as a scripting language.
Scripting languages are used for small quick tasks. Python’s ease of use, how-
ever, has made is possible to write quite large programs, as well.

When programs become large, there is always a concern about efficiency.
Does the program run quickly? Can the program manipulate large amounts of
data quickly and with a small memory footprint? These are important questions,
and if programmers are to be effective, they must be able to ask and answer
questions about the efficiency of their programs from the point-of-view of data
management. This book is about how to do that.

In the early chapters we learn about basic Python use. We then discuss
some problems that involve the careful manipulation of Python’s more complex
data types. Finally, we discuss some object-oriented strategies to implement
and make use of data structures that are either problem specific, or not already
available within the standard Python framework. The implementation of new
data structures is an important programming task, often at least as important
as the implementation of new code. This book is about that abstract process.

Finally, writing Python is a lot of fun, and we look forward to thinking openly
about a number of fun problems that we might use Python to quickly solve.
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Chapter O
Python

This book focuses on data structures implemented in the Python language.
Python is a scripting language. This means that it can be used to solve a wide
variety of problems and its programs are presented as scripts that are directly
interpreted. In traditional programming languages, like C or Java, programs
must first be compiled into a machine language whose instructions can be ef-
ficiently executed by the hardware. In reality, the difference between scripting
and traditional programming languages is relatively unimportant in the design
of data structures, so we do not concern ourselves with that here.!

Much of Python’s beauty comes from its simplicity. Python is not, for exam-
ple, a typed language—names need not be declared before they are used and
they may stand for a variety of unrelated types over the execution of a pro-
gram. This gives the language a light feel. Python’s syntax makes it a useful
desk calculator. At the same time it supports a modularity of design that makes
programming-in-the-large possible.

The “pythonic” approach to programming is sometimes subtly different than
other languages. Everything in Python is an object, so constants, names, objects,
classes, and type hierarchies can be manipulated at runtime. Depending on your
care, this can be beautiful or dangerous. Much of this book focuses on how to
use Python beautifully.

Before we go much further, we review important features of the language.
The intent is to ready you for understanding the subtleties of the code presented
later. For those seeking an in-depth treatment, you should consider the wealth
of resources available at python. org, including the Python Language Reference
Manual (PLRM, http://docs.python.org/3/reference/). Where it may be
useful, we point the reader to specific sections of the PLRM for a more detailed
discussion of a topic.

0.1 Execution

There are several ways to use Python, depending on the level of interaction
required. In interactive mode, Python accepts and executes commands one
statement at a time, much like a calculator. For very small experiments, and

1 For those who are concerned about the penalties associated with crafting Python data structures
we encourage you to read on, in Part II of this text, where we consider how to tune Python struc-
tures.
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while you are learning the basics of the language, this is a helpful approach to
learning about Python. Here, for example, we experiment with calculating the
golden ratio:

% python3

Python 3.1.2 (r312:79360M, Mar 24 2010, 01:33:18)

[GCC 4.0.1 (Apple Inc. build 5493)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import math 5

>>> golden = (1+math.sqrt(5))/2

>>> print(golden)

1.61803398875

>>> quit()
Experimentation is important to our understanding of the workings of any com-
plex system. Python encourages this type of exploration.

Much of the time, however, we place our commands in a single file, or
script. To execute those commands, one simply types python3? followed by
the name of the script file. For example, a traditional first script, hello.py,
prints a friendly greeting:

print("Hello, world!")
This is executed by typing:

python3 hello.py
This causes the following output:

Hello, world!
Successfully writing and executing this program makes you a Python program-
mer. (If you're new to Python programming, you might print and archive this
program for posterity.)

Many of the scripts in this book implement new data structures; we’ll see
how to do that in time. Other scripts—we’ll think of them as applications—are
meant to be directly used to provide a service. Sometimes we would like to
use a Python script to the extend the functionality of the operating system by
implementing a new command or application. To do this seamlessly typically
involves some coordination with the operating system. If you’re using the Unix
operating system, for example, the first line of the script is the shebang line>.
Here are the entire contents of the file golden:

#!/usr/bin/env python3
import math
golden = (1+math.sqrt(5))/2
print (golden)
When the script is made executable (or blessed), then the command appears as

2 Throughout this text we explicitly type python3, which executes the third edition of Python.
Local documentation for your implementation of Python 3 is accessible through the shell command
pydoc3.

3 The term shebang is a slang for hash-bang or shell-comment-bang line. These two characters
form a magic number that informs the Unix loader that the program is a script to be interpreted.
The script interpreter (python3) is found by the /usr/bin/env program.
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a new application part of the operating system. In Unix, we make a script exe-
cutable by giving the user permission (u+) the ability to execute the script (x):
% chmod u+x golden
% golden
1.61803398875
Once the executable script is placed in a directory mentioned by the PATH envi-
ronment variable, the Python script becomes a full-fledged Unix command.*

0.2 Statements and Comments

Python is a line-oriented language. Unlike Java and C, most statements in
Python are written one per line. This one assumption—that lines and state-
ments correspond—goes a long way toward making Python a syntactically sim-
ple language. Where other languages might use a terminal punctuation mark,
Python uses the line’s end (indicated by a newline character) to indicate that the
statement is logically complete.

Some Python instructions—compound statements—control a suite of sub-
ordinate instructions with the suite consistently indented underneath the con-
trolling statement. These control statements are typically entered across several
lines. For example, the following single statement prints out factors of 100 from
1 up to (but not including) 100:

for f in range(1,100):

if 100%f == O:
print(£f)

The output generated by this statement is:

1

2

4

5

10 5

20

25

50
The for statement controls the if statement and the if statement controls the
print statement. Each statement in a control statement’s suite is consistently
indented by four spaces.

When Python statements get too long for a single line, they may be contin-
ued on the next line if there are unmatched parentheses, curly braces, or square
brackets. The line that follows is typically indented to just beyond the nearest
unmatched paren, brace, or bracket. Long statements that do not have open
parens can be explicitly continued by placing a backslash (\) just before the
end of the line. The statement is then continued on the next line. Generally,

4 In this text, we’ll assume that the current directory (in Unix, this directory is .) has been placed
in the path of executables.
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explicitly continued long statements make your script unreadable and are to be
avoided.

Comments play an important role in understanding the scripts you write;
we discuss the importance of comments in Chapter 2. Comments begin with a
hash mark (#) and are typically indented as though they were statements. The
comment ends at the end of the line.

0.3 Object-Orientation

Much of the power of Python comes from the simple fact that everything is
an object. Collections of data, methods, and even the most primitive built-in
constants are objects. Because of this, effective programmers can be uniformly
expressive, whether they’re manipulating constants or objects with complex be-
havior. For example, elementary arithmetic operations on integers are imple-
mented as factory methods that take one or more integer values and produce
new integer values. Some accessor methods gain access to object state (e.g. the
length of a list), while other mutator methods modify the state of the object (e.g.
append a value to the end of the list). Sometimes we say the mutator methods
are destructive to emphasize the fact an object’s state changes. The programmer
who can fully appreciate the use of methods to manipulate objects is in a better
position to reason about how the language works at all levels of abstraction. In
cases where Python’s behavior is hard to understand, simple experiments can
be performed to hone one’s model of the language’s environment and execution
model.

We think about this early on—even before we meet the language in any
significant way—because the deep understanding of how Python works and
how to make it most effective often comes from careful thought and simple
experimentation.

Exercise 0.1 How large an integer can Python manipulate?

A significant portion of this text is a dedicated to the design of new ways
of structuring the storage of data. The result is a new class, from which new
objects or instances of the class may be derived. The life of an object involves its
allocation, initialization, manipulation, and, ultimately, its deletion and freeing
of resources. The allocation and initialization of an object appears as the result
of a single step of construction, typically indicated by calling the class. In this
way, we can think of a class as being a factory for producing its objects.

>>> 1 = list() # construct a new list

>>> 1.append(1)

>>> 1

[1]
Here, list is the class, and 1 is a reference to the new list object. Once the list
is constructed, it may be manipulated by calling methods (e.g. 1.append(1))
whose execution is in the context of the object (here, 1). Only the methods
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defined for a particular class may be used to directly manipulate the class’s
objects.”

It is sometimes useful to have a place holder value, a targetless reference,
or a value that does not refer to any other type. In Python this value is None.
Its sole purpose in Python is to represent “I'm not referring to anything.” In
Python, an important idiomatic expression guards against accessing the meth-
ods of a None or null reference:

if v is not None:

0.4 Built-in Types

Python starts up with a large number of built-in data types. They are fully
developed data structures that are of general use. Many of these structures
also support basic arithmetic operations. The list class, for example, interprets
the addition operator (+) as a result of concatenating one list with another.
These operations are, essentially, syntactic sugar for calling a list-specific special
method that performs the actual operation. In the case of the addition operator,
the method has the name __add__. This simple experiment demonstrates this
subtle relationship:

>>> 11 = [1,2,3,4]

>>> 12 = [5,6,7,8]

>>> 11412

[1,2,3,4,5,6,7,8]

>>> 11.__add__(12)

(1,2,3,4,5,6,7,8]
This operator overloading is one of the features that makes Python a simple,
compact, and expressive language to use, especially for built-in types. Well
designed data structures are easy to use. Much of this book is spent thinking
about how to use features like operator overloading to reduce the apparent
complexity of manipulating our newly-designed structures.

One of Python’s strengths is its support for an unusually diverse collection
of built-in data types. Indeed, a significant portion of this book is dedicated
to leveraging these built-in types to implement new data types efficiently. The
table of Figure 1 shows what the constant or display values of some of these
built-in types look like.

0.4.1 Numbers

Numeric types may be integer, real, or complex (PLRM 3.2). Integers have no
fractional part, may be arbitrarily large, and integer literals are written without

5 Python makes heavy use of generic methods, like 1en(1) that, nonetheless, ultimately make a
call to an object’s method, in this case, the special method 1.__len__().
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] type | literal \
1, -10, 0
numbers 3.4,0.0,-.5,3.,1.0e-5,0.1E5
0j, 3.1+1.3e4J
booleans False, True
strings "hello, world"
’hello, world’
tuples (a,b)
(a,)
lists [3,3,1,7]
dictionaries | {"name": "duane", "robot": False, "height": 72}
sets {11, 2, 3, 5, 7}
objects <__main__.animal object at 0x10a7edd90>

Figure 1 Literals for various Python types (PLRM 2.4).

a decimal point. Real valued literals are always written with a decimal point,
and may be expressed in scientific notation. Pure complex literals are indicated
by a trailing j, and arbitrary complex values are the result of adding an integer
or real value. These three built-in types are all examples of the Number type.®
The arithmetic operations found in the table of Figure 3 are supported by all
numeric types. Different types of values combined with arithmetic operations
are promoted to the most general numeric type involved to avoid loss of infor-
mation. Integers, for example, may be converted to floating point or complex
values, if necessary. The functions int (v), float(v), and complex(v) convert
numeric and string values, v, to the respective numerics. This may appear to be
a form of casting often found in other languages but, with thought, it is obvious
that the these conversion functions are simply constructors that flexibly accept
a wide variety of types to initialize the value.

C or Java programmers should note that exponentiation is directly supported
and that Python provides both true,full-precision division (/) and division, trun-
cated to the smallest nearby integer (//). The expression

(a//b) *b+ (a%b)
always returns a value equal to a. Comparison operations may be chained (e.g.
0 <= i < 10) to efficiently perform range testing for numeric types. Integer
values may be written in base 16 (with an 0x prefix), in base 8 (with an 0o
prefix), or in binary (with an Ob prefix).

6 The Number type is found in the number module. The type is rarely used directly.
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Figure 3 The 33 words reserved in Python and not available for other use

] operation | interpretation | special method
{key:value,...} dictionary display (highest priority)
{expression, ...} set display
[expression,...] list display
(expression,...) tuple display
x.attr attribute access
£C...) method call
x[i] indexing __getitem__
x[i:j:k] indexing by slice __getitem__
X**y exponentiation __pow__
~x bit complement __invert__
-x,+x negation, identity __neg__, __pos__
x/y division __truediv__
x//y integer division __floordiv__
X*y multiplication/repetition __mul__
xhy remainder/format __mod__
X+y, X-y addition, subtraction __add__, __sub__
x>>y shift left __1lshift__
X<<y shift right __rshift__
x&y bitwise and, set intersection __and__
Xy bitw. excl. or, symm. set diff. __Xor__
xly bitwise or, set union __or__
x==y, xl=y value equality __eq__, __ne__
X<y, x<=y, x>=y, x>y value comparison __1t__, __le__,etc.
x is y, x is not y same object test
X in y, x not in y membership __contains__
not x logical negation __bool__
x and y logical and (short circuit)
X or y logical or (short circuit)
x if t else y conditional value
lambda args: expression | anonymous function
yield x value generation (lowest priority)
Figure 2 Python operators from highest to lowest priority (PLRM 6.15).
and as assert break <class continue def del elif
else except finally for from global if import in
is lambda nonlocal not or pass raise return try
while with yield False None True
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0.4.2 Booleans

The boolean type, bool, includes the values False and True. In numeric expres-
sions these are treated as values 0 and 1, respectively. When boolean values are
constructed from numeric values, non-zero values become True and zero val-
ues become False. When container objects are encountered, they are converted
to False if they are empty, or to True if the structure contains values. Where
Python requires a condition, non-boolean expressions are converted to boolean
values first.

Boolean values can be manipulated with the logical operations not, and, and
or. The unary not operation converts its value to a boolean (if necessary), and
then computes the logical opposite of that value. For example:

>>> not True

False

>>> not O

True

>>> not "False" # this is a string

False
The operations and and or are short-circuiting operations. The binary and op-
eration, for example, immediately returns the left-hand side if it is equivalent
to False. Otherwise, it returns the right-hand side. One of the left or right are
always returned and that value is never converted to a bool. For example:

>>> False and True

False

>>> 0 and f(1) # f is never called
0

>>> "left" and "right"

"right"

This operation is sometimes thought of as a guard: the left argument to the and
operation is a condition that must be met before the right side is evaluated.

The or operator returns the left argument if it is equivalent to True, other-
wise it returns its right argument. This behaves as follows:
>>> True or O
True
>>> False or True

True
>>> 72 or ’default’
default’

We sometimes use the or operator to provide a default value (the right side), if
the left side is False or empty.

Although the and and or operators have very flexible return values, we typ-
ically imagine those values are booleans. In most cases the use of and or or
to compute a non-boolean value makes the code difficult to understand, and
the same computation can be accomplished using other techniques, just as effi-
ciently.
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0.4.3 Tuples

The tuple type is a container used to gather zero or more values into a single
object. In C-like languages these are called structs. Tuple constants or tuple
displays are formed by enclosing comma-separated expressions in parentheses.
The last field of a tuple can always be followed by an optional comma, but
if there is only one expression, the final comma is required. An empty tuple
is specified as a comma-free pair of parentheses (()). In non-parenthesized
contexts the comma acts as an operator that concatenates expressions into a
tuple. Good style dictates that tuples are enclosed in parentheses, though they
are only required if the tuple appears as an argument in a function or method
call (£((1,2))) or if the empty tuple (written ()) is specified. Tuple displays
give one a good sense of Python’s syntactic flexibility.
Tuples are immutable; the collection of item references cannot change, though

the objects they reference may be mutable.

>>> emptyTuple = ()

>>> president = (’barack’,’h.’,’obama’,1.85)

>>> skills = ’python’,’snake charming’

>>> score = ((’red sox’,9), (’yankees’,2))

>>> score[0] [1]+score[1] [1]

11
The fields of a tuple are directly accessed by a non-negative index, thus the
value president [0] is ’barack’. The number of fields in a tuple can be de-
termined by calling the 1en(t) function. The len(skills) method returns 2.
When a negative value is used as an index, it is first added to the length of the
tuple. Thus, president [-1] returns president [3], or the president’s height in
meters.

When a tuple display is used as a value, the fields of a tuple are the result

of evaluation of expressions. If the display is to be an assignable target (i.e.
it appears on the left side of an assignment) each item must be composed of
assignable names. In these packed assignments the right side of the assignment
must have a similar shape, and the binding of names is equivalent to a collection
of independent, simultaneous or parallel assignments. For example, the idiom
for exchanging the values referenced by names jeff and eph is shown on the
second line, below

>>> (jeff,eph) = (’trying harder’,’best’)

>>> (jeff,eph) = (eph,jeff) # swap them!

>>> print ("jeff={0} eph={1}".format(jeff,eph))

jeff=best eph=trying harder
This idiom is quite often found in sorting applications.

0.4.4 Lists

Lists are variable-length ordered containers and correspond to arrays in C or
vectors in Java. List displays are collections of values enclosed by square brack-
ets ([...]). Unlike tuples, lists can be modified in ways that often change
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their length. Because there is little ambiguity in Python about the use of square
brackets, it is not necessary (though it is allowed) to follow the final element
of a list with a comma, even if the list contains one element. Empty lists are
represented by square brackets without a comma ([1).

You can access elements of a list using an index. The first element of list 1 is
1[0] and the length of the list can be determined by len(1). The last element
of the list is 1[1en(1)-1], or 1[-1]. You add a new element e to the “high
index” end of list 1 with 1.append(e). That element may be removed from 1
and returned with 1.pop(). Appending many elements from a second list (or
other iterable”) is accomplished with extend (e.g. 1.extend(12)). Lists can be
reversed (1.reverse()) or reordered (1.sort()), in place.

Portions of lists (or tuples) may be extracted using slices. A slice is a regular
pattern of indexes. There are several forms, as shown in the table of Figure 4. To
delete or remove a value from a list, we use the del operator: del 1[i] removes
the element at the ith index, moving elements at higher indices downward.

Slices of lists may be used for their value (technically, an r-value, since they
appear on the right side of assignment), or as a target of assignment (technically,
an [-value). When used as an r-value, a copy of the list slice is constructed as a
new list whose values are shared with the original. When the slice appears as
a target in an assignment, that portion of the original list is removed, and the
assigned value is inserted in place. When the slice appears as a target of a del
operation, the portion of the list is logically removed.

| slice syntax | interpretation \
1[i] the single element found at index i
1[i:j] elements i up to but not including j
1[i:] all elements at index i and beyond; 1[i:1len(1)]
1[:5] elements O up to but not j; 1[0:j]
1[i:i] before element i (used as an l-value)
1[:] a shallow copy of 1
1[i:j:s] | every s element from i, to i+s up to (but not) j
1[::-1] a copy of 1 reversed

Figure 4 Different slices of lists or tuples

Lists, like tuples, can be used to bundle targets for parallel list assignment.
For example, the swapping idiom we have seen in the tuple discussion can be
recast using lists:

>>> here="bruce wayne"
>>> away="batman"
>>> [here,away] = [away,here]

7 Lists are just one example of an iterable object. Iterable objects, which are ubiquitous in Python,
are discussed in more detail in Chapter 5.
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| method | returned value
1.append(item) Add itemto end of 1
1.extend(iterable) | Add items from iterable to end of 1
1.clear() Remove all elements of 1
1.index(item) Index of first item in 1, or raise ValueError
1.insert(loc,item) | Insert item into 1 at index loc
1.pop() Value removed from high end of 1
1l.reverse() Reverse order of elements in 1
1.sort() Put elements of 1 in natural order
Figure 5 Common list methods.
>>> here
’batman’ 5
>>> away

’bruce wayne’
In practice, this approach is rarely used.

When the last assignable item of a list is preceded by an asterisk (), the
target is assigned the list of (zero or more) remaining unassigned values. This
allows, for example, the splitting of a list into parts in a single packed assign-
ment:

>>1=1[2, 3, 5, 7, 11]
>>> [head,*1] =1

>>> head

2

>>> 1

[3, 5, 7, 11]

As we shall see in Chapter 4, lists are versatile structures, but they can be
used inefficiently if you are not careful.

0.4.5 Strings

Strings (type str) are ordered lists of characters enclosed by quote (’) or quo-
tation (") delimiters. There is no difference between these two quoting mech-
anisms, except that each may be used to specify string literals that contain the
other type of quote. For example, one might write:

demand = "See me in the fo’c’sle, sailor!"
reply = "Where’s that, Sir?"
retort = ’What do you mean, "Where\’s that, Sir?"?’

In any case, string-delimiting characters may be protected from interpretation
or escaped within a string. String literals are typically specified within a single
line of Python code. Other escape sequences may be used to include a variety
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|

escaped character | interpretation |

\a alarm/bell
\b backspace
\f formfeed
\n newline
\r return
\t tab
\v tab
\? single quote
\" double quote
A\ slash
Figure 6

of white space characters (see Figure 6). To form a multi-line string literal,
enclose it in triple quotation marks. As we shall see throughout this text, triple-
quoted strings often appear as the first line of a method and serve as a simple
documentation form called a docstring.

Unlike other languages, there is no character type. Instead, strings with
length 1 serve that purpose. Like lists and tuples, strings are indexable se-

quences, so indexing an

d slicing operations can be used. String objects in Python

may not be modified; they are immutable. Instead, string methods are factory
operations that construct new str objects as needed.

The table of Figure
strings.

7 is a list of many of the functions that may be called on

| method | returned value \
s.find(s2) Index of first occurrence of s2 in s, or -1
s.index(s2) Index of first s2 in s, or raise ValueError
s.format (args) Formatted representation of args according to s
s.join(s1,s2,...,sn) | Catenation of sl+s+s2+s+...+s+sn
s.lower() Lowercase version of s
s.replace(old,new) String with occurrences of o1d replaced with new
s.split(d) Return list of substrings of s delimited by d
s.startswith(s2) True when s starts with s2; endswith is similar
s.strip() s with leading and trailing whitespace removed

Figure 7 Common string methods.
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0.4.6 Dictionaries

We think of lists as sequences because their values are accessed by non-negative
index values. The dictionary object is a container of key-value pairs (associa-
tions), where they keys are immutableThe technical reason for immutability is
discussed later, in Section ??. and unique. Because the keys may not have any
natural order (for example, they may have multiple types), the notion of a se-
quence is not appropriate. Freeing ourselves of this restriction allows dictionar-
ies to be efficient mechanisms for representing discrete functions or mappings.
Dictionary displays are written using curly braces ({...}), with key-value
pairs joined by colons (:) and separated by commas (,). For example, we have
the following:
>>> bigcities = { ’new york’:’big apple’,
’new orleans’:’big easy’,
cee ’dallas’:’big 4’ }
>>> statebirds = { ’AL’> : ’yellowhammer’, ’ID’ : ’mountain bluebird’
’AZ’ : ’cactus wren’, ’AR’ : ’mockingbird’,
’CA’ : ’california quail’, ’C0’ : ’lark bunting’,
’DE’ : ’blue hen chicken’, ’FL’ : ’mockingbird’,
cee ’NY’ : ’eastern bluebird’ }
Given an immutable value, key, you can access the corresponding value using a
simple indexing syntax, d[key]. Similarly, new key-value pairs can be inserted
into the dictionary with d[key] = value, or removed with del d[key]:
>>> bigcities[’edmonton’] = ’big e’
>>> for state in statebirds:
if statebirds[state].endswith(’bluebird’):
print(state)
NY
ID
A list or view® of keys available in a dictionary d is d.keys (). Because the
mapping of keys to values is one-to-one, the keys are always unique. A view
of values is similarly available as d.values(); these values, of course, need not
be unique. Tuples of the form (key,value) for each dictionary entry can be
retrieved with d.items(). The order of keys, values, and items encountered
in views is not obvious, but during any execution it is consistent between the
views.
Sparse multi-dimensional arrays can be simulated by using tuples as keys:
>>>n =5
>>>m = {}
>>> for a in range(1l,n+1):
for b in range(l,n+1):

8 A view generates its value “lazily.” An actual list is not created, but generated. We look into
generators in Section 5.1.
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m[a,b] = axb 5

>>> m
{1, 2): 2, 3, 2): 6, (1, 3): 3, (3, 3): 9, (4, 1): 4, (3, 1): 3,
(4, 4): 16, (1, 4): 4, (2, 4): 8, (2, 3): 6, (2, 1): 2, (4, 3): 12,

(2, 2): 4, (4, 2): 8, (3, 4): 12, (1, 1): 1} 10
>>> m[3,4]
12

It is illegal to access a value associated with a key that is not found in the dictio-

nary. Several methods allow you to get defaulted and conditionally set values

associated with potentially nonexistent keys without generating exceptions.
The design and implementation of dictionaries is the subject of Chapter 14.

0.4.7 Sets

Sets are unordered collections of unique immutable values, much like the collec-
tion of keys in a dictionary. Because of their similarity to dictionary types, they
are specified using curly braces ({...}), but the entries are simply immutable
values—numbers, strings, and tuples are common. Typically, all entries are the
same type of object, but they may be mixed. Here are some simple examples:

>>> newEngland = { ’ME’, °NH’, °VT’, °MA’, °CT’, °RI’ }

>>> commonwealths = { ’KY’, °MA’, °PA’, VA’ }

>>> colonies13 = { ’CT’, °’DE’, ’GA’, ’MA’, °MD’, ’NC’, °NH’,

’NJ>, °NY’, °PA’, ’RI’, ’SC’, VA’ }

>>> newEngland - colonies13 # new New England states 5
{’ME’, °VT’}

>>> commonwealths - coloniesl3 # new commonwealths

{’KY*}

Sets support union (s1|s2), intersection (s1&s2), difference (s1-s2), and sym-
metric difference (s1~s2). You can test to see if e is an element of set s with
e in s (or the opposite, e not in s), and perform various subset and equality
tests (s1<=s2, s1<s2).

We discuss the implementation of sets in Chapter 13.

0.5 Sequential Statements

Most of the real work in a Python script is accomplished by statements that
are executed in program order. These manipulate the state of the program, as
stored in objects.

0.5.1 Expressions

Any expression may appear on a line by itself and has no impact on the script
unless the expression has some side effect. Useful expressions call functions
that directly manipulate the environment (like assignment or print ()) or they
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perform operations or method calls that manipulate the state of an object in the
environment.

When Python is used interactively to run experiments or perform calcula-
tions expressions can be used to verify the state of the script. If expressions
typed in this mode return a value, that value is printed, and the variable _ is set
to that value. The value None does not get printed, unless it is part of another
structure.

0.5.2 Assignment (=) Statement

The assignment operator (name = object) is a common means of binding an
object reference to one or more names. Unlike arithmetic operators, the assign-
ment operation does not return a result that can be used in other calculations,
but you can assign several variables the same value, by chaining together several
assignments at once. In practice this is rarely used. Because of these constraints
we’ll think of the assignment as a stand-alone statement.

0.5.3 The pass Statement

In some cases we would like to have a statement or suite that does nothing.
The Python pass statement serves the syntactic purpose of a statement but it
does not generate any executable code. For example, it is sometimes useful
to provide an empty method, either because the implementation has not yet
been worked out or because the logic of the operation effectively does nothing.
The ellipsis (...) statement is synonym that is often used when one wishes to
indicate “the implementation has yet to be provided.” (Don’t confuse the ellipsis
statement with the interactive Python continuation prompt.)

0.5.4 The del Statement

An important aspect of efficiently using memory is recycling or collecting un-
referenced objects or garbage. The del statement allows the programmer to
explicitly indicate that a value will not be used. When del is applied to a name,
the effect is to remove any binding of that name from the environment. So, for
example, we have:

>>> a =1
>>> a

1

>>> del a
>>> a

NameError: name ’a’ is not defined
When del is applied to slices of lists or other container structures, the item ref-
erences are removed from the container. For example,

>>> del 1[10]

>>> del 1[10:20]
Remember that del is statement, not an operator.
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0.6 Control Statements

Python has a rich set of control statements—statements that make decisions or
conditionally execute blocks or suites of statements zero or more times. The
language supports an if statement, as well as rich iteration and looping mech-
anisms. To get a sense of typical usage, we might consider a simple script to
print out perfect numbers: numbers that are equal to the sum of their nontrivial
factors:
for number in range(1,100):
sum = 0
for factor in range(1,nnumber):
if number’factor ==
sum += factor 5
if sum == number:
print (number)
This code generates the output:
6
28
We review the particular logical and syntactic details of these constructs, below.

0.6.1 If statements

Choices in Python are made with the if statement. When this statement is
encountered, the condition is evaluated and, if True, the statements of the fol-
lowing suite are executed. If the condition is False, the suite is skipped and, if
provided, the suite associated with the optional else is executed. For example,
the following statement set isPrime to False if factor divides number exactly:

if (number % factor) ==
isPrime = False
Sometimes it is useful to choose between two courses of action. The following
statement is part of the “hailstone” computation:
if (number % 2) == 0:
number = number / 2
else:
number = 3*number + 1
If the number is divisible by 2, it is halved, otherwise it is approximately tripled.
The if statement is potentially nested (each suite could contain if state-
ments), especially in situations where a single value is being tested for a series
of conditions. In these cases, when the indentation can get unnecessarily deep
and unreadable, the elif reserved word is equivalent to else with a subordi-
nate if, but does not require further indentation. The following two if state-
ments both search a binary tree for a value:
if tree.value == value:
return True
else:
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if value < tree.value:

return value in tree.left 5
else:

return value in tree.right

if value == tree.value:
return True 10
elif value < tree.value:
return value in tree.left
else:
return value in tree.right
Both statements perform the same decision-making and have the same perfor-
mance, but the second is more pleasing, especially since the conditions perform
related tests.

It is important to note that Python does not contain a “case” or “switch”
statement as you might find in other languages. The same effect, however, can
be accomplished using code snippets stored in a data structure; we’ll see an
extended example of this later.

0.6.2 While loops

Python supports two basic types of iteration—while and for. Unlike other lan-
guages, these loop constructs work in dramatically different ways. The while
loop of Python is most similar to its equivalent in C and Java-like languages: a
condition is tested and, if True, the statements of the following suite are exe-
cuted. These potentially change the state of the condition, so the condition is
then retested and the suite is potentially re-executed. This process continues
until the condition fails. The suite will never be executed if the condition is ini-
tially False. If the condition never becomes False, the loop never terminates.
The following code would find an item in a to-do list.

item = todo.first

while item is not None:

if task == item.task:
break
item = item.next

# Either item is None or task location
When the loop is finished, item is either None (if the task is not found in the
to-do list), or is a reference to the list element that matches the task. The break
statement allows exiting from the loop from within the suite. A continue state-
ment would immediately jump to the top of the loop, reconsidering the con-
dition. These statements typically appear within suites of an enclosed if (as
above), and therefore are the result of some condition that happens mid-suite.

An unusual feature of Python’s while statement is the optional else suite

which is executed if the loop exited because of a failure of the loop’s condition.
The following code tests to see if number is prime:

£f=2



18 Python

isPrime = True
while f*f <= n:
if n)f ==
isPrime = False 5
break
f =3 if £f == 2 else f+2
if isPrime:
print(n)
Here, the boolean value, isPrime, keeps track of the premature exit from the
loop, if a factor is found. In the following code, Python will print out the number
only if it is prime:

f =2
while f*xf <= n:
if nif ==
break
f =3 if f == 2 else f+2 5
else:

print ("{} is prime.".format(n))

Notice that the else statement is executed if the suite of the while statement is
never executed. In Python, the while loop is motivated by the need to search
for something. In this light, the else is seen as a mechanism for handling a
failed search. In languages like C and Java, the programmer has a choice of
addressing these kinds of problems with a while or a for loop. As we shall
see over the course of this text, Python’s for loop is a subtly more complex
statement.

0.6.3 For statements

The for statement is used to consider values derived from an iterable structure.’
It has the following form:
for item in iterable:
suite
The value iterable is a source for a stream of values, each of which is bound to
the symbol item. Each time item is assigned, suite is executed. Typically, this
suite performs a computation based on item. The following prints the longest
line encountered in a file:
longest = ""
for line in open("textfile","r"):
if len(line) > len(longest):
longest = line
print (longest)
As with the while statement, the for loop may contain break and continue
statements which control the loop’s behavior. The suite associated with the else

9 One definition of an iterable structure is, essentially, that it can be used as the object of for loop
iteration.
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clause is only executed if no break was encountered—that is, if a search among
iterable values failed. The following loop processes lines, stopping when the
word stop is encountered on the input. It warns the user if the stop keyword
is not found.
for line in open("input","r"):
if line == "stop":
break
process(line)
else:
print("Warning: No ’stop’ encounted.")
Notice that we have used the for loop to process, in some manner, every element
that appears in a stream of data.

Because of the utility of writing traditional loops based on numeric values,
the range object is used to generate streams of integers which may be pro-
cessed by a for loop. These streams can then be traversed using the for loop.
The range object is constructed using one, two, or three parameters, and has
semantics that is similar to that of array slicing.'® The form range(i,j) gen-
erates a stream of values beginning with i up to but not j. If j is less than
or equal to i, the result will be empty. The form range(j) is equivalent to
range(0,j). Finally, the form range(i,j,s) generates a stream whose first
value is i, and whose successive values are the result of incrementing by s. This
process continues until j is encountered or passed. As an example, the follow-
ing loop generates indices into string of RNA nucleotides (letters *A’, °C’, °G’,
or °U’), and translates triples into an equivalent protein sequence:

# rna contains nucleotides (letters A,C,G, U):
length = len(rna)
protein = ""
for startPos in range(0,length-2,3):
triple = rnalstartPos:startPos+3]
protein += code[triplel]
If the length of the RNA string is 6, the values for start are 0 and 3, but do
not include any value that is 4 (i.e. length-2) or higher. The structure code
could be a dictionary, indexed by nucleotide triples, with each entry indicating
one amino acid letter:
code = { ’UUU’ : ’F’, ’AUG’ : °M’, °UUA’ : °L°, ...}

While many for loops often make use of range, it is important to understand
that range is simply one example of an iterable. A focus of this book is the
construction of a rich set of iterable structures. Making the best use of for
loops is an important step toward making Python scripts efficient and readable.
For example, if you're processing the characters of a string, one approach might
be to loop over the legal index values:

# s is a string

101n fact, one may think of a slice as performing indexing based on the variable of a for loop over
the equivalent range.
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for i in range(len(s)):
process(s[i])
Here, process(s[i]) performs some computation on each character. A better
approach might be to iterate across the characters, c, directly:
# s is a string
for c in s:
process(c)
The latter approach is not only more efficient, but the loop is expressed at an
appropriate logical level that can be more difficult in other languages.

Iterators are a means of generating that values that are encountered as one
traverses a structure. A generator (a method that contains a yield) is a method
for generating a (possibly infinite) stream of values for consideration in a for
loop. One can easily imagine a random number generator or a generator of
the sequence of prime numbers. Perfect numbers are easily detected if one has
access to the nontrivial factors of a value:

sum = 0
for f in factors(n):
sum += f
if sum ==
print("{} is perfect.".format(n))
Later, we’ll see how for loops can be used to compactly form comprehensions—
literal displays for built-in container classes.

0.6.4 Comprehensions

One of the novel features of Python is the ability to generate tuple, list, dic-
tionary, and set displays from from conditional loops over iterable structures.
Collectively, these runtime constructions are termed comprehensions. The avail-
ability of comprehensions in Python allows for the compact on-the-fly construc-
tion of container types. The simplest form of list comprehension has the general
form:

[ expression for v in iterable ]
where expression is a function of the variable v. Tuple, dictionary, and set
comprehensions are similarly structured:

( expression for v in iterable ) # tuple comprehension

{ key-expression:value-expression for v in iterable } # dictionary

{ expression for v in iterable } # set comprehension
Note that the difference between set and dictionary comprehension is use of
colon-separated key-values pairs in the dictionary construction.

It is also possible to conditionally include elements of the container, or to

nest multiple loops. For example, the following defines an upper-triangular
multiplication table:

>>> table = { (i,j):i*j for i in range(10) for j in range(10) if i < j }

>>> table[2,3]
6
>>> table[3,2]
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KeyError: (3, 2)

Here are some examples of various comprehensions based on integer prop-
erties:
>>> n = 1000
>>> factors = [ £ for f in range(l,n+1) if n % f == 0 ]

>>> mtable = { (a,b) : a*b for a in range(l,n+1) for b in range(l,n+1) }

>>> composites = { a*b for a in range(2,n+1) for b in range(2,n+1) }
>>> primeset = { x for x in range(2,n+1) } - composites 5
>>> primes = list(primeset)
>>> primes.sort()
It is important to understand that these are fully realized structures, as opposed
to generable, iterable, or lazily realized streams of data.

0.6.5 The return statement

The return statement identifies the result of the containing method call. When-
ever a return is encountered, the containing method terminates and the asso-
ciated value is used as the result of the method’s computation.

Because Python supports the parallel assignment of tuples of values, the
return statement can effectively return multiple values by returning a tuple.

0.6.6 The yield operator

Python computation is often the result of many collaborating threads. One
mechanism for supporting potential concurrency is the use of generators—
threads of execution that perform computations on-demand, or lazily. The
yield operator is the mechanism that a generator uses to communicate the next
just-computed value. When the yield statement is encountered, the value is re-
turned as the result of the request and the generator computation is temporarily
suspended. When the next value is requested, the generator is restarted at the
point after the yield. We discuss yield when we consider the implementation
of generators in Section 5.1.

0.7 Exception Handling

When computations generate exceptional conditions—using an incorrect index
or violating assumptions about the state of the program—it is important to han-
dle the flow of control carefully so that the program can recognize the bad state
and recover gracefully. Python, like most modern programming languages, pro-
vides a number of statements that are used to manage exceptional conditions.
When unexpected problems or failed assumptions occur in a program, the
the interpreter can throw or raise an exception. Exceptions are objects that con-
tain information about the state of the interpreter when the exception occurred.
It may include, for example, a nested list of methods that are still computing
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(a traceback), a textual description of the error, and possibly additional infor-
mation that might be helpful in understanding the context of the problem. The
process of handling an exception involves searching through the currently out-
standing methods for a method that is willing to catch the exception and con-
tinue processing. The following statements are useful in the exception handling
process.

0.7.1 The assert statement

The assert statement checks to make sure that an assumption holds true. It
has the form

assert condition [, description]
The condition is a statement that is expected to be True. If it is not, Python
will raise an AssertionError that, if not caught (they rarely are), prints a stack
trace followed by a description of the assertion that failed. If no description
is provided in the assert statement, few details are available to the user. Thus,
it is useful to provide an expression that describes how the condition failed.
Typically it is a string. The statement generating the description is not evaluated
if the assertion condition is True.

Here is a use of assert that signals an error when a data file does not contain

any values:

count = 0

for line in open(filename,"r"):

process(line)
count += 1

assert count > 0,"The file ’{}’ was empty.".format(filename)
Processing an empty file causes the script to halt with the following message:

AssertionError: The file ’datafile’ was empty.
Although the description is optional, it almost always helps if the description
gives some hint as to what condition failed. Since the actual text of the condition
is not available at runtime, as a bare minimum, that much is helpful.

0.7.2 The raise Statement

To manually throw an exception, we use the raise statement. Typically, the
raise statement is given either a class of exceptions (e.g. IndexError), or a
particular instance of an exception that should be thrown. It is also possible to
re-raise an exception that has previously been caught.

raise exception [from exception]

raise exception-class [from cause]

raise
Each of these statements causes termination of methods found on the current
runtime stack. The process of unwinding the call stack stops when a try state-
ment is found that takes responsibility for catching the particular type of excep-
tion (see below).
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The optional from modifier allows a high-level exception to indicate another
exception (one that was typically caught) that has lead to the failure. Lacking
any information, a lone raise statement simply throws the last exception that
was caught.

The assert statement, as described above, raises a particular type of ex-
ception. The raise statement allows programmers to carefully control for very
specific types of conditions. As we shall see momentarily the conditions may not
indicate errors in logic, but may simply signal a need to change the path of exe-
cution. The for loop, for example, makes use of the StopIteration exception
as part of normal processing.

0.7.3 The try Statement

Python does not require the catching of exceptions. Generally, though, resilient
programs will catch and recover from exceptional behaviors in subordinate
code. The try statement is responsible for indicating how exceptions are to
be handled:
try:
suite
[except [exception-class [as exception]]:
suitel] *
[else: 5
suite2]
[finally:
suite3]
Under the try statement, the first suite is executed. If no exception is raised
during the suite’s execution the optional suite marked finally (suite3) wraps
things up.

If an exception is raised, processing halts and the class of the exception is
compared to the classes that appear in any of the except clauses, in the order
listed. The suite associated with the first matching except clause (e.g. suitel)
is executed. If the particular exception instance is needed during processing,
the as keyword identifies a variable that is bound to the particular exception.
If no exceptions are raised during the exception handling, the finally suite is
executed.

If the try statement wishes to catch all exceptions, but fails to list a thrown
exception in one of the except clauses, the else suite (suite2) should be pro-
vided. The finally suite (suite3), if provided, is executed.

To summarize, the try suite is executed. If an exception is raised, a matching
except clause handles the error. If the exception is not explicitly listed, the else
suite handles the error. The finally suite will always eventually be called,
unless an exception is raised that is not handled by this try.

As we noted, Python depends heavily on exception handling to implement
normal control flow. For example the for loop

for item in container:
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print (item)
is actually a while construct with the following form:
try:
iterator = iter(conainer)
while True:
item = next(iterator)
print(item) 5
except Stoplteration:
pass
Knowing this helps us better understand the subtle techniques that are used to
control for loops. We'll see more on this topic when we consider iteration, in
Chapter 5.

0.8 Definitions

What makes Python more than a simple calculator is the ability to define new
methods and classes. Methods describe how computations may be performed,
while classes describe how new objects are constructed. These are important
tasks with subtleties that give Python much of its expressiveness and beauty.
Like most beautiful things, this will take time to appreciate. We will touch on
the most important details of method and class definition, here, but much of
this book may be regarded as a discussion of how these important mechanisms
may be used to make programs more efficient. The reader is encouraged to
scan through this section quickly and then return at a later time with more
experience.

0.8.1 Method Definition

In Python, we will think of functions and procedures informally as methods, as
in “methods for doing things.” New methods are declared using the def state-
ment. This statement describes a pattern (or signature) for calling the method
and provides a subordinate suite of commands that make up its body. Here are
three examples of simple arithmetic functions which we have stored in a file
named arith.py:

def odd(n):

"""Return True iff an integer n is odd."""

return nj%2 == 1

def hail(x): 5
"""From x, compute the next term of the ’hailstone sequence’"""
if odd(x):

return 3*x+1
else:
return x//2 10
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def hailstorm(n):
"""Returns when the hailstone sequence, beginning at n, reaches 1"""
while n != 1:
n = hail(n)
In the definition of odd, n is a formal parameter. When the odd function is called,
n stands in for the actual parameter passed to the method. The formal parame-
ter names provide a way for the programmer to describe a computation before
there are any actual parameter values in hand. This is a common practice in
most sciences: when computing the roots of a polynomial a - 22 + b - x + ¢ we
can perform the calculations (b + v/b% — 4ac)/2a. Here, the values a, b, and ¢
are formal parameters. When we have a particular problem to solve, say solving
322 4+ 11z + 10 = 0, the coefficients 3, 11, and 10 are the actual values we use
in our root calculation.

If the first line of a definition is a string (as it often is) it is a documentation
string or docstring. This is the value returned whenever a description of the odd
definition is called for. For example, typing

pydoc3 arith.odd
in the shell, or

help(odd)
directly in Python will use the docstring to document the functionality of the
definition. It is idiomatic Python to enclose docstrings in triple quotes to allow
documentation to extend over many lines, even if the documentation currently
takes only one line. The idiom is so strong that many programmers immedi-
ately associate triple quoted strings as documentation whether or not that is the
actual purpose.

In this text, when we discuss functions or procedures we will use those terms
to emphasize whether a method intends on returning a useful value (a function)
or not (a procedure). Typically, procedures have side effects (printing output,
modifying structures, etc.) while functions quietly compute and return a value
without modifying their environment. The return statement—executed when
the procedure or function is finished—specifies the resulting method value.
Where the method was called, this value is used in its place. If no return
statement is given in the suite of a method, or if there is no value specified in a
return, the procedure returns the value None. The odd method, above, returns
an integer. The Python print method, however, is called like a procedure. It
returns the value None.

The procedure hailstorm, above, is a function returns the value 1 if it is
ever encountered. There is no obvious reason to believe that this should hap-
pen for any arbitrary value, but there is considerable evidence that hailstorm
always eventually returns. The beauty of the hailstorm method lies in the
mathematics, not the way it is defined.

Generally, the number of formal and actual parameters must match and the
order of the actual and formal parameters should be consistent for correct inter-
pretation. This requirement can be relaxed by providing default values for one
or more of the trailing formal parameters. If the corresponding actual parame-
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ter is not provided, the default value is used as the actual.!’ Here is a function
that counts the number of vowels that appear in a word:
def vowelCount (word,vowels=’aeiouy’):
"""return the number of vowels appearing in word
(by default, the string of vowels is ’aeiouy’)"""
occurances = [c for ¢ in word.lower() if c in vowels]
return len(occurances)
and here is how the vowelCount function might be called:
>>> vowelCount ("ytterbium") # english
4
>>> vowelCount ("cwm","aeiouwy") # welsh
1

If the ordering of arguments is unsatisfactory, or if a function call would
benefit from making the association of formal and actual parameters explicit,
the actual argument may be specified as a keyword assignment:

>>> vowelCount (vowels=’aeiouwy’,word=’cwm’)

1
In any case, the non-defaulted formal parameters must all have an associated
actual parameter. You can see a nice example of this style of programming in
the description of Python’s built-in print method.

Python also provides two special formal parameters that gather together
extra actual parameters. The following procedure uses the *args form (the as-
terisk is important; the keyword args is typical) to gather all actual parameters
that have not otherwise been assigned to a formal parameter. The result is the
sum of all the parameters.

def sum(*args):
"""Sum all the values provided in the call."""
total = 0
for value in args:
total += value
return total
allows:
>>> sum()
0
>>> sum(1,2,3)
6
Obviously, one may only specify one *args-style formal parameter.

When actual parameters mention keywords that are not names of formal
parameters, the *xkargs form (here, the ** is important; kargs is typical and
nearly universal) will gather together all the keyword—value pairs into a dictio-
nary. The following method translates a string of words using a dictionary of
word-translation pairs:

1 There are some subtleties here stemming from the fact that the default value—which may be
mutable—is constructed once, at the time the method is defined. Be aware.
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def translate(phrase, **table):
"""Translate a phase using table, a dictionary."""
words = phrase.split()
rewritten = [(table[w] if w in table else w) for w in words]
return " ".join(rewritten)
This code might be used as:
>>> translate(’now is the time’)
’now is the time’
>>> translate("for all good men",all="some",men="people")
’for some good people’
>>> translate("to wear snakeskin belts",cotton="silk")
’to wear snakeskin belts’
Here, as well, there may be only one **kargs-style formal parameter. When
both *args and *xkargs are specified, the *xkargs formal is always second.

It is also possible to specify a list (*args) or dictionary (x*table) as an ac-
tual parameter, from which positional arguments or keyword-value pairs are
drawn for the function call. This allows the above functions to be called in very
flexible ways:

>>> factorSet = {2,4,7,14}
>>> sum(1,*factorSet)
28
>>> swedish = {’all’:’alla’, ’boots’:’stovlar’,
’good’:’goda’, ’is’:’ar’, ’now’:’nu’, 5
’people’:’manniskor’, ’snakeskin’:’ormskinn’,
’the’:’det’, ’time’:’dags’, ’to’:’att’,
‘wear’:’bara’}
>>> translate(’all snakeskin boots?’,**swedish)
’alla ormskinn stovlar’
Notice that because we are not in the context of keyword processing when
we define the swedish dictionary, the keywords must be explicitly written as
strings. Before, the expression cotton=’silk’ generated a dictionary entry of
the form ’cotton’:’silk’.

It should be noted that built-in functions (e.g. print) are defined in a way
that is consistent with the defining mechanism we’ve just seen. This allows
programmers to use these pre-built functions in a variety of novel ways. Be
aware, though, that ingenuity can obscure beauty.

0.8.2 Method Renaming

Methods, in Python, are simply objects that can be called with actual parameters.
When we us the name of a method, say print, it is simply a reference the
method. Because of this, a method name may be used as an l-value in an
assignment to bind another name to the method. In some cases it is useful to
pass a method reference as an actual parameter to a function. We will make
considerable use of this in the next section as well as in Chapter ??, where we
discuss sorting.
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0.8.3 Lambda Expressions: Anonymous Methods

Occasionally, it is important to be able to construct small functions at runtime
for a particular use. For example, many of Python’s sorting utilities make use
of a key function to extract a sort keys from the values to be sorted. In these
circumstances, it is common to make use of a lambda expression,'? a single
value-producing computation wrapped in a nameless method. Lambda expres-
sions are encapsulations of very simple functions as nameless objects. These
objects may be bound to names or passed around as we might with any other
value.
Here, is a lambda expression for the hailstone function described above:

>>> hail = lambda x: 3*x + 1 if ((x%2) == 1) else x//2

>>> print(hail(27))

82
Lambda expressions must compute a value which is (implicitly) returned. Lambda
expressions may be written to take any number of formal parameters. However,
when no parameters are required, the parentheses are dropped (this is different
than normal method definition).

0.8.4 Class Definitions

It is sometimes the case—and in this book, often the case—that none of the
built-in data types is sufficient to capture the structure of the data needed for
in a script. In these situations, we must describe a new class of data objects. In
Python this is accomplished with the class keyword. Generally, class definitions
have the following form:
class name [(super [, super]* [, metaclass=builder])]:
suite

Here, name is the name of the class of objects. The definitions provided in the
suite describe the fields and methods associated with the structure. Collectively,
we think of these as attributes.

New instances of the class are constructed or initialized by calling the class.
This is a subtle point: the class, itself, is callable and produces, like a factory,
objects or instances whose type is the class. Each of these instances gets a ded-
icated copy of each of the attributes associated with the class. In general, the
attributes associated with an object are dynamic. So, for example, new at-
tributes may be associated with an object by assignment. Much of this text is
dedicated to understanding how class definitions are effectively leveraged to
describe different types.

Class definition is a difficult but powerful programming device. The eager
programmer is encouraged to bookmark the documentation on class definition

12Use of the word “lambda,” here, is a reference to the lambda calculus, a formal system for un-
derstanding computation. In that formalism, anonymous functions are often reasoned about and
treated as objects. The analogy here is entirely appropriate.
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in the PLRM as a backdrop to this text’s more extended discussion on class
design.

0.8.5 Modules and Packages

The main organizational mechanism for Python definitions is a module. The
name of the module is derived from the name of the file that contains the mod-
ule’s definitions. (In our hailstorm example, on Page 24, we essentially wrote
a module called arith.) When Python looks up a name, global definitions are
found within the module that contains the reference. In this way, similar names
in two different files can be distinguished by the name of the module that con-
tains them. So, for example, math.sin is a reference to the sin function, defined
in the math module, and arith.odd is a reference to our odd-integer-detector
discussed earlier.

If we think of files as defining modules, then the directories that contain
the files define packages. The hierarchy of directories, then, corresponds to an
equivalent hierarchy of packages and modules. This book describes the modules
found within a specific package, the structure package. The art of package
design is beyond the charge of this book, but many good examples are available
from the Python community.

To make use of definitions outside the current module, we make use of the
import command. To include, for example, the definitions of math functions
we type:

import math
This makes all the math definitions available for use. If necessary, we can se-
lectively import definitions. To access only the a few definitions from math, we
could

from math import cos, sin, pi
which makes cos, sin, pi valid definitions in the current module. Though many
other definitions of the math module might have aided in the definition of pi
(for example, math.acos(-1)), they are not accessible unless they are explic-
itly imported.'®> All of this helps keep our dictionary of names or namespace
uncluttered.

Sometimes it is useful to incorporate an external definition into the defini-
tions of the current module but in a manner that avoids a conflicting name. For
example, we might want to be able to call the sin function with the name sine.
This is accomplished with

from math import sin as sine
From this point, onward, we can use sine anywhere where math.sin would
have otherwise been useful.

Finally, it some sometimes useful to import all the definitions made in a
module and incorporate all of those as local definitions. This is accomplished
with

13 These definitions, though not directly accessible, are accessible to functions you do import.
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from math import *
Given this, one can call sin and cos and make use of pi, without the math
prefix. This can be dangerous: the math module may have definitions that
conflict with definitions we have already made in this module. Do you have use
for the name e? So does math.

0.8.6 Scope

As we have seen above, Python accesses the objects (e.g. data, methods, classes)
in our programs through names. When we use a name as a value Python must
work hard to find the correct definition of the name. In method definition,
for example, the names of formal parameters can obscure definitions of those
names made outside the method. The visibility of a name throughout a script
determines its scope and the rules that determine where Python finds definitions
are called scope rules.

Names come into existence through the binding of the name to an object
reference. Examples of bindings are

1. Assignment of the name to a value (i.e. using the assignment operator, =),
2. Names of formal parameters in a method definition,

3. Use of the name in a for loop,

4. Definition of the name as a method (def) or class (class), or

5. Values imported with the from ... import statements.

(There are other more obscure binding operations as well. For those details see
Section 4.1 of the Python Language Reference Manual.)

When we use or reference a name, Python searches for the binding that is in
the tightest containing block of code. A block is a collection of statements that
are executed as a unit.

1. A function definition (beginning def name...),
2. A class definition (beginning class name...), or
3. The containing module (i.e. the file the contains the definition).

The scope of a name is that portion of code that where the name is visible. So,
for example, the scope of any name bound within a function is the entire body
of the function. The scope of a name bound in a class is the set of executable
statements of the class (not including its functions). Names bound at the mod-
ule level are visible everywhere within the module, so they are called global
names.

It is sometimes useful to bind names locally in a way that might hide bind-
ings in a wider scope. For example, formal parameters in method definitions
are local bindings to actual values. References to these names will resolve to
the actual parameters, not to similarly named bindings found in a larger scope.
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The environment of a statement is the set of all scopes that contain the state-
ment. The environment of a statement contains, essentially, all the code that
might contain bindings that could be referenced by the statement. This environ-
ment is, effectively, an encapsulation of all information that helps us understand
the meaning or semantics of a statement’s execution. The execution stack keeps
track of the nesting of the execution of methods and indirectly annotates the
environment with bindings that help us understand the information necessary
to execute the statement.

When Python makes a reference to a name bound in the tightest containing
scope, we say the binding and any reference are local. Again, because scoping is
implied by the location of bindings, it is occasionally difficult to re-bind objects
to names that were originally bound outside the current local scope. By default,
bindings are made within the local scope. So, for example, when we make the
following definition:

def outer():
v=1
def inner():
v =2
inner ()
return v
a call to outer () returns 1.

To force a binding to the name just visible outside the local scope, we give
Python a hint by indicating the a name is nonlocal. In this definition of outer,
the value returned is 2, not 1:

def outer():
v=1
def inner():
nonlocal v
v =2 5
inner ()
return v

When there are global values (including built-ins and imported values) that
you wish to rebind, we declare those bindings with global:
v=0
def outer():
v=1
def inner():
global v 5
v =2
inner ()
return v
Here, a call to outer () returns 1, but the global value, v, becomes 2.
In practice, Python’s scope rules lead to the most obvious behavior. Because
of this, the use of scope hinting is rarely required. The need to use scope hints,
in most cases, suggests an obscure and, perhaps, ugly approach.
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0.9 Discussion

Python is a fun, modern, object-oriented scripting language. We can write big
programs in Python, but if we need to get good performance from our programs
we need to organize our data effectively. Before we can be investigate how to
build efficient data structures, it is vitally important that we understand the
fundamentals of language, itself.

Everything in Python is an object, even the most primitive types and val-
ues. Objects are accessed through names that stand for references to objects.
All data—including classes, objects, and methods—are accessed through these
names. All features of an object are associated with attributes, some of which
are determined when the object is constructed. All objects are produced by
a class, which determines their type. Since the objects that are referenced by
names can be dynamically changed, so can their types.

Python provides a few constructs that allow us to control the flow of exe-
cution. Some, like the if statement, parallel those from other languages. The
looping statements, however, differ in significant ways—ways that, as we shall
see, support very powerful programming abstractions.

Python is a subtle language that takes time to understand. The reader is en-
couraged to return to this chapter or, more importantly, the resources available
at python.org, as a means of reconsidering what has been learned in light of
the new ideas we encounter in this brief text.

Self Check Problems

Solutions to these problems begin on page ??.

0.1 Where are the answers for these “self-check” problems found?
0.2 Python is an interpreter. What does that mean?

0.3 Should you read the entire text?

0.4 Where can one find the resources associated with this text? Is it possible
to use this software for our own applications?

0.5 How do we know when code is beautiful?
0.6 Where is the Python Language Reference Manual?

0.7 Typically, we start an interactive Python session by typing python3.
How do we typically terminate an interactive session?

0.8 What is the purpose of the shell command pydoc3?
0.9 Many programmers use Python 2. Why is this book about Python 3?

0.10 Why would we write data structures in Python, where interpretation
can result in slow implementations?


python.org

0.9 Discussion 33

Problems

Selected solutions to problems begin on page ??.
0.1 Write a script that prints Hello, world.
0.2 Write scripts for each of the following tasks:

1. Print the integers 1 through 5, one per line.

2. Print the integers 5 downto 1, all on one line. You may need to learn more
about the statment print by typing help (print) from within Python.

3. Print the multiples of 3 between 0 and 15, inclusive. Make it easy for
someone maintaining your script to change 3 or 15 to another integer.

4. Print the values -n to n, each with its remainder when divided by m. Test
your program with n=m and m=3 and observe that n modulo m is not nec-
essarily -n modulo m.

0.3 What does the statement a=b=42 do?

0.4 Assume that neg=-1, pos=1, and zero=0. What is the result of each of
the following expressions?

1. neg < zero < pos

2. neg < zero > neg

3. (zero == zero) + zero

4. (zero > neg and zero < pos)

5. zero > (neg and zero) < 1/0

0.5 What is an immutable object? Give two examples of immutable object
types.
0.6 What is the difference between a name, a reference, and an object?
0.7 Indicate the types of the following expressions, or indicate it is un-
known:

1.1

. 1729

2.0

. C

n "n

2

3

4. "abc
5. "abc"[0]
6. (’baseball’,)

7. ’baseball’,’football’,’soccer’
8. 'US’ : ’soccer’, 'UK’ : ’football’
9

. i*i for i in range(10)
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Chapter 1
The Object-Oriented Method

The focus of language designers is to develop programming languages that are
simple to use but provide the power to accurately and efficiently describe the
details of large programs and applications. The development of an object ori-
ented model in Python is one such effort.

Throughout this text we focus on developing data structures using object-
oriented programming. Using this paradigm the programmer spends time devel-
oping templates for structures called classes. The templates are then used to
construct instances or objects. A majority of the statements in object-oriented
programs involve applying functions to objects to have them report or change
their state. Running a program involves, then, the construction and coordina-
tion of objects. In this way, languages like Python are object-oriented.

In all but the smallest programming projects, abstraction is a useful tool for
writing working programs. In programming languages including Java, Scheme,
and C, and in the examples we have seen so far in Python the details of a pro-
gram’s implementation are hidden away in its procedures and functions. This
approach involves procedural abstraction. In object-oriented programming the
details of the implementation of data structures are hidden away within its ob-
jects. This approach involves data abstraction. Many modern programming
languages use object orientation to support basic abstractions of data. We re-
view the details of data abstraction and the concepts involved in the design of
interfaces for objects in this chapter.

1.1 Data Abstraction and Encapsulation

If you purchase a pizza from Hot Tomatoes in Williamstown, Massachusetts, you
can identify it as a pizza without knowing its ingredients. Pizzas have crusts and
toppings, and their great hot or cold. The particular ingredients in a pizza are,
actually, typically of little concern to you. Of course, Hot Tomatoes is free to
switch from using sugar to honey to help its crusts rise, as long as the taste of
the pizza is preserved.! The ingredients list of a pizza, and its construction are
details that typically don’t interest the consumer.

Likewise, it is often unimportant to know how data structures are imple-
mented in order to appreciate their use. For example, most of us are familiar

1 The author once saw the final preparations of a House pizza at Supreme Pizza which involved the
sprinkling of a fine powder over the fresh-from-the-oven pie. Knowing, exactly, what that powder
was would probably detract from the taste of the pie.

OOP:
Object-oriented
programming.
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with the workings or semantics of lists or strings of characters, but, if pressed,
we might find it difficult to describe their mechanics: Do all consecutive locations
in a list appear close together in memory in your computer, or are they far apart?
The answer is: it is unimportant. As long as the list behaves like an list, or
the string behaves like a string, we are happy. The less one knows about how
lists or strings are implemented, the less one becomes dependent on a particu-
lar implementation. Another way to think about this abstractly is that the data
structure lives up to an implicit “contract”: a string is an ordered list of charac-
ters, or elements of a list may be accessed in any order. The implementor of the
data structure is free to construct it in any reasonable way, as long as all the
terms of the contract are met. Since different implementors are in the habit of
making very different implementation decisions, anything that helps to hide the
implementation details—any means of using abstraction—serves to make the
world a better place to program.

When used correctly, object-oriented programming allows the programmer
to separate the details that are important to the user from the details that are
only important to the implementation. Later in this book we shall consider the
very general behavior of data structures; for example, in Section ?? we will
study structures that allow the user only to remove the most recently added
item. Such behavior is inherent to our most abstract understanding of how the
data structure works. We can appreciate the unique behavior of this structure
even though we haven’t yet discussed how these structures might be imple-
mented. Those abstract details that are important to the user of the structure—
including abstract semantics of the methods—make up its contract or interface.
The interface describes the abstract behavior of the structure. Most of us would
agree that while strings and lists are very similar structures, they behave differ-
ently: you can shrink or expand a list, while you cannot directly do the same
with a string; you can print a string directly, while printing a list often involves
explicitly converting each of its elements to an equivalent string-based repre-
sentation, and then printing them in sequence. These distinctions suggest they
have distinct abstract behaviors; there are distinctions in the design of their
interfaces.

The unimportant details hidden from the user are part of what makes up the
implementation. We might decide (see Figure ??) that a list is to be constructed
from a large array of elements with an attendant element count. Alternatively,
we might think of the list as a sequence of element references, linked together
like train cars. Both of these approaches are perfectly satisfactory, but there are
trade-offs. The first implementation (called a vector in some languages) has its
length stored explicitly, while the length of the second implementation (called
a linked list) is implied. It takes longer to determine the length of a linked list
because we have to count the rail-car/element-references. On the other hand,
the linked list can easily grow, while the vector grows by fits-and-starts, based
on the need to allocate new memory. If implementors can hide these details,
users do not have to be distracted from their own important design work. As
applications mature, a fixed interface to underlying objects allows alternative
implementations of the object to be considered.
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Data abstraction in languages like Python allows a structure to take respon-
sibility for its own state. The structure knows how to maintain its own state
without bothering the programmer. For example, if two strings have to be con-
catenated into a single string structure, a request will have to be made for a new
allotment of memory. Thankfully, because strings know how to perform opera-
tions on themselves, the user doesn’t have to worry about managing memory.

1.2 The Object Model

To facilitate the construction of well-designed objects, it is useful to have a de-
sign method in mind. As alluded to earlier, we will often visualize the data for
our program as being managed by its objects. Each object manages its own
data that determine its state. A point on a screen, for example, has two coor-
dinates. A medical record maintains a name, a list of dependents, a medical
history, and a reference to an insurance company. A strand of genetic material
has a sequence of base pairs. To maintain a consistent state we imagine the pro-
gram manipulates the data within its objects only through method calls on the
objects. A string might receive a message “tell me your length,” while a medical
record might receive a “change insurance” message. The string message simply
accesses information, while the medical record method may involve changing
several pieces of information in this and other objects in a consistent manner.
If we directly modify the reference to the insurance company, we may forget
to modify similar references in each of the related structures (for example, a
list of subscribers might have to be updated in both insurance companies). For
large applications with complex data structures, it can be extremely difficult to
remember to coordinate all the operations that are necessary to move a single
complex object from one consistent state to another. We opt, instead, to have
the designer of the data structure provide us a method for carefully moving be-
tween states; this method is activated in response to a high-level method call
applied to the object.

This text, then, focuses on two important topics: (1) how we implement and
evaluate objects with methods that are logically complex and (2) how we might
use the objects we create. These objects typically represent data structures, our
primary interest. Occasionally we will develop control structures—structures
whose purpose is to control the manipulation of other objects. Control struc-
tures are an important concept and are described in detail in Chapter ??.

1.3 Object-Oriented Terminology

In Python, data abstraction is accomplished through encapsulation of data in an
object—an instance of a class. Objects save their state in an object’s attributes
Attributes and methods of an object may be declared with the intent of being
accessed externally; they are considered public. With some care we can express
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our intent to limit access to them, in which case we think of them as being pri-
vate. A typical class declaration is demonstrated by the following simple class
that keeps track of the location of a rectangle on a screen:
class Rect:
"""A class describing the geometry of a rectangle."""
__slots__ = [ "_left", "_top", "_width", "_height" ]

def __init__(self, midx = 50, midy = 50, width = 100, height = 100) :

"""Initialize a rectangle.

If not specified otherwise, the rectangle is located

with it’s upper-left at (0,0), with width and height 100."""
self._width = int(width)
self._height = int(height) 10
self._left = int(midx) - (self._width//2)
self._top = int(midy) - (self._height//2)

def left(self):
"""Return the left coordinate of the rectangle.""" 15

return self._left

def right(self):
"""Return the right coordinate of the rectangle."""
return self.left()+self.width() 20

def bottom(self):
"""Return the bottom coordinate of the rectangle."""
return self.top()+self.height()

25
def top(self):
"""Return the top coordinate of the rectangle."""
return self._top
def width(self): 30

"""Return the width of the rectangle."""
return self._width

def height(self):
"""Return the height of the rectangle.""" 35
return self._height

def area(self):
"""Return the area of the rectangle."""
return self.width()*self.height () 40

def center(self):
"""Return the (x,y) coordinates of the center of the Rect."""
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return (self.left()+self.width()//2,self.top()+self.height()//2)

45
def __repr__(self):
"""Return a string representation of the rectangle."""
(x,y) = self.center()
return "Rect ({0},{1},{2},{3})".format(
X, y, self.width(), self.height())

Near the top of the class definition, we declare the slots, or a list of names of
all the attributes we expect this class to have. Our Rect object maintains four
pieces of information: its left and top coordinates, and its width and height, so
four slots are listed. The declaration of __slots__ is not required, but it serves
as a commitment to using only these attributes to store the characteristics of
the rectangle object. If we attempt to assign a value to an attribute that does
not appear in the attribute list, Python will complain. This is one of the first of
many principles that are meant to instill good Python programming practice.

Principle 1 Commit to a fixed list of attributes by explicitly declaring them.

The method __init__ is responsible for filling in the attributes of a newly al-
located Rect object. The formal comments (found in triple quotes) at the top
of each method are pre- and postconditions. We will discuss these in detail in
Chapter 2.) The __init__ method? is the equivalent of a constructor in other
languages. The method initializes all the attributes of an associated object, plac-
ing the object into a predictable and consistent initial state. To construct a new
Rect users make a call to Rect (). Parameters to this method are passed directly
to the __init__ method. One extra parameter, self is a reference to the the
object that is to be initialized. Python makes it fairly easy to pick-and-choose
which parameters are passed to the constructor and which are left to their de-
fault values. Without exception, attributes are accessed in the context of self.

It is important to notice, at this point, that there were choices on how we
would represent the rectangle. Here, while we allow the user to construct
the rectangle based on its center coordinate, the rectangle’s location is actu-
ally stored using the left-top coordinates. The choice is, of course, arbitrary, and
from the external perspective of a user, it is unimportant.

The methods left, right, top, bottom, width and height, and area are
accessor or property methods that allow users to access these logical features
of the rectangle. Some (left and top) are directly represented as attributes in
the structure, while others (right, bottom and area), are computed on-the-fly.
Again, because the user is expected to use these methods to access the logical
attributes of the rectangle through methods, there is no need to access the actual
attributes directly. Indeed, we indicate our expectation of privacy for the actual
attributes by prefixing their names with an underscore (_). If you find yourself

2 Actually, __init__ works together with a rarely used method __new_
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directly accessing attributes with an expression of the form obj._attr, stop:
you will be violating the expectation of privacy.>

The center method demonstrates a feature of Python not always found in
programming languages: the ability to return a tuple. Since the user will likely
access both the x- and y-coordinates of the rectangle at the same time, we return
both as a tuple that may be used directly as a point, or assigned to a 2-tuple of
assignable targets or l-values.

Finally, the __repr__ method generates the preferred printable representa-
tion of the object. It is customary to return a string that, if interpreted by a
Python interpreter, would regenerate the object in its current state. Indeed, as
we shall see in Chapter ??, these representations are useful in preserving the
state of objects in permanent files.

Exercise 1.1 Nearly everything can be improved. Are there improvements that
might be made to the Rect class?

We should feel pleased with the progress we have made. We have developed
the signatures for the rectangle interface, even though we have no immediate
application. We also have some emerging ideas about implementing the Rect
internally. Though we may decide that we wish to change that internal repre-
sentation, by using an interface to protect the implementation of the internal
state, we have insulated ourselves from changes suggested by inefficiencies we
may yet discover.

To understand the merit of this technique of class design, we might draw an
analogy between the design of an object and the design of a light bulb for your
back porch. The protected attributes and methods of an object are analogous to
the internal design of the bulb. The externally observable features, including the
voltage and the size of the socket, are provided without giving any details about
the implementation of the object. If electrical socket manufacturers depended
on a particular internal features of light bulbs—for example the socket only sup-
ported bright xenon bulbs—it might ultimately restrict the variety of suppliers
of light bulbs in the future. Likewise, manufacturers of light bulbs should enjoy
a certain freedom in their implementation: as long as they only draw power in
an agreed-upon way and as long as their bulb fits the socket, they should be
free to use whatever design they want.*

3 Python, unlike Java and C+ +, does not actually enforce a notion of privacy. As the implementers
are fond of pointing out, that privacy is a “gentleman’s agreement”.

4 It is interesting to note that many compact fluorescent bulbs actually have (very small) processor
chips that carefully control the power used by the light. Newer bulbs use digital circuitry that
effectively simulates more expensive analog circuitry (resistors, capacitors, and the like) of the past.
We realize the implementation doesn’t matter, because of the power of abstraction.
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1.4 A Special-Purpose Class: A Bank Account

We now look at the detailed construction of an admittedly simplistic class: a
BankAccount. Many times, it is necessary to provide a tag associated with an
instance of a data structure. You might imagine that your bank balance is kept in
a database at your bank. When you get money for a trip through the Berkshires,
you swipe your card through an automated teller bringing up your account.
Your account identifier, presumably, is unique to your account. Nothing about
you or your banking history is actually stored in your account identifier. Instead,
that number is used to find the record linked to your account: the bank searches
for a structure associated with the number you provide. Thus a BankAccount
is a simple, but important, data structure. It has an account (an identifier that
never changes) and a balance (that potentially does change). The public meth-
ods of such a structure are as follows:
class BankAccount:
def __init__(self, acc, bal=0.0):
"""Create a bank account."""

def account(self): 5
"""Get account number."""

def balance(self):
"""Get balance from account."""

10
def deposit(self, amount):
"""Make deposit into account."""
def withdraw(self, amount):
"""Make withdrawal from account.""" 15

def __eq__(self, that):
"""Compare bank accounts by account number."""

The substance of these methods has purposefully been removed because, again,
it is unimportant for us to know exactly how a BankAccount is implemented.
We have ways to construct new accounts, as well as ways to access the account
name and value, and two methods to update the balance. The special method
__eq__ is provided to allow us to see if two accounts are the same (i.e. they
have the same account number).

Let’s look at the implementation of these methods, individually. To build
a new bank account, you must call the BankAccount constructor with one or
two parameters (the initial balance is optional, and defaults to 0). The ac-
count number provided never changes over the life of the BankAccount—if it
were necessary to change the value of the account number, a new BankAccount
would have to be made, and the balance would have to be transferred from one
to the other. The constructor plays the important role of performing the one-

Automated
teller: a robotic
palm reader.

BankAccount
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time initialization of the account name field. Here is the code for a BankAccount
constructor:
def __init__(self, acc, bal=0.0):
"""Create a bank account."""
self._account = acc
self._balance = bal

Two attributes—_account and _balance—of the BankAccount object are re-
sponsible for maintaining the object’s state. The _account keeps track of the
account name, while the _balance field maintains the balance.

Since account identifiers are unique to BankAccounts, to check to see if two
accounts are “the same,” we need only compare the account attribute. This is
the purpose of the __eq__ method. Here’s the code:

def __eq__(self, that):

"""Compare bank accounts by account number."""

return self.account == that.account
This method is called whenever two BankAccounts are compared with the ==
operator. Notice that the BankAccount __eq__ method calls the __eq__ method
of the account identifier. Every object in Python has an __eq__ method. If
you don’t explicitly provide one, the system will write one for you. Generally
speaking, one should assume that the automatically written or default equals
method is of little use. This notion of “equality” of objects is often based on the
complexities of our abstraction; its design must be considered carefully.

One can ask the BankAccount about various aspects of its state by calling its
account or balance methods:

@property

def account(self):
"""Get account number."""
return self._account

@property

def balance(self):
"""Get balance from account."""
return self._balance

In these methods, we annotate each definition with the decorator @property.
Decorators allow us to carefully control how a method is to be used. In this
case, the @property decorator causes Python to define a new pseudo-attribute
or property that is accessed like an attribute. We will see, later, that if js is a
BankAccount, we will be able to access the account balance, not with a function
call, but as a read-only attribute using js.balance. We are not, however, able
to modify the balance; we cannot use js.balance as a target of assignment.
In general, when we want to provide read-only access to features of an object—
often identified by the use of a noun (e.g. balance) as the name of the feature-
we decorate the accessor method with the @property decoration, allowing us to
apparently directly access the property like an object attribute. Property access



1.4 A Special-Purpose Class: A Bank Account

43

always returns a value, and rarely has a side-effect. When attributes, properties,
or features of an object are acted on—typically indicated by the use of a verb
(e.g. deposit)—we declare the method normally, without the decoration. Ac-
tions optionally return values, and frequently have side-effects. Thus properties
are accessed as attributes, and actions are performed by methods.

In the end, properties do little more than pass along the information found
in the _account and _balance attributes, respectively. We call such methods
accessors. In a different implementation of the BankAccount, the balance would
not have to be explicitly stored—the value might be, for example, the difference
between two attributes, _deposits and _drafts. Given the interface, it is not
much of a concern to the user which implementation is used.

We provide two more methods, deposit and withdraw, that explicitly mod-
ify the current balance. These are actions that change the state of the object;
they are called mutator methods:

def deposit(self, amount):
"""Make deposit into account."""
self._balance += amount

def withdraw(self, amount): 5
"""Make withdrawal from account."""

assert self._balance >= amount, "Insufficient funds for withdrawal."

self._balance -= amount

Again, because these actions are represented by verbs, they’re not decorated
with the @property annotation. Because we would like to change the balance
of the account, it is important to have a method that allows us to modify it. On
the other hand, we purposefully don’t have a setAccount method because we
do not want the account number to be changed without a considerable amount
of work (work that, by the way, models reality).

Here is a simple application that determines whether it is better to deposit
$100 in an account that bears 5 percent interest for 10 years, or to deposit $100
in an account that bears 21 percent interest for 20 years. It makes use of the
BankAccount object just outlined:

jd = BankAccount ("Jain Dough")
jd.deposit (100)
js = BankAccount ("Jon Smythe",100.00)
for year in range(10):
jd.deposit(jd.balance * 0.05) 5
for year in range(20):
js.deposit(js.balance * 0.025)
print("Jain invests $100 over 10 years at 5%.")
print("After 10 years {0} has ${1}".format(jd.account, jd.balance))
print("Jon invests $100 over 20 years at 2.5%.")
print ("After 20 years {0} has ${1}".format(js.account,js.balance))
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At least Dr.
Seuss started
with 50 words!

atinlay

Exercise 1.2 Which method of investment would you pick?

1.5 A General-Purpose Class: A Key-Value Pair

The following small application implements a Pig Latin translator based on a
dictionary of nine words. The code makes use of a list of KVs or key-value pairs,
each of which establishes a relation between an English word and its Pig Latin
translation. For each string passed as the argument to the main method, the list
is searched to determine the appropriate translation.’
translation = [ KV("a","aay"),
KV("bad","adbay"),
KV("had","adhay"),
KV("dad","adday"),
KV("day","ayday"), 5
KV("hop", "ophay"),
KV("on","onay"),
KV ("pop", "oppay") ,
KV("sad","adsay"),
] 10
story = "hop on pop"
for word in story.split():
for entry in translation:
if entry.key == word:
print (entry.value)

When this application is run:
python3 atlinLay hop on pop
the results are
ophay
onay
oppay

While this application may seem rather trivial, it is easy to imagine a large-scale
application with similar needs.®

We now consider the design of the KV class. Notice that while the type of
data maintained is different, the purpose of the KV is very similar to that of the
BankAccount class we just discussed. A KV is a key-value pair such that the key
cannot be modified, but the value can be manipulated. Here is the interface for
the KV class:

5 Python provides many more efficient techniques for implementing this application. The approach,
here, is for demonstration purposes. Unprofessional driver, open course, please attempt.

6 Pig Latin has played an important role in undermining court-ordered restrictions placed on music
piracy. When Napster—the rebel music trading firm—put in checks to recognize copyrighted music
by title, traders used Pig Latin translators to foil the recognition software!
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class KV:

__slots__ = ["_key", "_value"]

def __init__(self,key,value=None):

Q@property
def key(self):

Q@property
def value(self): 10

@value.setter
def value(self,value):

def __str__(self): 15

def __repr__(self):

def copy(self):
20
def __eq__(self,other):

def __hash__(self):

Like the BankAccount class, the KV class has a straightforward initializer that
sets the attributes pre-declared in the slot list:
__slots__ = ["_key", "_value"]

def __init__(self,key,value=None):
assert key is not None, "key-value pair key is not None"
self._key = key
self._value = value

Usually the initializer allows the user to construct a new XV by initializing both
fields. On occasion, however, we may wish to have a KV whose key field is
set, but whose value field is left referencing nothing. (An example might be a
medical record: initially the medical history is incomplete, perhaps waiting to
be forwarded from a previous physician.) For this purpose, we provide a default
value for the value argument of None. None is the way we indicate a reference
that references nothing.

Now, given a particular KV, it is useful to be able to retrieve the key or value.
The attribute implementing the key (_key) is hidden. Our intent is that users of
the KV class must depend on methods to read or write the attribute values. In
Python, read-only attributes are typically implemented as a property. This ap-
proach makes the key portion of the KV appear to be a standard attribute, when
in fact it is a hidden attribute accessed by a similarly named method. We make
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both key and value properties:
@property
def key(self):
return self._key

@property 5
def value(self):
return self._value

The value property, however, can be changed as well. Mutable properties are
set using a setter method, which is indicated by a setter decoration. The setter
method simply takes its parameter and assigns it to the underlying _value at-
tribute:
@value.setter
def value(self,value):
self._value = value

Setter methods are used in circumstances that the associated property is the
target of an assignment.

There are other methods that are made available to users of the KV class,
but we will not discuss the details of that code until later. Some of the methods
are required and some are just nice to have around. While the code may look
complicated, we take the time to implement it correctly, so that we will not have
to reimplement it in the future.

Principle 2 Free the future: reuse code.

It is difficult to fight the temptation to design data structures from scratch. We
shall see, however, that many of the more complex structures would be very
difficult to construct if we could not base our implementations on the results of
previous work.

1.6 Sketching an Example: A Word List

Suppose we’re interested in building a word-guessing game called Superbrain.
The computer selects random 5-letter words and we try to guess them. Over
several rounds, the computer should pick a variety of words and, as each word
is used, it should be removed from the word list. Using an object-oriented ap-
proach, we’ll determine the essential features of a WordList, the Python object
that maintains our list of words.

Our approach to designing the data structures has the following five informal
steps:

1. Identify the types of operations you expect to perform on your object.
What operations access your object only by reading properties of its state?
What operations might modify or mutate your objects?
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2. Identify, given your operations, those attributes that support the state of
your object. Information about an object’s state is carried by attributes
within the object between operations that modify the state. Since there
may be many ways to encode the state of your object, your description of
the state may be very general.

3. Identify any rules of consistency. In the Rect class, for example, it would
not be good to have a negative width or height. We will frequently focus
on these basic statements about consistency to form pre- and postcondi-
tion checks. A word list, for example, should probably not contain numeric
digits.

4. Determine the general form of the initializers. Initializers are synthetic:
their sole responsibility is to get a new object into a good initial and consis-
tent state. Don’t forget to consider the best state for an object constructed
using the parameterless constructor.

5. Identify the types and kinds of information that, though not directly vis-
ible outside the class, efficiently provide the information needed by the
methods that transform the object. Important choices about the internals
of a data structure are usually made at this time. Sometimes, competing
approaches are developed until a comparative evaluation can be made.
That is the subject of much of this book.

The operations necessary to support a list of words can be sketched out with-
out much controversy, even if we don’t know the intimate details of constructing
the word game itself. Once we see how the data structure is used, we have a
handle on the design of the interface. We can identify the following general use
of the WordList object:

possibleWords = WordList() # read a word list
possibleWords.length(min=2,max=4) # keep only 5 letter words

playing = True
while playing: 5 WordGame
word = possibleWords.pick() # pick a random word
print("I’m thinking of a {} letter word.".format(len(word)))
userWord = readGuess(word,possibleWords)
while userWord != word:
printDifferences(word,userWord) 10
userWord = readGuess(word,possibleWords)
print(’You win!’)
possibleWords.remove (word) # remove word from play
playing = playAgainPrompt ()
Let’s consider these lines. One of the first lines (labeled declaration) declares
a reference to a WordList. For a reference to refer to an object, the object must
be constructed. We require, therefore, an initializer for a WordList that reads a
list of words from a source, perhaps a dictionary. To make the game moderately
challenging, we thin the word list to those words that are exactly 5 letters long.
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At the beginning of each round of Superbrain, a random word is selected
(selectAny), setting the word reference. To make things interesting, we pre-
sume that the pick method selects a random word each time. Once the round
is finished, we use the remove method to remove the word from the word list,
eliminating it as a choice in future rounds.

There are insights here. First, we have said very little about the Superbrain
game other than its interaction with our rather abstract list of words. The de-
tails of the screen’s appearance, for example, do not play much of a role in
understanding how the WordList structure works. We knew that a list was
necessary for our program, and we considered the program from the point of
view of the object. Second, we don’t really know how the WordList is imple-
mented. The words may be stored in a list, or in a file on disk, or they may
use some technology that we don’t currently understand. It is only important
that we have faith that the structure can be implemented. We have sketched
out the method headers, or signatures, of the WordList interface, and we have
faith that an implementation supporting the interface can be built. Finally we
note that what we have written is not a complete program. Still, from the view-
point of the WordList structure, there are few details of the interface that are
in question. A reasoned individual should be able to look at this design and say
“this will work—provided it is implemented correctly.” If a reviewer of the code
were forced to ask a question about how the structure works, it would lead to a
refinement of our understanding of the interface.

We have, then, the following required interface for the WordList class:

class WordList:

def __init__(self,file=’dolch.dict’):

"""Initialize a word list from a dictionary.

By default, use word list making up 25% of written English"""
5

Q@property
def count(self):

"""The number of words in the list."""

def pick(self): 10
"""Select a word randomly from word list."""

def contains(self,word):
"""Returns true exactly when word list contains word."""
15
def remove(self, word):
"""Remove a word from the word list, if present."""

def length(self, min=0, max=50):
"""Thin word list to words with lengths between min and max."""

def alphabet(self,alpha):
"""Thin word list to words drawn from alphabet alpha."""
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We will leave the implementation details of this example until later. You might
consider various ways that the WordList might be implemented. As long as
the methods of the interface can be supported by your data structure, your
implementation is valid.

Exercise 1.3 Finish the sketch of the WordList class to include details about its
attributes.

1.7 A Full Example Class: Ratios

Suppose we want to keep track of a ratio or fraction. Typically, we represent
these quantities as a fraction or quotient of two values, a numerator and a
denominator. How might we implement a ratio as an object in Python?

Obviously, it is important the we be able to construct a ratio from other
numeric values, especially a pair of integers. When we generate a string repre-
sentation, the object should generate a representation that can be parsed as a
call to this constructor.

Typically, we represent ratios in lowest terms, where the greatest common
divisor of the numerator and denominator is 1. To be truly useful, we would
also like to be able to support basic arithmetic operations.

Here, for example, is a sketch of a program that would compute the sum of
the reciprocals of the first few factorials:

from Ratio import *

def fact(n):
result = 1
for i in range(l,n+1): 5
result *= i
return result

def computeE(Q):
e = Ratio(0) 10
for i in range(15):
e += Ratio(1l,fact(i))
print("Euler’s constant = {}".format(e.numerator/e.denominator))
print ("Approximate ratio = {}".format(e))

computeE ()

The result of this computation is an approximation to Euler’s number, the base
of the natural logarithm. By computing it as a ratio, we have the opportunity to
develop a ratio of integers that is a good approximation:

Euler’s constant = 2.71828182846

Approximate ratio = 47395032961/17435658240
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Given our thinking, the following attributes and constructor lay the founda-
tion for our Ratio class:
Q@total _ordering
class Ratio(numbers.Rational):
__slots__ = [ "_top", "_bottom" ]

def __init__(self,numerator=1,denominator=1): 5
"""Construct a ratio of numerator/denominator."""
self._top = int(numerator)
self._bottom = int(denominator)
assert denominator != 0
self._lowestTerms ()

When constructing a Ratio object, we default to the value 1, or, if a numerator is
provided, a denominator of 1. If both numerator and denominator are provided,
we make sure the Ratio is in the best state possible: its denominator should not
be zero and any common divisors of the numerator and denominator should be
factored out, to keep the Ratio in lowest terms.

Two methods support generating this canonical form of aRatio: _lowestTerms
and gcd. The _lowestTerms method is a class method that we only want to
make available internally; it is, in some sense, private. For this reason, we place
an underscore at the beginning of its name, much like the private attributes,
_top and _bottom.

def _lowestTerms(self):

"""Reduce the ratio to lowest terms:
Divide top and bottom by any common divisor."""

if self._bottom < O:
self._top = -self._top 5
self._bottom = -self._bottom

f = gcd(self._top,self._bottom)

self._top //= £

self._bottom //= £

This method makes use of gcd, a general purpose function that is declared out-
side the class. First, it is not a computation that depends on a Ratio (so it should
not be a method of the Ratio class), and second, it may be useful to others. By
making gcd a top-level method, everyone can make use of it. The computation
is a slightly optimized form of the granddaddy of all computer algorithms, first
described by Euclid:
def gcd(a,b):
"""A private utility function that determines the greatest common
divisor of a and b."""
while b != O:
(a,b) = (b,a%b)
return a if a >= 0 else -a
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The Ratio object is based on Python’s notion of a rational value (thus the
mention of Rational in the class definition). This is our first encounter with
inheritance. For the moment, we’ll just say that thinking of this class as a rational
value obliges us to provide certain basic operations, which we’ll get to shortly.

The primary purpose of the class, of course, is to hold a numeric value. The
various components of a Ratio that are related it its value we make accessible
through basic properties, numerator and denominator:

Q@property
def numerator(self):
return self._top

@property 5
def denominator(self):
return self._bottom

Because these are declared as properties, we may read these values as though
numerator and denominator were fields of the class. We are not able to modify
the values. We also provide two methods—int and float—that provide float-
ing point and integer equivalents of the Ratio. We may find these useful when
we’re mixing calculations with Python’s other built-in types.
def int(self):
"""Compute the integer portion of the Ratio."""
return int(float(self))

def float(self): 5
"""Compute the floating point equivalent of this Ratio."""
return n/d

Now, because Python has a rich collection of numeric classes, and because
many of the operations that act on those values are associated with mathemat-
ical operations, it is useful to have the Ratio class provide the special methods
that support these basic operations. First, some basic operations support several
forms of comparison, while others extend the meaning of existing mathematical
functions, like abs that computes the absolute value of a numeric. These meth-
ods are as follows:

def __1t__(self,other):
"""Compute self < other."""
return self._top*other._bottom < self._bottom*other._top

5
def __le__(self,other):
"""Compute self < other."""
return self._top*other._bottom <= self._bottom*other._top
def __eq__(self,other): 10

"""Compute self == other."""
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return (self._top == other._top) and \
(self._bottom == other._bottom)

def __abs__(self): 15
"""Compute the absolute value of Ratio."""
return Ratio(abs(self._top),self._bottom)

def __neg__(self):
"""Compute the negation of Ratio."""
return Ratio(-self._top,self._bottom)

Notice that many of these methods all have a notion of self and other. The
self object appears on the left side of the binary operator, while other appears
on the right.

Basic mathematical operations on Ratio are similarly supported. Most of
these operations return a new Ratio value holding the result. Because of this,
the Ratio class consists of instances that are read-only.

def __add__(self,other):
"""Compute new Ratio, self+other."""
return Ratio(self._top*other._bottom+
self._bottom*other._top,
self._bottom*other._bottom) 5

def __sub__(self,other):
"""Compute self - other."""
return Ratio(self._top*other._bottom-
self._bottom*other._top, 10
self._bottom*other._bottom)

def __mul__(self,other):
"""Compute self * other."""
return Ratio(self._top*other._top, 15

self._bottom*other._bottom)

def __floordiv__(self,other):
"""Compute the truncated form of division."""
return math.floor(self/other) 20

def __mod__(self,other):
"""Computer self % other."""
return self-other*(self//other)
25
def __truediv__(self,other):
return Ratio(self._top*other._bottom,self._bottom*other._top)

Finally, we provide two operations that construct string representations of Ratio
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values—__str__ and __repr__. The __str__ method is called when printing
human-readable values out. The __repr__ method has a subtle difference: it
generates a string that could be understood or parsed as an expression that
would generate the value. (We've seen this before, in our discussion of the KV
class.)
def __repr__(self):
if self._bottom ==
return "Ratio({0})".format (self._top)
else:

return "Ratio({0},{1})".format(self._top,self._bottom)

def __str__(self):
if self._bottom ==
return "{0}".format(self._top)
else:
return "{0}/{1}".format(self._top,self._bottom)
The integers in the format string give the relative positions of the parameters
consumed, starting with the first, parameter 0. Notice that we are using the
format method for strings but we’re not printing the value out; the result can
be used of a variety of purposes. That decision—whether to print it out or
not—is the decision of the caller of these two functions.
You can see the difference by comparing the results of the following interac-

tive Python expressions:

>>> a = Ratio(4,6)

>>> print(str(a))

2/3

>>> print(repr(a))

Ratio(2,3)
It is a good time to note that the format statement can, with these routines,
print both forms of ratio:

>>> "{0!r} = {0}".format(a)

Ratio(2,3) = 2/3
The string returned by the __str__ method is meant to be understood by hu-
mans. The __repr__ method, on the other hand, can be interpreted in a way
that constructs the current state of the Ratio. This will be pivotal when we
discuss how to checkpoint and reconstruct states of objects.

1.8 Interfaces

Sometimes it is useful to describe the interface for a number of different classes,
without committing to an implementation. For example, in later sections of this
text we will implement a number of data structures that are mutable—that is,
they are able to be modified by adding or removing values. We can, for all of
these classes, specify a few of their fundamental methods by using the Python
abstract base class mechanism, which is made available as part of Python 3’s abc
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WordList

package. Here, for example, is an abstract base class, Linear, that requires a
class to implement both an add and remove method:
import abc
from collections import Iterable, Iterator, Sized, Hashable
from structure.view import View
from structure.decorator import checkdoc, mutatormethod, hashmethod
5
class Linear(Iterable, Sized, Freezable):

An abstract base class for classes that primarily support organization

through add and remove operations.

nnn 10
Q@abc.abstractmethod
def add(self, value):
"""Insert value into data structure."""
15

Q@abc.abstractmethod
def remove(self):
"""Remove next value from data structure."""

Notice that the method bodies have been replaced by ellipses. Essentially, this
means the implementation has yet to be specified. Specifying just the signatures
of methods in a class is similar to writing boilerplate for a contract. When we
are interested in writing a new class that meets the Linear interface, we can
choose to have it implement the Linear interface. For example, our WordList
structure of Section 1.6 might have made use of our Linear interface by begin-
ning its declaration as follows:

class WordList(Linear):

When the WordList class is compiled by the Python compiler, it checks to see
that each of the methods mentioned in the Linear interface—add and remove—
is actually implemented. If any of these methods that have been marked with
the @abstractmethod decorator do not ultimately get implemented in WordList,
the program will compile with errors. In this case, only remove is part of the
WordList specification, so we must either (1) not have WordList implement
the Linear interface or (2) augment the WordList class with an add method.
Currently, our WordList is close to, but not quite, a Linear. Applications
that demand the functionality of a Linear will not be satisfied with a WordList.
Having the class implement an interface increases the flexibility of its use. Still,
it may require considerable work for us to upgrade the WordList class to the
level of a Linear. It may even work against the design of the WordList to
provide the missing methods. The choices we make are part of an ongoing
design process that attempts to provide the best implementations of structures
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to meet the demands of the user.

1.9 Who Is the User?

When implementing data structures using classes and interfaces, it is sometimes
hard to understand why we might be interested in hiding the implementation.
After all, perhaps we know that ultimately we will be the only programmers
making use of these structures. That might be a good point, except that if
you are really a successful programmer, you will implement the data structure
flawlessly this week, use it next week, and not return to look at the code for
a long time. When you do return, your view is effectively that of a user of the
code, with little or no memory of the implementation.

One side effect of this relationship is that we have all been reminded of the
need to write comments. If you do not write comments, you will not be able to
read the code. If, however, you design, document, and implement your interface
carefully, you might not ever have to look at the implementation! That’s good
news because, for most of us, in a couple of months our code is as foreign to
us as if someone else had implemented it. The end result: consider yourself a
user and design and abide by your interface wherever possible. If you know of
some public field that gives a hint of the implementation, do not make use of it.
Instead, access the data through appropriate methods. You will be happy you
did later, when you optimize your implementation.

Principle 3 Design and abide by interfaces as though you were the user.
A quick corollary to this statement is the following:
Principle 4 Use hidden attributes to hold state data.

If the data are protected in this manner, you cannot easily access them from
outside the class, and you are forced to abide by the restricted access of the
interface.

1.10 Discussion

The construction of substantial applications involves the development of com-
plex and interacting structures. In object-oriented languages, we think of these
structures as objects that communicate through the passing of messages or,
more formally, the invocation of methods.

We use object orientation in Python to write the structures found in this
book. It is possible, of course, to design data structures without object orienta-
tion, but any effective data structuring model ultimately depends on the use of
some form of abstraction that allows the programmer to avoid considering the
complexities of particular implementations.
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In many languages, including Python, data abstraction is supported by sep-
arating the interface from the implementation of the data structure. To ensure
that users cannot get past the interface to manipulate the structure in an uncon-
trolled fashion, the system controls access to fields, methods, and classes. The
implementor plays an important role in making sure that the structure is usable,
given the interface. This role is so important that we think of implementation as
supporting the abstract—sometimes usefully considered a contract between the
implementor and the user. This analogy is useful because, as in the real world,
if contracts are violated, someone gets upset!

Initial design of the interfaces for data structures arises from considering
how they are used in simple applications. Those method calls that are required
by the application determine the interface for the new structure and constrain,
in various ways, the choices we make in implementing the object.

Self Check Problems

Solutions to these problems begin on page ??.
1.1 What is meant by abstraction?

Problems

Selected solutions to problems begin on page ??.

1.1 Which of the following are primitive Java types: int, Integer, double,
Double, String, char, Association, BankAccount, boolean, Boolean?

1.2 Which of the following variables are associated with valid constructor
calls?

BankAccount a,b,c,d,e,f; Association g,h; a = new

BankAccount ("Bob",300.0); b = new BankAccount(300.0,"Bob"); c = new
BankAccount (033414,300.0); d = new BankAccount("Bob",300); e = new
BankAccount ("Bob" ,new Double(300)); f = new

BankAccount ("Bob", (double)300); g = new Association("Alice",300.0); h

new Association("Alice",new Double(300));



Chapter 2

Comments, Conditions,
and Assertions

CONSIDER THIS: WE CALL OUR PROGRAMS “CODE”! Computer languages, includ-
ing Python, are designed to help express algorithms in a manner that a machine
can understand. Making a program run more efficiently often makes it less un-
derstandable. If language design was driven by the need to make the program
readable by programmers, it would be hard to argue against programming in
English.

A comment is a carefully crafted piece of text that describes the state of the
machine, the use of a variable, or the purpose of a control construct. Many
of us, though, write comments for the same reason that we exercise: we feel
guilty. You feel that, if you do not write comments in your code, you “just know”
something bad is going to happen. Well, you are right. A comment you write
today will help you out of a hole you dig tomorrow.

Commenting can be especially problematic in Python, a scripting language
that is often used to hastily construct solutions to problems. Unfortunately,
once a program is in place, even if it was hastily constructed, it gains a little
momentum: it is much more likely to stick around. And when uncommented
programs survive, they’re likely to be confusing to someone in the future. Or,
comments are hastily written after the fact, to help understand the code. In
either case, the time spent thinking seriously about the code has long since
passed and the comment might not be right. If you write comments beforehand,
while you are designing your code, it is more likely your comments will describe
what you want to do as you carefully think it out. Then, when something goes
wrong, the comment is there to help you find the errors in the code. In fairness,
the code and the comment have a symbiotic relationship. Writing one or the
other does not really feel complete, but writing both supports you with the
redundancy of concept.

The one disadvantage of comments is that, unlike code, they cannot be
checked. Occasionally, programmers come across comments such as “If you
think you understand this, you don’t!” or ‘Are you reading this?” One could, of
course, annotate programs with mathematical formulas. As the program is com-
piled, the mathematical comments are distilled into very concise descriptions of
what should be going on. When the output from the program’s code does not
match the result of the formula, something is clearly wrong with your logic. But
which logic? The writing of mathematical comments is a level of detail most
programmers would prefer to avoid.

Okay, perhaps
French!

Ruth Krauss: ‘A
hole
is to dig.”

Semiformal
convention: a
meeting of tie
haters.
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And the
batteries never
needed
replacing.

A compromise is a semiformal convention for comments that provide a rea-
sonable documentation of when and what a program does. In the code associ-
ated with this book, we see one or two comments for each method or function
that describe its purpose. These important comments are the precondition and
postcondition.

2.1 Pre- and Postconditions

The precondition describes, as succinctly as possible in your native tongue, the
conditions under which a method may be called and expected to produce correct
results. Ideally the precondition expresses the state of the program. This state
is usually cast in terms of the parameters passed to the routine. For example,
the precondition on a square root function might be The authors of this square
root function expect that the parameter is not a negative number. It is, of course,
legal in Python to call a function or method if the precondition is not met, but
it might not produce the desired result. When there is no precondition on a
procedure, it may be called without failure.

The postcondition describes the state of the program once the routine has
been completed, provided the precondition was met. Every routine should have
some postcondition. If there were not a postcondition, then the routine would
not change the state of the program, and the routine would have no effect!
Always provide postconditions.

Pre- and postconditions do not force you to write code correctly. Nor do they
help you find the problems that do occur. They can, however, provide you with
a uniform method for documenting the programs you write, and they require
more thought than the average comment. More thought put into programs
lowers your average blood pressure and ultimately saves you time you might
spend more usefully playing outside, visiting museums, or otherwise bettering
your mind.

2.2 Assertions

In days gone by, homeowners would sew firecrackers in their curtains. If the
house were to catch fire, the curtains would burn, setting off the firecrackers. It
was an elementary but effective fire alarm.

An assertion is an assumption you make about the state of your program. In
Python, we will encode our assumptions about the state of the program using
an assertion statement. The statement does nothing if the assertion is true, but
it halts your program with an error message if it is false. It is a firecracker to
sew in your program. If you sew enough assertions into your code, you will get
an early warning if you are about to be burned by your logic.

Principle 5 Test assertions in your code.
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Here’s an example of a check to make sure that the precondition for the root
function was met: Should we call root with a negative value, the assertion
fails, the message describing the failure is printed out, and the program comes
to a halt. Here’s what appears at runtime: The first two lines of the traceback
indicate that we were trying to print the square root of -4, on line 22 in root . py.
The root function’s assertion, on line 9 of root.py failed because the value
was negative. This resulted in a failed assertion (thus the AssertionError).
The problem is (probably) on line 22 in root.py. Debugging our code should
probably start at that location.

When you form the messages to be presented in the AssertionError, re-
member that something went wrong. The message should describe, as best
as possible, the context of the failed assumption. Thus, while only a string is
required for an assertion message, it is useful to generate a formatted string de-
scribing the problem. The formatting is not called if the assertion test succeeds.

A feature of Python’s native assertion testing is that the tests can be auto-
matically removed at compile time when one feels secure about the way the
code works. Once fixed, we might run the above code with the command:

python3 -0 root.py

The -0 switch indicates that you wish to optimize the code. One aspect of the
optimization is to remove the assertion-testing code. This may significantly im-
prove performance of functions that are frequently called, or whose assertions
involve complex tests.

2.3 Documentation-based Testing

When we want to verify post-conditions we are essentially verifying the correct-
ness of the function. One technique is to perform assertion testing just before
the exit of the code. Python provides support for testing postconditions using a
system called documentation testing.

When you write documentation for functions that you hope others will use,
it is useful to provide a small number of examples and the expected results.
For example, in our square root code, we might add the following lines to the
docstring: Notice that these examples demonstrate how the function can be
called and thus serve as part of the basic documentation. We can, in the file
root.py execute the statements: When a file is executed as a script, the module
name (__name__) is __main__. Thus, executing the script root.py will cause
the tests (prefixed by triple-less signs) appearing in the documentation to be
interpreted. The return value is matched against the text that follows in the
docstring.

When a test fails, the doctest module prints the broken test, the expected
output, and the actual output that was generated:
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I've done my
time!

2.4 Craftsmanship

If you really desire to program well, a first step is to take pride in your work—
pride enough to sign your name on everything you do. Through the centuries,
fine furniture makers signed their work, painters finished their efforts by dab-
bing on their names, and authors inscribed their books. Programmers should
stand behind their creations.

Computer software has the luxury of immediate copyright protection—it is
a protection against piracy, and a modern statement that you stand behind the
belief that what you do is worth fighting for. If you have crafted something
as best you can, add a comment at the top of your code: If, of course, you
have stolen work from another, avoid the comment and carefully consider the
appropriate attribution.

2.5 Discussion

Effective programmers consider their work a craft. Their constructions are well
considered and documented. Comments are not necessary, but documentation
makes working with a program much easier. One of the most important com-
ments you can provide is your name—it suggests you are taking credit and re-
sponsibility for things you create. It makes our programming world less anony-
mous and more humane.

Special comments, including conditions and assertions, help the user and
implementor of a method determine whether the method is used correctly.
While it is difficult for compilers to determine the “spirit of the routine,” the
implementor is usually able to provide succinct checks of the sanity of the func-
tion. Five minutes of appropriate condition description and checking provided
by the implementor can prevent hours of debugging by the user.

Self Check Problems

Solutions to these problems begin on page ??.

2.1 Why is it necessary to provide pre- and postconditions?

2.2 What can be assumed if a method has no precondition?

2.3 Why is it not possible to have a method with no postcondition?

2.4 Object orientation allows us to hide unimportant details from the user.

Why, then, must we put pre- and postconditions on hidden code?

Problems

Selected solutions to problems begin on page ??.
2.1 What are the pre- and postconditions for the math.sqrt method?
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2.2
2.3
2.4
2.5
2.6
2.7

What are the pre- and postconditions for the ord method?

What are the pre- and postconditions for the chr method?

What are the pre- and postconditions for str.join?

Improve the comments on an old program.

What are the pre- and postconditions for the math.floor method?
What are the pre- and postconditions for math.asin class?
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Chapter 3

Contract-Based Design

One way we might measure the richness of a programming language is to ex-
amine the diversity of the data abstractions that are available to a programmer.
Over time, of course, as people contribute to the effort to support an environ-
ment for solving a wide variety of problems, new abstractions are developed
and used. In many object-oriented languages, these data types are arranged
into type hierarchies that can be likened to a taxonomy of ways we arrange data
to effectively solve problems. The conceptually simplest type is stored at the top
or the base of the hierarchy. In Python, this type is called object. The remain-
ing classes are all seen as either direct extensions of object, or other classes
that, themselves, are ultimately extensions of object. When one class, say int,
extends another, say object, we refer to object as the superclass or base class,
and we call int a subclass or extension.

Languages, like Python, that support this organization of types benefit in two
important ways. First, type extension supports the notion of the specialization
of purpose. Typically, through the fleshing out of methods using method over-
riding, we can commit to aspects of the implementation, but only as necessary.
There are choices, of course, in the approach, so each extension of a type leads
to a new type motivated by a specific purpose. In this way, we observe spe-
cialization. Perhaps the most important aspect of this approach to writing data
structures is the adoption, or inheritance, of code we have already committed
to in the base class. Inheritance is motivated by the need to reuse code. Sec-
ondly, because more general superclasses—like automobile—can (often) act as
stand-ins for more specific classes—like beetle—the users of subclass beetle
can (often) manipulate beetle objects in the more general terms of its super-
class, automobile. That is because many methods (like inspect, wash, and
race) are features that are common to all specializations of automobile. This
powerful notion—that a single method can be designed for use with a variety of
types—is called polymorphism. The use of inheritance allows us to use a general
base type to manipulate instances of any concrete subclass.

One of the motivations of this book is to build out the object hierarchy in
an effort to develop a collection of general purpose data structures in a careful
and principled fashion. This exercise, we hope, serves as a demonstration of the
benefits of thoughtful engineering. Helpful to our approach is the use of the ab-
stract base class system. This is an extension to the standard Python type system
that, nonetheless, is used extensively in Python’s built-in collections package.
It supports a modern approach to the incremental development of classes and
allows the programmer to specify the user’s view of a class, even if the specifics
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of implementations have not yet been fleshed out. In other languages, like Java
and C+ +, the specification of an incomplete type is called an interface. Python
does not formally have any notion of interface design, but as we shall see, it
allows for the notion of partially implemented or abstract classes that can form
the basis of fully implemented, concrete type extension. This chapter is ded-
icated to developing these formal notions into a organized approach to data
structure design.

3.1 Using Interfaces as Contracts

As we begin our investigation of new classes of data structures, with few con-
ceptual tools in our belt, our discussion will be at a fairly abstract level. We will
focus less how the data is represented and think more about the logical consis-
tency of a structure. How will a class’s methods maintain this consistency? For
example, will adding objects to a structure necessarily mean that they can be
removed later? When objects are removed will we be able to specify the target
object, or will the choice be made for us? Will the objects be extracted in a way
that leaves only larger values behind? This notion of consistency is a subtle,
but it frees the software engineer from making programming decisions and em-
phasizes making appropriate design decisions. Typically, a thoughtful discussion
of new type in such abstract terms leads to the development of an interface or
a collection of unimplemented methods we can depend on. In Python, these
methods form an abstract class that that will be completed when the class is
extended to a concrete implementation.

An abstract base class is, essentially, a contract that identifies methods that
concrete subclasses must provide as part of its abstract programming interface,
or APIL. Here, for example, is an abstract base class for what it might mean to be
a list, in Python:

@checkdoc
class List(Iterable, Sized):

An abstract base class for all forms of list.

nnn 5
Q@abc.abstractmethod
def append(self, value):
"""Append object to end of list."""
10
Q@abc.abstractmethod
def count(self, value):
"""Return the number of occurences of value."""
15

Q@abc.abstractmethod
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def extend(self, iterable):
"""Extend list with values from iterable."""
20
@abc.abstractmethod
def index(self, value, start=0, stop=-1):
"""Return index of value in list, or -1 if missing."""
25
@abc.abstractmethod
def insert(self, index, value):
"""Insert object before index."""
30
O@abc.abstractmethod
def pop(self, index=-1):
"""Remove and return item at index (default last).
35

Raises IndexError if list is empty or index is out of range."""

@abc.abstractmethod

def

remove (self, value): 40
"""Remove first occurrence of value.

Raises ValueError if the value is not present."""

45
Q@abc.abstractmethod
def reverse(self):
"""Reverses list, in place."""
50
Q@abc.abstractmethod
def sort(self,key=None,reverse=False):
"""Performs stable sort of list, in place."""
55
def __str__(self):
"""Return string representation of this list."""
return str(list(self))
def __repr__(self): 60

"""Return string representation of this list."""
return "{}({})".format (type(self).__name__,str(list(self)))
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This interface, List, outlines what the user can expect from the various im-
plementations of list-like objects. First, there are several methods (append,
count, extend, etc.) that are available for general use. Their docstrings help
the user understand the designer’s intent, but there is no implementation. In-
stead, the specifics of the implementation—which are generally unimportant to
the user—are left to implementors of List-like classes. Notice that we were
able to construct this definition even though we don’t know any details of the
actual implementation of the built-in 1ist class.

These code-less abstract methods are decorated with the @abc.abstract-
method decoration'. To indicate that code is missing, we use the ellipses (. ..)
or the Python synonym, pass. The ellipses indicate the designer’s promise, as
part of the larger contract, to provide code as more concrete extension classes
are developed. Classes that extend an abstract base class may choose to provide
the missing code, or not. If a concrete implementation of the abstract method
is not provided the subclass remains “abstract.” When a class provides concrete
implementations of all of the abstract methods that have been promised by its
superclasses, the class designer has made all of the important decisions, and the
implementation becomes concrete. The purpose of this book, then, is to guide
the reader through the process of developing an abstract base class, which we
use as the description of an interface, and then committing (in one or more
steps in the type hierarchy) to one or more concrete implementations.

Because the specification of an abstract base class is incomplete, it is im-
possible to directly construct instances of the class. It is possible, however that
some concrete extension of the abstract class will provide all the implementa-
tion details that are missing here. Any instance of the concrete subclass are,
however, also considered instances of this base class. It is often convenient to
cast algorithms in terms of operations on instances of an abstract base class (e.g.
to inspect an automobile), even though the actual objects are concrete (e.g.
beetle instances), and have committed to particular implementation decisions
(e.g. air-cooled engines). If the performance of a concrete class is less than
ideal, it is then a relatively minor task to switch to another implementation.

The portion of the type hierarchy developed in this text (the “structure
package”) is depicted in Appendix ??. There, we see that abstract base classes
appear high in the hierarchy, and that concrete implementations are direct or
indirect extensions of these core interfaces.

In some cases we would like to register an existing concrete class as an im-
plementation of a particular interface, an extension of an abstract base class of
our own design. For example, the List interface, above, is consistent with the
built-in 1ist class, but that relationship is not demonstrated by the type hier-
archy. After all, the List interface was developed after the internal 1ist class
was developed. In these situations we make use of the special register class
method available to abstract base classes:

List.register(list)

1 In Python, decorations are identifiers preceded by the @ symbol. These are functions that work at
the meta level, on the code itself, as it is defined. You can read more about decorations in Section ??.
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Before we leave this topic we point out that the List interface is an exten-
sion of two other interfaces that are native to Python’s collections package:
Iterable and Sized. These are abstract base classes that indicate promises to
provide even more methods. In the case of the Iterable interface, a important
method supporting iteration, called __iter__, and in the case of the Sized in-
terface, the method __len__ which indicates the structure has a notion of length
or size. Collectively, these “mix-in” interfaces put significant burdens on anyone
that might be interested in writing a new List implementation. If, however, the
contract can be met (i.e. the abstract methods are ultimately implemented), we
have an alternative to the 1ist class. We shall see, soon, that alternatives to the
list class can provide flexibility when we seek to improve the performance of
a system.

How, then, can we write application code that avoids a commitment to a
particular implementation? We consider that question next, we we discuss poly-
morphism.

3.2 Polymorphism

While variables in Python are not declared to have particular types, every ob-
ject is the result of instantiating a particular class and thus has a very specific
origin in the type hierarchy. One can ask a value what its type is with the type
function:

>>> type(3)

type(’int’)

>>> 3 =3

>>> type(i)

type(’int?) 5

>>> i = ’hello, world’

>>> type(i)

type(’str’)
A consistent development strategy—and our purpose, here, is to foster such
techniques—means that the position of new classes will be used to reflect the
(sometimes subtle) relationship between types. Those relations are the result of
common ancestors in the type hierarchy. For example, the boolean class, bool,
is a subclass of the integer type, int. This allows a boolean value to be used in
any situation where an int is required. A little experimentation will verify that
the boolean constant True is, essentially, the integer 1, while False is a stand-in
for zero. We can see this by using bool values in arithmetic expressions:

>>> 1+True

2

>>> 3*False

0

>>> Falsex*True

0
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When a method (like addition) works in consistent ways on multiple types
(here, int and bool values), we call this polymorphism.

Because Python allows us to write programs without respect to specific types,
it may appear that all methods are polymorphic. In reality, since Python does not
automatically check for appropriate types, we must sometimes perform those
checks ourselves. Three methods—type, isinstance, and issubclass—help
us to perform the type checking by hand.

type(obj). This method, as we have just seen, returns the type of the object
obj.

isinstance(obj,cls). This boolean method returns True precisely when obj
is an instance of the class cls.

issubclass(cls,supercls). This boolean method checks to see if either class
cls is supercls or if it is an extension of supercls. Notice that writing
isinstance(obj,cls) is the same as issubclass(type(obj),cls).

Although Python appears lax about declaring and checking the types of data, its
type hierarchy provides an organizational mechanism for identifying the most
general types of data we wish to support in our methods and data structures.

Python’s classes are, themselves, first class objects. Each class is an instance
of the type class (including type, itself!) and, as a result, classes have a num-
ber of methods that allow us to reason about them.? This is one of the most
subtle and powerful features of the language. It means, for example, that we
can write Python programs that are reflective—that is they can inspect and
reason about themselves and other Python programs. The discussion of this
topic is well beyond the scope of this book, but for the advanced programmer,
reflection is well worth investigating.

3.3 Incrementalism: Good or Bad?

In these days of software with double-digit version numbers, it makes one won-
der Can we not get software right? Initially, one might get the feeling that reg-
istering new interface types (like List) high in the built-in type hierarchy is
simply enabling poor, incremental software design. Isn’t the process of register-
ing new interfaces simply a “patch” mechanism that would make up for poor
design?

The process of designing good software is complex and involved process.
Frequently, it is difficult to appreciate abstraction of a problem when one first
approaches a solution. This can be because of a lack of experience in solving
the problem. If you are new to a problem domain, it is difficult, sometimes, to
develop the correct abstractions until experience is gained in solving the prob-
lems. Engineers, of all types, frequently build mock-ups and prototypes before a

2 Actually, we know that classes are callable types because we actually call the class (viz. 1ist())
as a factory method to create instances of the class.
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final engineering approach is developed. Because software engineers can often
make significant use of materials that were developed in a prototyping stage, it
is useful to facilitate back-fitting or refactoring of an approach. Frequently, in
this book we will return to early structures and refine their design after expe-
rience has been gained with the development of a wider collection of classes.
This is a natural aspect of the process of programming. We should not fight it,
we should understand it as evidence of notable progress in learning.>

It is also possible that success in the small project leads to the development
of larger tools to solve more general problems. In some ways, it is possible
to see the development of (ultimately) successful programming languages, like
Python, as being an incremental commitment to a unified approach to solving
problems. It would be nice to think that the package of structures we develop
here is a consistent and useful extension of the approach initially investigated
in early Python development. In such a situation, it seems natural to establish
and refine a wider collection of interfaces that support the development of data
structures that work particularly well with the programming language philoso-
phies du jure.

3.4 Discussion

A great deal of the optimism about Python as a programming utility is its uni-
form commitment to a type hierarchy. This hierarchy reflects the relationships
between not only concrete types, but also the partially implemented abstract
types, or interfaces, that establish expectations about the consistency-preserving
operations in concrete classes. While Python provides many classes, it is impos-
sible (and unnecessary) to predict every need, and so Python has many features
that allow us to extend the type hierarchy in ways the reflect common engineer-
ing principles. These include:

Support for the design of interfaces.

The establishment of types as first-class objects.

The use of polymorphism to allow general operations to be performed on
disparate types.

The provision of methods for performing detailed type-checking.

The remainder of this text is a discussion about one approach to extending
Python’s type hierarchy to include classic data structures in a principled way,
consistent with modern philosophies about type engineering.

3 Williams students should note that, at graduation, the Dean need only recommend students for a
degree based on “notable progress in learning”.
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Contract-Based Design

Self Check Problems

Solutions to these problems begin on page ??.

3.1 Define the following terms: (1) object, (2) class, (3) supertype, (4)
subtype, (5) baseclass, (6) abstract method, (7) inheritance, (8) polymorphism,
(9) type hierarchy, and (10) object.

3.2 What is the type of (a) 42, (b) 42., (c) 42j, (d) range(42), (e) [i foriin
range(42)].

3.3 Which of the following are True?
1. isinstance(True,bool)
. isinstance(True,int)
. isinstance(type(True) ,bool)

. isinstance(type(z),type) (assume z is defined)

. issubclass(bool,int)

2
3
4
5. issubclass(bool,bool)
6
7. issubclass(type(0),type(False))
8

. issubclass(type(z),object) (assume z is any value)

Problems

Selected solutions to problems begin on page ??.

3.1 For a class to be declared abstract, they must be prefixed with the
@abc.abstractmethod decoration. Explain why it is not sufficient to simply
provide elipses (...) for the method body. 3.2 The abstract base class

mechanism is an add-on to the Python 3 language. The notion of an abstract
method is not directly supported by the language itself. Observing the output of
pydoc3 collections.Iterable, indicate how an abstract class might be iden-
tified.

3.3 Investigate each of the following interfaces and identify the correspond-
ing methods required by the abstract class: (1) collections.abc.Iterable,

(2) collections.abc.Sized, (3) collections.abc.Container, (4) collections.abc.Hashable,

and (4) collections.abc.Callable.
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In Python, a sequence is any iterable object that can be efficiently indexed by
a range of integers. One of the most important built-in sequences is the 1list,
first discussed in Section 0.4. In this chapter we will design a family of list-like
sequences, each with different performance characteristics.

Before we develop our own structures, we spend a little time thinking about
how Python’s native 1ist structure is implemented. This will allow us to com-
pare alternative approaches and highlight their differences.

4.1 Python’s Built-in 1ist Class

Python’s 1ist class is a simple yet versatile structure for storing a collection
of items that can be indexed by their position. Lists are container classes that
hold references to other objects. They may be empty, and they may change
their size over time. Each item (a reference, or the value None, indicating “not
a reference”) in a list has an index that is the number of entries that appear
before it in the collection. We call this type of indexing 0-origin because the first
element has index 0. Lists are mutable in that values can be added, replaced, or
removed. In other languages we might think of a 1ist as an extensible array or
vector. In Python, the 1ist class is just one example of a sequence.

4.1.1 Storage and Allocation

Internally, 1ists are implemented by a reference to an fixed length chunk of
memory—we will think of it as an array—that has enough object reference slots
to hold the data of the 1ist. Because the underlying array holds at least the
number of elements that are in the list (perhaps many more were preallocated),
the 1ist also keeps track of an allocation size. Clearly this allocation size is
always at least as large as the length of the list. If the 1ist should grow and
require more references than can be stored in the current chunk of memory,
a larger array must be allocated and then the data is transferred from the old
store to the new. The old array, no longer useful, can be reclaimed as part of
the garbage collection process.

The process of copying the entries of a 1ist during extension is time-consum-
ing and grows linearly with the number of entries to be preserved. For this
reason, Python allocates more space than is needed so that several small in-
creases in the list length can be readily accommodated before the underlying
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array needs to be reallocated again. One approach that is commonly used when
reallocating an extensible array is to initially allocate a small array (in analyses
we will assume it has one element, but it is typically larger) and to double the
length of the array as necessary.

Each time a 1ist is extended, we must transfer each of the values that are
already stored within the vector. Because the extension happens less and less
frequently, the total number of reference copies required to incrementally grow
a list to size n is as large as

1+2+44+.. 428" =21

or approximately twice the number of elements currently in the array. Thus the
average number of times each value is copied as n elements are added to a 1list
is approximately 2.

Storage Overhead

We can make a few more observations. If we construct a list by adding a single
element at a time it eventually fills the current allocation—it is making 100%
use of the available space—and so it must reallocate, doubling the size—making
its use 50% of the available space. It consumes this space in a linear manner
until the next extension. Averaging over all sizes we see that the list takes up
75% of the space allocated. Another way to think about this is that, on average,
a list has a 33% storage overhead—a possibly expensive price to pay, but we are
motivated by a stronger desire to reduce the cost of maintaining the integrity of
the data through the extension process.

The designers of Python felt 33% overhead was a bit too much to pay, so
Python is a little less aggressive. Each time a vector of size n is extended,
it allocates § + c extra locations. The value of c is small, and, for analysis
purposes, we can think of the reallocation as growing to about 2n. As the size
of the list grows large, the average number of copies required per element is
approximately 9. Since, in the limit, the array is extended by about 12.5%, the
average unused allocated space is about 6.25%, or an average list overhead of
about 6.7%.

When a list shrinks one can always live within the current allocation, so
copying is not necessary. When the list becomes very small compared to its
current allocation, it may be expensive to keep the entire allocation available.
When doubling is used to extend lists, it may be useful to shrink the allocation
when the list size drops below one third of the allocated space. The new allo-
cation should contain extra cells, but not more than twice the current list size.
Shrinking at one third the allocation may seem odd, but shrinking the allocation
when the list length is only half the current allocation does not actually result
in any freed memory.

Other approaches are, of course, possible, and the decision may be aided by
observing the actual growth and shrinkage of 1ists in real programs. Python

9

reallocates a smaller list (to $n + c) when the size, n, dips below 50% of al-
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location. This is a fairly conservative approach to freeing memory, probably
reflecting the reality that most 1ists frequently grow and rarely shrink.

4.1.2 Basic Operations

As we saw in Chapter O, the 1ist abstraction supports several basic operations.
Because Python’s 1ist implementation is, essentially, a wrapper for an array,
the costs associated with many of its operations are the same as those for arrays
in other languages. Thinking of 1ists as array helps us evaluate the inherent
overhead associated with each of the 1ist operations.

The cost of locating and updating existing entries by their index in the list
takes constant (O(1)) time. If we access the value based on its index, the target
of the operation is at a fixed and easily determined offset from the beginning of
the underlying array. Since indexing can be accomplished without changing the
length of the list, there is no other overhead associated with this list operation.

The elements of a 1ist are always stored contiguously.

Exercise 4.1 Explain why it is important that a list’s elements are stored contigu-
ously.

Since it is important to maintain that property, the costs of inserting or removing
elements from the 1ist depend heavily on how many other elements must be
moved. For example, if we wish to insert an element at the “end” of the list (to
be found at an index that is equal to the current length of the 1ist), the process
is simply inserting the new reference just beyond the end of the list. The cost
of doing this is constant time; it does not depend on the size of the list (we
ignore the overhead of possible list resizing, but as argued before, the cost is
constant). If, on the other hand, we are interested in inserting a new element
at the front of the list (i.e. at index 0), it is necessary to shift each of elements
that will ultimately follow it to positions with a higher index. This operation
takes O(n) time, and is the worst case. Insertions at intermediate locations take
intermediate amounts of time, but the general insertion takes time proportional
to the length of the list.

The costs associated with removing elements is analyzed in a similar fashion
since, in the general case, items stored at higher locations must be shifted one
element lower. Removal, like insertion is a linear (O(n)) operation.

When a sequence of m inserts (or deletions) are to be performed as part of
a single operation (for example, inserting a 1ist of elements into the middle of
another list of n elements) a careful implementation will perform the neces-
sary shifting of values only once, instead of m times. The result is an operation
that takes O(n+m) time instead of O(n-m) time. While it is tempting to think of
such operations as being composed of many smaller tasks, we must be vigilant
in seeking the most efficient approach.
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4.2 Alternative 1ist Implementations

As with any class, when we use the Python list we must accept the perfor-
mance characteristics inherent in its design. In this section we discuss a num-
ber of alternative implementations of the List interface that provide alternate
performance characteristics. For example, many of the structures we will inves-
tigate can insert a value at the beginning (or head) of the list in constant time.
There are trade-offs, of course, and we highlight these as appropriate.

One alternative to the built-in 1ist class dynamically allocates nodes to hold
to each member of the list. A small number of links (typically one or two) are
used to chain the nodes together into a list. Though the nodes may be allocated
from different locations in memory, the references that interconnect these nodes
make them appear adjacent. The “natural ordering” of values, then, is deter-
mined by the order of the nodes that appear as these nodes are encountered
from head to tail. When values have to be inserted or removed, the “adjacent”
values need not be relocated. Instead, links in each node are re-targeted to give
the list its new structure. Generally, we call these structures linked lists.

4.2.1 Singly-linked Lists

When each data node references just the node that follows it in the list, we say
the list is singly linked. The private _Node class for singly linked lists is fairly
simple. (Again, recall that the leading underscore suggest the object is for pri-
vate use.)
class _Node(object):
__slots__ = ["_data", "_next"]

def __init__(self, data=None, next=None):
"""Initialize node for singly linked list. 5

Args:
data: the data to be stored in this node.
next: the node that follows this in the linked list.

nnn 10
self._data = data
self._next = next

Q@property

def value(self): 15
"""The value stored in this node."""
return self._data

Q@property

def next(self): 20

"""Reference to the node that follows this node in the list."""

return self._next
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Onext.setter
def next(self, new_next): 25
"""Set next reference to new_next.

Args:

new_next: the new node to follow this one."""

self._next = new_next
This structure is, essentially, a pair of references—one that refers to the data
stored in the list, and another that is a link to the node that follows. The ini-
tializer, __init__, has keyword parameters with default values so that either
parameter can be defaulted and so that when _Nodes are constructed, the pa-
rameter interpretation can be made explicit. In this class we have chosen to
think of the slots as properties (through the use of the @property decorator)
even though this essentially makes the slots public. Again, this approach al-
lows us to hide the details of the implementation, however trivial, so that in the
future we may chose to make changes in the design. For example, the use of
properties to hide accessor methods makes it easier to instrument the code (for
example, by adding counters) if we were interested in gathering statistics about
_Node use.

-

head

head

[-]

Figure 4.1 An empty singly-linked list (left) and one with n values (right).

Let’s now consider how multiple _Nodes can be strung together, connected by
next references, to form a new class, LinkedList. Internally, each LinkedList
object keeps track of two private pieces of information, the head of the Linked-
List (_head) and its length (_len). The head of the list points to the first
_Node in the list, if there is one. All other _Nodes are indirectly referenced
through the first node’s next reference. To initialize the LinkedList, we set the
_head reference to None, and we zero the _len slot. At this point, the list is
in a consistent state (we will, for the moment, ignore the statements involving
frozen and hash).
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Our initializer, like that of the built-in 1ist class, can take a source of data
that can be used to prime the list.
def __init__(self, data=None, frozen=False):
“nnInitialize a singly linked list."""
self._hash = None
self._head = None
self._len = 0 5
self._frozen = False
if data is not Nomne:
self.extend(data)
if frozen:
self.freeze()
Because the LinkedList is in a consistent internal state, it is valid to call its
extend method, which is responsible for efficiently extending the LinkedList
with the values found in the “iterable” data source. We will discuss the details
of extend later, as well.

Before we delve too far into the details of this class, we construct a private
utility method, _add. This procedure adds a new value after a specific _Node
(1oc) or, if loc is omitted or is None, it places the new value at the head of the
list.

O@mutatormethod
def _add(self,value,loc=None):
"""Add an element to the beginning of the list, or after loc if loc.

Args: 5
value: the value to be added to the beginning of the list
loc: if non-null, a _Node, after which the value is inserted.

i

if loc is Nome:
self._head = _Node(value,self._head) 10

else:
loc.next = _Node(value,loc.next)

self._len = self._len + 1

Clearly, this method is responsible for constructing a new _Node and updating
the length of list, which has grown by one. It will be the common workhorse of
methods that add values to the list.

It is useful to take a moment and think a little about the number of possible
ways we might call _add on a list with n values. The method can be called with
loc set to None, or it can be called with loc referencing any of the n _Nodes
that are already in the list. There are n + 1 different ways to call _add. This
parallels the fact that there are n + 1 different ways that a new value can be
inserted into a list of n elements. This is a subtle proof that the default value
of loc, None, is necessary for _add to be fully capable. Thinking in this way is
to consider an information theoretic argument about the appropriateness of an
approach. Confident that we were correct, we move on.
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Let’s think about how the length of the list is accessed externally. In Python,
the size of any object that holds a variable number of values—a container class—
is found by calling the utility function, 1en, on the object. This function, in turn
calls the object’s special method, __len__. For the LinkedList class, which
carefully maintains its length in _add and _free, this method is quite simple:

def __len__(self):
"""Compute the length of the list."""
return self._len
Throughout this text we will see several other special methods. These methods
allow our classes to have the look-and-feel of built-in classes, so we implement
them when they are meaningful.

Next, is the append method. Recall that this method is responsible for adding

a single value to the end of the list:
@mutatormethod
def append(self, value):

"""Append a value at the end of the list (iterative version).

Args: 5
value: the value to be added to the end of the list.
loc = self._head
if loc:
while loc.next is not Nome: 10
loc = loc.next
self._add(value,loc)
This method iterates through the links of the list, looking for the node that has
a None next reference—the last node in the list. The _add method is then used
to construct a new terminal node. The last element of the list is then made to
reference the new tail.

Exercise 4.2 Suppose we kept an extra, unused node at the head of this list. How
would this change our implementation of append?

Notice that it is natural to use a while loop here and that a for loop is
considerably more difficult to use efficiently. In other languages, like C or Java,
this choice is less obvious.

It may be instructive to consider a recursive approach to implementing append:

@mutatormethod
def append_recursive(self, value, loc=None):
"""Append a value at the end of the list.

Args: 5
value: the value to be appended
loc: if non-null, a _Node, after which the value is inserted.
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if loc is Nome:
# add to tail 10
loc = self._head
if loc is None or loc.next is None:
# base case: we’re at the tail
self._add(value,loc)
else: 15
# problem reduction: append from one element below
self.append_recursive(value,loc.next)
While the method can take two parameters, the typical external usage is to call
it with just one—the value to be appended. The loc parameter is a pointer
into the list. It is, if not None, a mechanism to facilitate the append operation’s
search for the last element of the list. (The new value will be inserted in a new
_Node referenced by this last element.) When loc is None, the search begins
from the list’s head; the first if statement is responsible for this default behav-
ior. The second if statement recursively traverses the LinkedList, searching
for the tail, which is identified by a next field whose value is None.

Logically, these two implementations are identical. Most would consider the
use of recursion to be natural and beautiful, but there are limits to the number
of recursive calls that can be supported by Python’s call stack.! It is likely, also,
that the recursive implementation will suffer a performance penalty since there
are, for long lists, many outstanding calls to append that are not present in the
iterative case; they are pure overhead. Compilers for some languages are able
to automatically convert simple tail-recursive forms (methods that end with a
single recursive call) into the equivalent iterative, while-based implementation.
Over time, of course, compiler technology improves and the beauty of recursive
solutions will generally outweigh any decrease in performance. Still, it is one
decision the implementor must consider, especially in production code. Fortu-
nately, procedural abstraction hides this decision from our users. Any beauty
here, is sub rosa.

Our initializer, recall, made use of the extend operation. This operation
appends (possibly many) values to the end of the LinkedList. Individually,
each append will take O(n) time, but only because it takes O(n) time just to find
the end of the list. Our implementation of extend avoids repeatedly searching
for the end of the list:

def _findTail(self):
"""Find the last node in the list.

Returns:
A reference to the last node in the list. 5
nnn
loc = self._head
if loc:

1 Python’s stack is limited to 1000 entries. This may be increased, but it is one way that Python can
halt, not because of errors in logic, but because of resource issues.
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while loc.next is not Nome:
loc = loc.next 10
return loc

Omutatormethod
def extend(self, data):
"""Append values in iterable to list. 15

Args:
data: an iterable source for data.
win
tail = self._findTail() 20
for value in data:
self._add(value,tail)
tail = self._head if tail is None else tail.next
A private helper method, _findTail, returns a reference to the last element, or
None, if the list is empty.

Exercise 4.3 Write a recursive version of _findTail.

Once the tail is found, a value is added after the tail, and then the temporary
tail reference is updated, sliding down to the next node. Notice again that the
use of the _add procedure hides the details of updating the list length. It is
tempting to avoid the O(n) search for the tail of the list if no elements would
ultimately be appended. A little thought, though, demonstrates that this would
introduce an if statement into the while loop. The trade-off, then, would be
to improve the performance of the relatively rare trivial extend at the cost of
slowing down every other case, perhaps significantly.

Before we see how to remove objects from a list, it is useful to think about
how to see if they're already there. Two methods __contains__ and count (a
sequence method peculiar to Python) are related. The special __contains__
method (called when the user invokes the in operator; see page 7) simply tra-
verses the elements of the list, from head to tail, and compares the object sought
against the value referenced by the current node:

def __contains__(self,value):
"""Return True iff value is contained in list."""
loc = self._head
while loc is not None:
if loc.value == value: 5
return True
loc = loc.next
return False
As soon as a reference is found (as identified by the == operator; recall our
extended discussion of this on page 42), the procedure returns True. This be-
havior is important: a full traversal of an n element list takes O(n) time, but
the value we’re looking for may be near the head of the list. We should return
as soon as the result is known. Of course if the entire list is traversed and the
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while loop finishes, the value was not encountered and the result is False.
While the worst case time is O(n), in the expected case? finds the value much
more quickly.
The count method counts how many equal values there are:
def count(self, value):
"""Count occurrences of value in list."""

result = 0

loc = self._head

while loc is not None: 5
if loc.value == value:

result += 1
loc = loc.next
return result
The structure of this code is very similar to __contains__, but count must
always traverse the entire list. Failure to consider all the elements in the list
may yield incorrect results. Notice that __contains__ could be written in terms
of count but its performance would suffer.

Now, let’s consider how to remove elements. Removing a value, in some
sense in the “inverse” of the insertion of a value, so it would not be surprising if
the structure of the methods that supports removal of values was similar to the
what we’ve seen so far, for insertion. The counterpart to _add is a private utility
method, _free:

@mutatormethod
def _free(self, target):
result = target.next
target.next = None
self._len -= 1
return result
When we'’re interested in removing a particular node, say target, we pass
target to _free and the routine unlinks the target node from the list. It re-
turns the portion of the list that hangs off the target node. This value is useful,
because it is the new value of the next field in the _Node that precedes target
or if target was at the head of the list, it is the new _head value. We will fre-
quently see, then, a statement similar to
prior.next = self._free(prior.next)
Finally, _free is the place where we hide the details of reducing the length of
the list.
When we want to remove a specific value from a LinkedList, we call remove.

@mutatormethod

def remove(self,value):

2 The term expected case depends, of course, on the distribution of accesses that we might “expect”.
For example, in some situations we might know that we’re always looking for a value that is known
to be in the list (perhaps as part of an assert). In other situations we may be looking for values that
have a non-uniform distribution. Expected case analysis is discussed in more detail in Section ??.
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"""Remove first occurance of value from list, or raise ValueError."""

(prior,loc) = (None,self._head)
while loc is not None: 5
if loc.value == value:
result = loc.value
if prior is None:
self._head = self._free(loc)
else: 10
prior.next = self._free(loc)
return result
(prior,loc) = (loc,loc.next)
raise ValueError("Value not found.")
This method searches for the appropriate value, much like __contains__, but
unlike __contains__, remove keeps a reference to the previous node (prior)
so it may call _free and update prior’s next link.

Methods that Support Indexing

Perhaps the most important feature of any sequence is the ability to access any
element of the 1ist based on its offset from the beginning, or its index. Valid
index values for an n element list are integers between 0 and n — 1. As a
convenience, Python also allows one to index from the end of the list using
negative index values: —1 means “the last element”, and —n indicates the first.
The workhorse of the List interface is the special method, __getitem__,
that supports the index operator, 1[i]. This method is passed an integer® that
is interpreted as the index of the desired value.
def __getitem__(self,i):
"""The ith element of self. Does not support slices."""
1 = len(self)
if 1 < O:
i+=1 5
if 1 <0 or 1 <=1i:
raise IndexError("Index out of range.")
loc = self._head
for offset in range(i):
loc = loc.next
return loc.value
The first lines are responsible for converting a negative index into an appropri-
ate positive index. If, at that point, the index is not valid, an exception is thrown.
Since we know the index is valid, we can safely traverse the appropriate number
of nodes, after the head node, to find the value to be returned.
The insert method is used to place a value in the list before the entry at
a particular index. In a list, 1, with n values, 1.insert(0,value) is similar to

3 Actually, __getitem__ can accept a range of fairly versatile indexing specifications called slices,
as hinted at earlier on page 10.
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1._add(value), while 1.insert(n,value) acts like 1.append(value). Nega-
tive index values identify positions from the end of the list. Index values that
are too small or too large to be an index for 1, are silently reset, or clamped, to
0 or len(1), respectively. It is important that insert always works.
Gmutatormethod
def insert(self,index,value):
"""Insert value in list at offset index."""
# to support negative indexing, add length of list to index if index is negative
1 = len(self) 5
if index < O:
index +=1
if index > 1:
index =1
if index <= O: 10
self._add(value,None)
else:
prior = self._head
for offset in range(index-1):
prior = prior.next
self._add(value,prior)
As with __getitem__, the first few lines of insert normalize the index value.
An offset of zero simply adds the value at the head of the list, otherwise the
value is added after the node that falls before the current node with the appro-
priate index.
One method, pop, uses an index to identify the value that is to be removed.
As a convenience the index defaults to -1, allowing the user to remove the last
element of the list.*
@mutatormethod
def pop(self, index=-1):
"""Remove value from end of list or at index, if provided."""
1 = len(self)
if index < O: 5
index = index + 1
if index < 0 or 1 <= index:

raise IndexError("Index out of range.")

if index ==
result = self._head.value 10
self._head = self._free(self._head)

else:

prior = self._head
for offset in range(index-1):

prior = prior.next 15
result = prior.next.value

4 The pop method, along with append, supports the notation of a stack. We will see more about
stacks when we discussion linear structures in Chapter 6.
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prior.next = self._free(prior.next)
return result
Since this method removes values from the list, it makes use of the _free
method.

Pros and Cons

The LinkedList class has some clear advantages. First, while each entry takes
a little more space to store (an entire _Node, about twice the space of an entry
in a 1ist), the list maintains exactly the number of Nodes needed to store the
entries. Each time a new value is added or removed, the same process of allo-
cating or freeing memory is executed; there are no sudden hits associated with
the occasional reallocation of 1ists. Finally, insertion of values at the head of
the list, where the index is small, takes constant time. Recall that 1ists must
move all the current data items to new slots each time.

But there are also disadvantages. Adding values to the end of the LinkedList
can take a long time, simply because it takes a long time to find the end of the
list. With the built-in 1ist class, appending a value is a constant-time operation.

Is it possible to make the addition of a new value at the end of the LinkedList
a faster operation? If we were to keep a pointer to the tail of the LinkedList (as
we do with the head), then appending values must be accomplished in constant
time. We must, of course, maintain three components of the internal state—
the length, the head, and the tail. This takes a little more time, but it may be
worth it if we want to access both the head and tail of the list quickly. But what
happens when we remove the tail of the list? How do we find the penultimate
element? In the next section we consider the implementation of linked lists with
two pointers in each _Node.

4.2.2 Doubly-Linked Lists

Our implementation of singly-linked lists is, externally, probably sufficient for
many tasks. As we have seen, it can provide some advantages over Python’s
built-in 1ist class. But there are several ways in which the implementation
lacks the beauty that one might imagine is possible. First, there are several
unfortunate asymmetries:

1. The head and tail of the LinkedList are treated somewhat differently.
This directly leads to differences in performance between head-oriented
operations and tail-oriented operations. Since, for many applications the
head and tail are likely to be frequently accessed, it would be nice to have
these locations supported with relatively fast operations.

2. The internal _add and _free methods both require you to be able to access
the node that falls before the target node. This makes for some admittedly
awkward code that manages a prior reference rather than a current
reference. Some of this can be resolved with careful use of recursion,
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but the awkwardness of the operation is inherent in the logic that all the
references point in one direction, toward the tail of the list. It would be nice
to remove a node given just a reference to that node.

3. LinkedLists that are empty have a _head that is None. All other lists have
_head referencing a _Node. This leads to a number of un-beautiful if
statements that must test for these two different conditions. For example,
in the _add method, there are two ways that a new _Node is linked into
the list, depending on whether the list was initially empty or not. Unusual
internal states (like an empty LinkedList) are called boundary conditions
or edge- or corner-cases. Constantly having to worry about the potential
boundary case slows down the code for all cases. We would like to avoid
this.

Here, we consider a natural extension to singly-linked lists that establishes
not only forward references (toward the tail of the list), but also backward
references (toward the list head). The class is DoublyLinkedList. Admit-
tedly, this will take more space to store, but the result may be a faster or—
for some, a greater motivation—more beautiful solution to constructing lists
from linked nodes. Our discussion lightly parallels that of the LinkedList
class, but we highlight those features that demonstrate the relative beauty of
the DoublyLinkedList implementation.

Like the LinkedList class, the DoublyLinkedList stores its values in a pri-
vate® _Node class. Because the list will be doubly-linked, two references will
have to be maintained in each node: the tail-ward _next and head-ward _prev.

While, in most cases, a _Node will hold a reference to valid user-supplied
data, it will be useful for us to have some seemingly extraneous or dummy nodes
that do not hold data (see Figure 4.2). These nodes ease the complexities of the
edge-cases associated with the ends of the list. For accounting and verification
purposes, it would be useful to be able to identify these dummy nodes. We
could, for example, add an additional boolean (“Am I a dummy node?”), but
that boolean would be a feature of every node in the list. Instead we will simply
have the _value reference associated with a dummy node be a reference to the
node itself. Since _Node references are not available outside the class, it would
be impossible to for an external user to construct such a structure for their own
purpose.®

The _Node implementation looks like this:

@checkdoc

5 The class is not “as private” as private classes in languages like Java. Here, we simply mean
that the class is not mentioned in the module variable __all__, the collection of identifiers that
are made available with the from. . .import * statement. In any case, Python will not confuse the
_Node class that supports the LinkedList with the _Node class that supports the DoublyLinkedList
class.

6 This is another information theoretic argument: because we’re constructing a structure we can
prove it cannot be confused with user data, thus we’re able to convey this is a dummy/non-data
node. The construction of valid dummy node definitions can be complicated. For example, we
cannot use a value field of None as an indicator, since None is reasonably found in a list as user data.
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Figure 4.2 An empty doubly linked list, left, and a non-empty list, on right. Dummy

nodes are shown in gray.

class _Node:
__slots__ = ["_data", "_prev", "_next"]

def __init__(self, data=None, prev=None, next=None, dummy=False):

"""Construct a linked list node."""
self._data = self if dummy else data
self._prev = prev

self._next = next

10
Q@property
def value(self):
"""For non-dummy nodes, the value stored in this _Node."""
assert self._data is not self
return self._data 15

Q@property
def next(self):

"""The reference to the next element in list (toward tail).

return self._next 20

Onext.setter
def next(self, new_next):
"""Set next reference."""

self._next = new_next 25
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Q@property
def prev(self):

"""The reference to the previous element in list (toward head)."""

return self._prev 30

Oprev.setter
def prev(self, new_prev):
"""Set previous reference."""
self._prev = new_prev
Typically, the _Nodes hold data; they’re not “dummy” _Nodes. When a dummy
node is constructed, the _data reference points to itself. If the value property
accessor method is ever called on a dummy node, it fails the assertion check.
In a working implementation it would be impossible for this assertion to fail;
when we're satisfied our implementation is correct we can disable assertion
testing (run Python with the -0 switch), or comment out this particular assert.”
The initializer for the DoublyLinkedList parallels that of the LinkedList,
except that the _head and _tail references are made to point to dummy nodes.
These nodes, in turn, point to each other through their next or prev references.
As the list grows, its _Nodes are found between _head.next and _tail.prev.
def __init__(self, data=None, frozen=False):
"""Construct a DoublyLinkedList structure."""

self._head = _Node(dummy=True)
self._tail = _Node(dummy=True)
self._tail.prev = self._head 5
self._head.next = self._tail
self._len = 0
if data:
self.extend(data)
All insertion and removal of _Nodes from the DoublyLinkedList makes use of
two private utility routines, _link and _unlink. Let’s first consider _unlink.
Suppose we wish to remove a an item from list 1. We accomplish that with:
self._unlink(item)
Compare this with the the _free method in LinkedList. There, it was nec-
essary for the caller of _free to re-orient the previous node’s next reference
because the previous node was not accessible from the removed node. Here,
_unlink is able to accomplish that task directly. _unlink is written as follows:
@mutatormethod
def _unlink(self,node):
"""unlink this node from surrounding nodes"""
node.prev.next = node.next
node.next.prev = node.prev
The process of introducing a _Node into a list inverts the operation of _unlink:

7 Commenting out the assertion is better than physically removing the assertion. Future readers of
the code who see the assertion are then reminded of the choice.
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head head
> * 3—’| . temp
tail tail

Figure 4.3 A doubly linked list before (left) and after (right) the action of _unlink.
After the operation the node that has been removed (and referenced here, by a temporary
reference) remembers its location in the list using the retained pointers. This makes re-
insertion particularly quick.

Gmutatormethod
def _link(self, node):
"""link to this node from its desired neighbors"""
node.next.prev = node
node.prev.next = node
Paired, these two methods form a beautiful way to temporarily remove (using
_unlink) and re-introduce (using _link) a list element (see Figure 4.3).® Such
operations are also useful when we want to move an element from one location
to another, for example while sorting a list.
We can now cast the _add and _free methods we first saw associated with
singly linked lists:
Gmutatormethod
def _add(self, value, location):
"""Add a value in list after location (a _Node)"""
# create a new node with desired references
entry = _Node(value,prev=location,next=location.next) 5
# incorporate it into the list
self._link(entry)
# logically add element to the list

8 This observation lead Don Knuth to write one of the most interesting papers of the past few years,
called Dancing Links, [?].
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self._len += 1

@mutatormethod
def _free(self,item):
"""Logically remove the indicated node from its list."""
# unlink item from list
self._unlink(item) 5
# clear the references (for neatness)
item.next = item.prev = None
# logically remove element from the list
self. _len -=1
Again, these operations are responsible for hiding the details of accounting (i.e.
maintaining the list length) and for managing the allocation and disposal of
nodes.

Most of the implementation of the DoublyLinkedList class follows the think-
ing of the LinkedList implementation. There are a couple of methods that
can make real use of the linkage mechanics of DoublyLinkedLists. First, the
append method is made considerably easier since the tail of the list can be found
in constant time:

Gmutatormethod
def append(self, value):
"""Append a value at the end of the list."""
self._add(value,self._tail.prev)
Because of the reduced cost of the append operation, the extend operation can
now be efficiently implemented in the naive way, by simply appending each of
the values found in the iterable data:
Gmutatormethod
def extend(self, data):
"""Append values in iterable to list (as efficiently as possible)."""
for x in data:
self .append(x)
Finally, we look at the insert method. Remember that the cost of inserting
a new value into an existing list is O(n); the worst-case performance involves
traversing the entire list to find the appropriate location. This could be improved
by a factor of two by searching for the correct location from the beginning or
the end of the list, whichever is closest:
@mutatormethod
def insert(self,index,value):
"""Insert value in list at offset index."""
# normalize the index
1 = len(self) 5
if index > 1:
index =1
if index < -1:
index = -1
if index < O: 10
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index += 1

if index < 1//2:
# find previous element from head
element = self._head 15
for offset in range(index):
element = element.next
else:
# find previous element from tail
element = self._tail.prev 20
for offset in range(l,index,-1):
element = element.prev

# insert element after location

self._add(value, element)
Another approach might be to use the sign of the index to help find the ap-
propriate location: positive indexing would traverse from the head of the list,
while negative indexing would traverse from the tail. There is, however, no
performance advantage to the signed technique; our approach always finds the
appropriate spot as quickly as possible.

4.2.3 Circularly Linked Lists

The DoublyLinkedList implementation provides significant increases in per-
formance for some important list operations. For example, operations on the
tail of the list are just as fast as operations on the head of the list. This is not too
surprising since the structure is very symmetric. This comes at a cost, however:
we double the space needed for linking nodes. Is it possible to improve access
to the tail of the list without increasing the reference space?

The answer is Yes. We note that the LinkedList contains one reference—at
the tail of the list—that is always None. It serves as a sentinel value that indicates
the end of the list. With care, we can recycle this reference to point to the head
of the list, and still retain its sentinel properties.

As with LinkedLists, we use the singly linked _Node to hold list elements.
Having learned from DoublyLinkedLists, however, we use a dummy node as
a sentinel that appears between the tail and the head of the list. This is not
necessary, but for the arguments made earlier, we opt to use the dummy node.
Finally, instead of keeping track of the head of the list, we keep a single refer-
ence, to the tail (see Figure 4.4. We initialize the structure with the following
method:

def __init__(self, data=None, frozen=False):
"""Construct a LinkedList structure."""
self._size = 0
self._tail = _Node() # a dummy node
self._tail.next = self._tail 5
self._hash = None
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Figure 4.4 An empty circular list (left) and one with many nodes (right). Only the tail
reference is maintained, and a dummy node is used to avoid special code for the empty
list.
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self._frozen = False
if data:
self.extend(data)
self._frozen = frozen
When the list is empty, of course, there is just one node, the dummy. Otherwise,
the dummy node appears after the tail, and before the head of the list. For sim-
plicity, we define a _head property:
Q@property
def _head(self):
"""A property derived from the tail of the list."""
return self._tail.next.next

The _add and _free methods work with the node that falls before the de-
sired location (because we only have forward links) and, while most boundary
conditions have been eliminated by the use of the dummy node, they must con-
stantly be on guard that the node referenced by _tail is no longer the last (in
_add) or that it has been removed (in _tail). In both cases, the _tail must be
updated:

Omutatormethod
def _add(self,value,location=None):
"""Add an element to the beginning of the list, or after loc if loc."""
if location is None:
location = self._tail.next 5
element = _Node(value,next=location.next)
location.next = element
if location == self._tail:
self._tail = self._tail.next
self._size += 1

def _free(self,previous):

element = previous.next

previous.next = element.next

if self._tail == element:

self._tail = previous 5

element.next = None

self._size -= 1

return element.value
These few considerations are sufficient to implement the circular list. All other
methods are simply borrowed from the lists we have seen before.

Exercise 4.4 The pop method is typically used to remove an element from the tail
of the list. Write the pop method for CircularList.

In almost any case where a LinkedList is satisfactory, a CircularList is
as efficient, or better. The only cost comes at the (very slight) performance de-
crease for methods that work with the head of the list, which is always indirectly
accessed in the CircularList.
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4.3 Discussion

It is useful to reflect on the various choices provided by our implementations of
the List class.

The built-in 1ist class is compact and, if one knows the index of an element
in the list, the element can be accessed quickly—in constant time. Searching for
values is linear (as it is with all our implementations). Inserting a value causes
all elements that will ultimately appear later in the list to be shifted. This is
a linear operation, and can be quite costly if the list is large and the index is
small. The only location where insertion is not costly is at the high-indexed
tail of the list. Finally, when a list grows, it may have to be copied to a new
larger allocation of memory. Through careful accounting and preallocation, we
can ameliorate the expense, but it comes at the cost of increasingly expensive
(but decreasingly frequent) reallocations of memory. This can lead to occasional
unexpected delays.

The singly linked list classes provide the same interface as the 1ist class.
They are slightly less space efficient, but their incremental growth is more grace-
ful. Once a correct location for insertion (or removal) is found the inserting
(removing) of a value can be accomplished quite efficiently. These structures
are less efficient at directly indexed operations—operations that are motivating
concepts behind the 1ist design. The CircularList keeps track of both head
and tail allowing for fast insertions, but removing values from the tail remains
a linear operation.

Supporting a linked list implementation with links in both directions makes
it a very symmetric data structure. Its performance is very similar to the other
linked list classes. Backwards linking allows for efficient removal of values from
the tail. Finally, it is quite easy to temporarily remove values from a doubly
linked list and later undo the operation; all of the information necessary is
stored directly within the node. In space conscious applications, however, the
overhead of DoublyLinkedList is probably prohibitive.

Self Check Problems

Solutions to these problems begin on page 313.
4.1 Self-check problem.

Problems

Selected solutions to problems begin on page 313.
4.1 Regular problem.
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Iteration

We have spent a considerable amount of time thinking about how data abstrac-
tion can be used to hide the unnecessary details of an implementation. In this
chapter, we apply the same principles of abstraction to the problem of hiding
or encapsulating basic control mechanisms. In particular, we look at a powerful
abstraction called iteration, which is the basis for Python’s main looping con-
struct, the for loop. In the first sections of this chapter, we think about general
abstractions of iteration. Our last topics consider how these abstractions can be
used as a unified mechanism for traversing data structures without exposing the
details otherwise hidden by the data abstraction.

5.1 The Iteration Abstraction

Suppose we are interested in using the first few prime numbers for some pur-
pose. We may be simply printing out the values, or we may wish to use them to
break another number into its unique product of primes. Here’s one approach
we might use to consider each prime in turn:
def prime_process(max):
sieve = []
n=2
while n < max:
is_prime = True 5
for p in sieve:
# have we exceeded possible factor size?
if p*p > n:
break
# no. 1is n composite (e.g. divisible by p)7? 10
if n ) p == 0:
is_prime = False
break
# if n has withstood the prime sieve, it’s a new prime
if is_prime: 15
sieve.append(n)
# heart of the problem: use n
print ("prime {}: {}".format(len(sieve),n)) 18
# consider next candidate
n =3 if n == 2 else n+2
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Notice that while most of the code is focused on generating the primes, the
part that is responsible for consuming the values (here, the print statement on
line 18) is actually embedded in the code itself.
Our code would be improved if we could simply generate a list of primes,
and then make use of that list elsewhere. We could construct and return a list:
def firstPrimes(max=None):

sieve = []
n=2
while (max is None) or (n < max):
is_prime = True 5
for p in sieve:
if p*p > n:
break
if n % p == O:
is_prime = False 10
break

if is_prime:
sieve.append(n)
n =3 if n == 2 else n+2
return sieve
Now, the code that computes the primes has been logically separated from the
code that makes use of them:
for p in firstPrimes(100):
print(p)

Now, suppose we are interested in using our new prime-generating utility
to compute a list of the prime factors of a number. We simply try reducing our
number by each of the primes in the list, keeping track of the primes involved
at each stage:

def primeFactors(n, maxp=100):
result = []
for p in firstPrimes(maxp):
if n ==
break 5
else:
while n % p == 0:
result.append(p)
n//=p
return result
We must be careful, though, because our list of primes is limited to those that
are less than 100. If we encounter a number that has a prime factor greater
than 100 our procedure will produce the wrong factorization. How can we
know how many primes are necessary? One approach, of course, is to compute
all the primes up to the square root of the number at hand, and then we can be
guaranteed that we have a sufficient number. Still, this approach is unsatisfying
because much of the prime calculation may be unnecessary.
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Fortunately, Python has a mechanism for computing values lazily or on de-
mand. The idea is to generate the values, only as they are needed. Instead of
returning a list of primes that have been computed! we yield each value as it
is computed. The action of yielding a value turns over the computation to the
consumer of the values. Only when the consumer needs another value does the
process resume, picking up where it left off. Here’s our modified code, primes:

def primes():
sieve = []
n=2
while True:

is_prime = True 5
for p in sieve:
if p*p > n:
break
if n % p == 0:
is_prime = False 10
break

if is_prime:
sieve.append(n)
yield n
n =3 if n == 2 else n+2
Our for loop can make use of the primes method, just as it had firstPrimes:
def primeFactors2(n):
result = []
for p in primes():
if n ==
break 5
else:
while n % p == 0O:
result.append(p)
n//=p
return result
But there is an important distinction between the two approaches. The first-
Primes method computed and returned the list of primes before the for loop
was able to consider even the first prime. The for loop was iterating over the
list that was returned from the firstPrimes method. In the primes imple-
mentation, the generator produces values for the for loop on demand. We say
that the computation is lazy and does not compute any primes until asked.
Because primes does not generate any primes that are not used, we do not
need to place a limit on how high it might go. We can uncover some of the
details behind how the generator does its job by considering a slightly cleaner
implementation that treats the primes method as a generator. Generators—

1 We will still want to keep track of a list of primes, but only for internal use. This approach, of
course, has all the same motivations we outlined when we discussed the abstract data type; here
we’re simply hiding the implementation of the determination of prime values.
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signaled by the use of the yield statement—are actually classes that wrap the
intermediate state of the computation. The initializer creates a new version of
the generator, and the special method __next__ forces the generator to com-
pute the next value to be yielded:

class primeGen(Iterable):

__slots__ = [ "_sieve", "_n" ]

def __init__(self): 5
self._sieve = []
self. n = 2

def __next__(self):
yielding = False 10
while not yielding:
is_prime = True
for p in self._sieve:
if p*p > self._n:
break 15
if self. n % p == O:
is_prime = False
break
if is_prime:
self._sieve.append(self._n) 20
# effectively yield the use of the machine
# returning _n as the computed value
result = self._n
yielding = True
self. n = 3 if self._n == 2 else self._n+2 25
return result

def __iter__(self):
return self
When the primes generator is defined, the effect is to essentially generate the
primesGen class. As with many of the special methods that are available in
Python, the __next__ method for objects of this class is indirectly invoked by
the builtin method next?. Here is how we might explicitly make use of this
approach:
def primeFactors3(n):

result = []

primeSource = primeGen()

p = next(primeSource)

2 This may seem strange to non-Python users. The reason that special methods are called in this
indirect way is to help the language verify the correct use of polymorphism and to better handle
targets that are None.
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while n > 1: 5
if n % p == O:
result.append(p)
n//=p
else:
p = next(primeSource)
return result

As a final exercise, we consider how we might rewrite our prime factor com-
putation as a generator. Here, the values that should be produced are the (possi-
bly repeated) prime factors, and there is always a finite number of them. Because
of this, it is necessary for our generator to indicate the end of the sequence of
values. Fortunately, Python has a builtin exception class dedicated to this pur-
pose, StopIteration. When this exception is raised it is an indication that
any for loop that is consuming the values produced by the generator should
terminate iteration.

Here, then, is our lazy generator for prime factors of a number, prime-
FactorGen:
def primeFactorGen(n):
for p in primeGen():
if n ==
raise StopIteration()
while n % p == 0O: 5
yield p
n//=p
This could be used either as the basis of a for loop:
print([p for p in primeFactorGen(234234234)])
or as an equivalent loop that explicitly terminates on a StopIteration signal:
i = primeFactorGen(234234)
results = []
while True:
try:
results.append(next(i)) 5
except StoplIteration:
break
print(results)

Generators provide a powerful tool for efficiently controlling the iteration
abstraction. In their purest forms they allow programmers to specify gen-
eral algorithms using lazy computation—computation that unfolds only as it
is needed. In a very specific setting, however, they provide an equally power-
ful mechanism for container classes to allow traversal over their values without
sacrificing the hiding of the implementation. We turn our attention, then, to the
development of iterators for simple container classes.
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5.2 Traversals of Data Structures

One of the most important uses of container classes—that is, classes whose pur-
pose is to hold (perhaps multiple) instances of other objects—is to be the target
of efficient traversals. A simple motivation is, of course, just printing out the
internal state of a container class. A simple (but general) approach to writing
the function that prints the representation of a container class might be

def __repr__(self):

for item in self:
print(item)

As we have seen in the preceding sections, the for loop targets an Iterable
object; the only requirement of an Iterable object is that calling the special
method __iter__ returns a generator that produces a useful, and typically fi-
nite, stream of values. This suggests that a container class must typically have
an __iter__ method that returns a generator that, over time, delivers the con-
tained values. How is this accomplished?

5.2.1 Implementing Structure Traversal

Let’s look at a common target of iteration, the 1ist. Because we frequently
traverse lists, it defines the special __iter__ method as follows:
def __iter__(self):
i=0
while True:
try:
yield self[i] # or self.__getitem__(i) 5
i+=1
except IndexError:

break
Again, the appearance of the yield keyword in the definition of the __iter__
method causes Python to construct a Iterable class whose yielded values are
lazily computed by the special __next__ method. In this way, Python works
hard to help the programmer to hide the details how iteration works on the 1ist
class. For example, it makes it possible for us to cast many interesting algorithms
on lists without ever directly indexing the 1ist. The power is not in avoiding
those accesses, but in providing alternative abstractions that support common
programming idioms. This is a subtle observation: that powerful techniques
arise from supporting a diverse and sometimes duplicative set of operations on
data structures.

The efficiency, then, of the traversal of the list 1
for item in 1:

is the same as the efficiency of the more explicit approach:
i=0
while True:
try:
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item = 1[i] 4
except IndexError: 5
break
i+=1

When a class does not define the special __iter__ method, Python will provide
an implementation that looks like the one for 1ists, by default. In other words,
the definition of the __getitem__ method, in a very indirect way, allows a data
structure to be the target of a for loop. (It is instructive to write the simplest
class you can whose traversal yields the values O through 9; see Problem ??.)

Suppose, however, that 1 was a LinkedList. Then the indexing operation of
line 4 in the previous code can be costly; we have seen that for linked structures,
the __getitem__ method takes time that is O(n) in the worst case. Can an
efficient traversal be constructed?

The answer, of course, is Yes. What is required is an alternative specification
of the __iter__ generator that generates the stream of values without giving
away any of the hidden details of the implementation. Here, for example, is
suitable implementation of the iteration method for the LinkedList class:

def __iter__(self):
"""Iterate over the values of this list in the order they appear."""
current = self._head
while current is not None:
yield current.value
current = current.next
Because the local variable current keeps track of the state of the traversal be-
tween successive yield statements, the iterator is always able to quickly ac-
cess the next element in the traversal. (This is opposed to having to, in the
__getitem__ method, restart the search for the appropriate element from the
head of the linked list.) Now, we see that, while random access of linked list
structures can be less efficient than for built-in 1ist objects, the iterative traver-
sal of linked lists is just as efficient as for their built-in counterparts.

We see, then, that the support of efficient traversals of container classes in-
volves the careful implementation of one of two special methods. If there is
a natural interpretation of the indexing operation, c[i], the special method
__getitem__ should be provided. Since nearly every class holds a finite num-
ber of values, the value of the index should be verified as a valid index and,
if it is not valid, an IndexError exception should be raised. Typically, the in-
dex is an integer, though we will see many classes where this need not be the
case. If indexing can be meaningfully performed with small non-negative in-
tegers, Python can be depended upon to write an equally meaningful method
for iterating across the container object. It may not be efficient (as was the case
for all of our linked structures), but it will work correctly. Where traversal effi-
ciency can be improved—it nearly always can, with a little state—a class-specific
implementation of the special __iter__ method will be an improvement over
Python’s default method. When indexing of a structure by small positive inte-
gers is not meaningful, a traversal mechanism is typically still very useful but
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Python can not be depended upon to provide a useful mechanism. It must spec-
ified directly or inherited from superclasses.

5.2.2 Use of Structure Traversals

Although we often imagine the main use of iterators will be external to the def-
inition of the class itself, one of the most important uses is the implementation
efficient class methods. On page 79, for example, we saw the implementation
of the special method __contains__ in the LinkedList class. This method im-
plements the set containment operator, in, which is True when the value on the
left side is found within the container on the right. It is relatively easy to write
equivalent code using iteration:
def __contains__(self,value):
"""Return True if value is in LinkedList."""
for item in self:
if item == value:
return True
return False

Many container classes, and especially those that implement the List inter-
face support a wide variety of special methods. Most of these may be cast in
terms of high-level operations that involve traversals and other special methods.
As a demonstration of the power of traversals to support efficient operations, we
evaluate a few of these methods.

First, we consider the extend method of the linked list class. An important
feature of this operation is the traversal of the Iterable that is passed in:

def extend(self, data):
"""Append values in iterable to list.

Args:
data: an iterable source for data. 5

for value in data:
Here, the target of the iteration is a general Iterable object. In fact, it may
be another instance of the LinkedList class. This might have been called, for
example, from the __add__ method, which is responsible for LinkedList con-
catenation with the + operator. There, we use the extend method twice.

def __add__(self,iterable):

"""Construct a new list with values of self as well as iterable.

result = LinkedList(self)

result.extend(iterable)

return result
The first call is within the initializer for the result object. Since we have effi-
ciently implemented the special __iter__ method for self, this operation will
be as efficient as possible—linear in the list length. The second call to extend,
which is explicit, is responsible for the catenation of values from the iterable
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object. That object may be a LinkedList instance; if it is, we can rest assured
that the traversal is efficient.

Two special methods are often implemented quite early in the development
process, mainly to support debugging. The first, __str__, is responsible for
converting the object to a compact and “informal” string representation. This
method is called whenever the object is used in a place where a string is called
for.®> One method might be to simply construct, by concatenation, a long,
comma-separated list of string representations of each item in the container:

-

def __str__(self):
result = ""
for item in self:
if result:
result += ", " 5
result += str(item)
return result
Here, the container class (notice we don’t know what kind of container this is,
just that it supports iteration) is traversed and each value encountered is pro-
duces a string representation of itself. These are concatenated together to form
the final string representation.

This approach, while effective, is quite inefficient. Since strings are not
mutable in Python, each catenation operation forces a new, larger copy of the
representation to be constructed. The result is an operation whose number of
character copies may grown as O(n?), not O(n). An improvement on this ap-
proach is to use the join operation, which efficiently concatenates many strings
together, with intervening separator strings (here, a comma):

def __str__(self):
item_strings = [str(item) for item in self]
return ", ".join(item_strings)
Here, item_strings is the list of collected string representations, constructed
through a list comprehension. The comprehension operation, like the for loop,
constructs an iterator to perform the traversal.

While we’re thinking about string-equivalents for container classes, it’s worth
thinking about the __repr__ special method. This method, like __str__, con-
structs a string representation of an object, but it typically meets one more
requirement—that it be a valid Python expression that, when evaluated,* con-
structs an equal object. Since container classes can typically be constructed by
providing a list of initial values, we can “cheat” by producing the list represen-
tation of the container class, wrapped by the appropriate constructor:

def __repr__(self):
return "{}({})".format(type(self).__name__,repr(list(self)))

3 This plays much the same role as the toString method in Java.

4 Because Python is an interpreter, it is quite simple to evaluate an expression that appears within
string s: one simply calls eval(s). Thus, it should be the case that obj == eval(repr(obj))
always returns True.
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The phrase type(self).__name__ produces the name of the particular con-
tainer class at hand.

5.3 Iteration-based Utilities

Early in learning Python, most programmers write a few lines that are similar
to:
for value in range(10):
print(value)
The output, of course, we expect to be:
0

0 N O O WN

9
In version 3 of Python, the range class is implemented as a very simple genera-
tor, with the crudest equivalent being:
class range(Iterable):
__slots__ = [ "_min", "_max"]

def __init__(self,*args):
self._min = args[0] if len(args) > 1 else O 5
self._max = args[-1]

def __iter__(self):
current = self._min
while current < self._max: 10
yield current
current += 1
The initializer takes interprets one or two arguments® as the bounds on a range
of values to be generated. When necessary, the __iter__ method performs the
idiomatic loop that yields each value in turn. The builtin range class is only
slightly more complex, supporting increments or strides other than 1 and sup-
porting a small number of simple features.® Python’s count iterator is even

5 The builtin range object is much more complex, taking as many as three arguments, as well as
slice values.

6 The slice class is a builtin class that provides the mechanism for complex slice indexing through
the __getitem__ method. While slice is not iterable, its provides an indices(len) method that
returns a list of indicies for a container, provided the container has length len. The resulting tuple,
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more simplistic: it simply generates a stream of values, starting at 0 (if O is not
ideal, the starting value can specified as the sole parameter to the initializer).

Python provides a number of tools that allow one to manipulate iterators.
The zip method, for example, allows one to form tuples of values that appear
from one or more iterators. One of the more common uses for zip is to perform
parallel traversals across two or more lists:

for (index, value) in zip(count(),container):
print("container [{}] = {}".format(index,value))

The stream of tuples produced finishes whenever any of the subordinate itera-
tors runs dry. How might one right such a method?

The implementation of zip makes use of several important Python features.
First, all of the arguments for a procedure (here, the subordinate iterators)
can be gathered together using the * specifier for exactly one argument that
appears after each of the positional parameters. This argument is bound to a
list of the arguments that remain after positional and keyword arguments have
been accounted for.” Second, zip makes heavy use of explicit and implicitly
driven iteration, allowing it to combine an arbitrarily large number of streams.

Here is one implementation of zip:

def zip(xargs):
# collect iterators for each of the subordinate iterables

iters = tuple((iter(arg) for arg in args)) 3
while True:
values = [] 5
for i in iters:
try:
v = next(i) 8
values.append(v)
except StopIteration: # stems from next(i) 10
return

yield tuple(values)

This is a subtle construction. On line 3, we construct a tuple that contains all of
the iterators associated with each of the iterable objects passed in. Some of the
actual parameters, may, of course, be iterators themselves. In such cases iter
simply returns a reference to the outstanding iterator. In all other cases, a fresh
iterator is constructed to traverse the iterable object. It’s important that these
values be collected before zip does its work; calling iter multiple times on an
iterable would construct a new iterator, which is not what we want. The use of
a tuple to collect these values suggests that the collection of iterator references
will not change, though the individual iterators will, of course, change state
over the course of zip’s action.

then, can be used as the arguments (using the * operator) to initialize a range object which you can
then use to traverse the indicated portion of the container.

7 A similar feature, not used here, is the *# specifier that identifies a formal parameter that is to
be bound to a dictionary of all the keyword-value pairs specified in as actual parameters. We learn
more about dictionaries in Chapter 14.
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The values list is intended to collect the next value from each of the subor-
dinate iterators. This might not be successful, of course, if one of the iterators
expires during a call to next. This is indicated by the raising of a StopIteration
exception, caught on line 10. When that occurs, the complete list of values can-
not be filled out, so the generator terminates by explicitly returning. This causes
a StopIteration exception to be generated on behalf of the zip iterator. One
might be tempted to simply re-raise the exception that was caught, but this gen-
erates is not a proper way to terminate a generator; the return is preferred. If
the collection of next values is successful, the tuple of values is generated.

It might be tempting to use a tuple comprehension® similar to:

try:

yield tuple(next(i) for i in iters)
except StopIteration:

return

but something subtle happens here. This code is exactly the same as:

try:
temp = []
iters_iter = iter(iters)
while True:
try:
i = next(iters_iter)
temp . append (next (1))
except Stoplteration:
break
yield tuple(temp)
except StopIlteration:
return

In the comprehension, the try-except statement is attempting to catch the
StopIteration exception that might be raised when next runs an iterator dry.
Unfortunately, the same StopIteration exception is used to terminate the com-
prehension, so the result is that a tuple is always constructed, with those values
that were successfully collected before the terminated iterator. The principle,
then is to avoid, whenever possible, writing comprehensions whose expressions
may throw exceptions; the results of comprehensions constructed in this way
can be unexpected.

Exercise 5.1 What happens when you call zip with one iterable object?

8 Actually, there is no tuple comprehension mechanism. Instead, a parenthesized comprehension ex-
pression indicates the construction of a generator which, of course, is iterable, and may be used in
the tuple initializer. When a generator is used in this way in a method call, the (seemingly redun-
dant) parentheses may be eliminated. In fact, the reader is encouraged to retain these parentheses
to make clear the intermediate generator comprehension.
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Exercise 5.2 What happens when you provide zip no iterable objects? Is this a
reasonable behavior? If not, is there an elegant fix?

Python provides, through its itertools module, a versatile collection of
utilities, like zip, that manipulate iterators and generators efficiently. A few of
them are listed in Table 5.1.

Tool Purpose
count ([start=0[, step=1]]) | A stream of values counting from start by step.
Figure 5.1 Iterator manipulation tools from the itertools package.
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Chapter 6

Linear Structures

The classes that implement the List interface support a large number of oper-
ations with varied efficiency. Sometimes when we design new data structures
we strip away operations in an attempt to restrict access. In the case of linear
structures, the most important operations in the interface are those that add
and remove values. Because it is not necessary, for example, to support random
access, the designer of linear structures is able to efficiently implement add and
remove operations in novel ways.

The two main linear structures are the stack and the queue. These two
general structures are distinguished by the relationship between the ordering
of values placed within the structure and the ordering of the values removed
(rewrite). Because of their general utility, linear structures are central to the
control of the flow of data in many important algorithms.

6.1 The Linear Interface

The abstract base class that is the root of all linear data structures is the Linear
class. This method provides very rudimentary access through the two primary
methods, add and remove:
class Linear(Iterable, Sized, Freezable):

W

An abstract base class for classes that primarily support organization

through add and remove operations.

e 5

__slots__ = ["_frozen", "_hash"]

def __init__(self):
"""Construct an unfrozen Linear data structure.""" 10
self._hash = None
self._frozen = False

@abc.abstractmethod
def add(self, value): 15
"""Insert value into data structure."""
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@abc.abstractmethod
def remove(self): 20
"""Remove next value from data structure."""

@abc.abstractmethod
def __len__(self): 25

"""The number of items in the data structure."""

Q@property
def empty(self): 30
"""Data structure contains no items."""

return len(self) ==

Q@property
def full(self): 35
"""Data structure has no more room."""

return False;

Q@abc.abstractmethod
def peek(self): 40
"""The next value that will be removed."""

Q@abc.abstractmethod
def __iter__(self): 45
"""An iterator over the data structure."""

def __str__(self):

"""Return a string representation of this linear.""" 50
return str(list(self));

def __repr__(self):
"""Parsable string representation of the data structure."""
return self.__class__.__name__ + "(" + str(self) + ")"
def __eq__(self, other):
"""Data structure has equivalent contents in the same order as other."""
if not isinstance(other,Linear) or len(self) '= len(other):
return False 60
for x,y in zip(self, other):
if x !=y:
return False
return True
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Clearly, any value that is removed from a linear structure has already been
added. The order in which values appear through successive remove opera-
tions, however, is not specified. For example, a stack object always returns the
value which was added to the stack most recently. We might decide, however,
to return the value that was added least recently (a queue), or the value that
is largest or smallest (a priority queue). While an algorithm may only make
use of the add and remove methods, the possible re-orderings of values as they
pass through the linear structure typically plays a pivotal role in making the
algorithm efficient. The limitations placed on the Linear interface help to guar-
antee that the relationship between the adds and removes is not tainted by other
less important operations.

6.2 The Stack

A stack is a linear structure that returns the value that was most recently added.
For this reason, we formally call this structure a last in, first out or LIFO (pro-
nounced lie-foe) structure. Stacks play an important role in algorithms that
focus attention on subproblems as part of the process of solving more general
problems. Recursion, typically, is like this as well: general problems are solved
by first solving subproblems. As a result, a call stack plays an important role
in keeping track of the progress of methods as they call each other: calling a
method adds, for example, its context (local variables and a pointer to the cur-
rently executing statement) to the call stack, and returning from a procedure
causes its context to be removed and discarded.

We use two different interfaces to describe a particular implementation of a
Stack. The first interface provides aliases for Linear methods that are particu-
lar to LIFO structures: push, pop, and top:

@checkdoc
class LIFO(metaclass=abc.ABCMeta):
A base class for stack-like objects.
wn 5

def push(self, value):
"""Insert value into data structure."""
self.add(value)
10
def pop(self):
"""Remove value from data structure."""

return self.remove()

def top(self): 15
"""Show next value to be removed from structure."""
return self.peek()
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In addition to these alternative methods, the LIFQ interfaces suggests that any
class that implements the interface abides by the reordering policy that the
last items placed in the linear are the first to come out. Nothing in the in-
terface actually guarantees that fact, but the implementation of the interface
provides a type-oriented way for checking whether a structure implements the
policy. A subtle aspect of this interface is the class header, which declares
metaclass=abc.ABCMeta. When we wish to implement abstract base classes
that are roots—that do not extend another class—it is necessary to declare the
class in this manner to include it in the abstract base class hierarchy.!

It is natural to think of storing the values of a stack in some form of List.
Indeed, the List interface provides a routine, pop, that suggests that the im-
plementors had imagined this use. Since the list version of pop defaults to
removing the element at the far end of the list (at index -1), we will place the
elements of the stack in that orientation. This has the advantage, of course,
that push/add and pop/remove are performed where they are most efficiently
implemented in lists, in constant (O(1)) time. This implementation also has
the feature that the structure can grow to be arbitrarily large; it is unbounded.
We can actually implement, as an abstract class (i.e. a class with unspecified,
abstract methods), much of the implementation as an UnboundedLinear struc-
ture. Here are the details:

class UnboundedLinear (Linear):
__slots__ = ["_data"]
def __init__(self, container=list):
"""Partially construct a linear.""" 5
super () .__init__()
self._data = container() 7
# subclasses of this type must perform further initialization

def add(self, value): 10
"""Add a value to the linear structure."""
self._data.append(value)

Q@abc.abstractmethod
def remove(self): 15
"""Remove a value from the linear strucuture."""

Q@abc.abstractmethod

I This is not ideal. It reflects the development of Python over many years. Since hierarchies of
incompletely specified classes (abc hierarchy) are a relatively new addition to Python, the default
behavior (for backwards compatibility) is not to place new classes in this hierarchy. For technical
reasons, it is not ideal to mix old-style and new-style class definitions, so we opt to include all our
structure classes in the abc hierarchy by directly specifying the metaclass, as we have here, or by
extending an existing structure (as we do much of the the time).
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def peek(self): 20
"""The next value that will be popped. Equivalent to top."""

def __len__(self):
"""The number of items in the linear structure."""
return len(self._data)

Though not all the details of the implementation can be predicted at this point,
because we were motivated by the particular efficiencies of a 1ist, we commit
to using some form of List implementation as the internal container for our
unbounded Linear classes. Here, the initializer takes a parameter, container,
that is bound to the class associated with the desired container object. In
Python, classes are, themselves, objects. Calling these class-objects creates in-
stances of that class. Here, the variable container is simply a formal-parameter,
a stand-in, for the desired class. On line 7 the underlying List is allocated.

While we cannot commit to a reordering policy, here, without loss of gener-
ality, we decide to add elements to the tail of the underlying list. We could have
made the decision to add them to the head of the list, but then, in the case of
Stack implementations, we would be forced to remove or pop values from the
head, not the tail, which seems contrary to the default behavior of 1ist’s pop
method. Because we can’t commit to a remove implementation, peek (which
allows us to see the about-to-be-removed value) must also remain abstract. The
special method __len__ simply returns the length of the underlying container.

Finally, we can develop an implementation of a stack. This structure is
an unbounded LIFO structure, so we will extend two abstract base classes,
UnboundedLinear and LIFO, as we have just seen. You should note that these
two interfaces do not overlap—they declare methods with different signatures—
therefore any reference to a method specified by either class is uniquely defined.

class Stack(UnboundedLinear,LIF0,Freezable):
__slots__ = ["_data", "_frozen", "_hash"]

def __init__(self, data=None, frozen=False, container=list):
"""Construct a Stack from an iterable source."""
super () .__init__(container=container)
if data:

for v in reversed(data):

self .push(v)
self._frozen = frozen

The initializer provides a mechanism for declaring the container type, as dis-
cussed earlier. This is simply passed to the UnboundedLinear class for alloca-
tion, and then the structure is extended by pushing any initial values. While,
internally, we imagine the stack placed in the list with the top on the right, ex-
ternally, we represent it with the top on the left. This requires us to reverse the
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initializing values to ensure they appear in the correct order.
Most important are the implementation of remove and peek. These values,
for stacks, must work on the tail end of the list.
def remove(self):
"""Remove and return a value from the linear structure."""
return self._data.pop(); # pop tail (a list method)

def peek(self): 5
"""The next value that will be popped. Equivalent to top."""
assert not self.empty
return self._datal[-1]

Notice that remove calls pop on the underlying List, the entire motivation for
our particular orientation of the stack in the underlying container.

Note that extending LIFO causes the push and pop methods and the top
property to be defined.

While we want to hide the implementation from the user, it would be nice
to be able to iterate through the values of the Stack in the order that we would
expect them to appear from successive remove operations. For this reason, we
construct an iterator that traverses the underlying list in reverse order:

def __iter__(self):

"""An iterator over the Stack."""

return reversed(self._data)
The reversed iterator is an itertool that simply takes an underlying iterator
(here, the one provided by the 1list self._data) and reverses the order that
the elements appear. This requires (possibly) substantial storage to maintain
the intermediate, in-order list. A more efficient technique might write a Stack-
specific generator that directly yields the values of the underlying list in reverse
order. We leave that as an exercise for the reader.

Now that we have defined an iterator for the stack we can appreciate the
general implemenation of the special __str__ method provided by the Linear
interface. It simply returns a string that represents a list of values in iteration
order:

def __str__(self):

"""Return a string representation of this linear."""

return str(list(self));
The special __repr__ method, recall, depends directly on the meaningful rep-
resentation of __str__. We must always be observant that the special meth-
ods __init iter str__, and __repr__ work consistently, especially

- —— —_) - —

when they are defined across many related classes.

6.3 The Queue

The queue is a linear structure that always returns that value that has been res-
ident in the structure the longest. Of all the elements in the structure, that ele-
ment was the first added, thus we call queue-like structure first-in, first-out, or
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FIFO, structures. Queues are typically used to solve problems in the order that
they were first encountered. “To do” lists and agenda-driven algorithms typi-
cally have some form of queue as the fundamental control mechanism. When
removed values are reinserted (as, obviously, the least recently added item),
the structure provides a round robin organization. Thus, queues are commonly
found in systems that periodically provide exclusive access to shared resources.
Operating systems often turn over computational resources to processes in ap-
proximate round-robin order.

The ordering concept of FIFO structures is so important we provide a base
class implementation of three alias commonly used with queue-like structures:
the enqueue and dequeue methods, and the next property.

@checkdoc
class FIFO(metaclass=abc.ABCMeta) :
A base class for queue-like objects.
wen 5

def enqueue(self, value):
"""Insert value into data structure."""
self.add(value)
10
def dequeue(self):
"""Remove value from data structure."""
return self.remove()

def next(self): 15
"""Return next removed value from data structure."""
return self.peek()
Again, we use these methods when we wish to emphasize the importance of
FIFO ordering of values stored within in the linear structure.

Paralleling our construction of the Stack class, the Queue class is based on
the UnboundedLinear and FIFO classes. Between these two base classes, most
of the Queue methods have been implemented.

class Queue(UnboundedLinear,FIF0):

__slots__ = ["_data", "_frozen", "_hash"]

def __init__(self, data=None, frozen=False, container=CircularList):

"""Construct a Queue from an iterable source."""
super () .__init__(container=container)
if data:

for v in data:

self.enqueue(v)
self._frozen = frozen
In this implementation, we have chosen to use the CircularList implementa-
tion, which provided efficient access for adding to the tail and removing from
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the head of a list. When queues are long, the 1ist class may induce significant
penalties for removing from the head of the structure. If we know the Queue
will hold, ever, only a few elements, we can always pass a container=1list
parameter when we initialize the Queue. These are the subtle choices that go
beyond simply meeting correctness requirements.

What remains, recall, is the remove method, which determines the first-in,
first-out policy. Elements are added at the tail of the list, and are removed from
the head. Since elements only appear at the head after all longer-resident values
have been removed, the policy is FIFO. The peek method allows us to see this
value before it is removed from the structure:

Gmutatormethod

def remove(self):
"""Wrapper method for dequeue to comply with ABC Linear."""
assert not self.empty
return self._data.pop(0); 5

def peek(self):
"""The next value that will be dequeued. Equivalent to next."""
assert not self.empty
return self._datalO0]
Here, the use of the unaesthetic pop operation is hidden by our implementation.
We are thankful.

Because the natural order of the elements to be removed from the queue
parallels the natural order of elements that appear in the underlying list, the
central __iter__ method can simply fall back on iterator for the underlying
list.

def __iter__(self):
"""An iterator over the Queue."""

return iter(self._data)
Notice, by the way, that we have to explictly ask (via iter) for the iterator from
the list class. In the Stack iterator, we used reversed, an iterator that asked for
the subordinate iterator from the List class on our behalf.

6.4 Bounded Implementations: StackBuffer and QueueBuffer

We had hinted, in the previous section, that we might provide a slightly differ-
ent implementation if we felt that the maximum size of the Queue was going to
be small. This type of analysis is often possible and important to the efficient
implementation of computationally intensive algorithms. We might, for exam-
ple, know a priori that we would never have more than a dozen values stored
in a stack. This may be a limitation of underlying hardware?, or it may be a lim-

2 For example, many “smart card” technologies allow the embedding of limited computation in a
low-cost portable device. It is reasonable, in these situations, to impose a limit on certain resources,
like stack or queue sizes, fully disclosing them as part of the technology’s API. Programming for
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itation that allows us to make further efficiency-enabling assumptions “down
stream” from the structure at hand. Whatever the reason, when we provide
strict limits on the size of a linear structure, we often call these implementations
buffer-based. Here, we quickly consider the StackBuffer and QueueBuffer.

Because the storage requirements of these structures is bounded, and often
small, we can allocate the entire store, once, for use throughout the life of the
structure. The size of the store is called its extent, or allocation, and it provides
an upper bound on the logical size of the structure. Because the extent and the
size are not the same, we must keep track of the size independently.

Because of the inherent speed and size efficiency of built-in lists, we opt to
make the container class a 1ist. In our implementation, here, this cannot be
overridden. Because of our single allocation strategy, we hope to avoid move-
ment of data within the list. This will require us, therefore, to think of the top or
front of the logical structure as “moving”, over time, through the underlying list.
While the logical extremes of the structure move (sometimes wrapping around
to the other end), it’s important to realize that data within the linear does not,
itself, actually get copied from one location to another.

Keeping track of the location of the top of the linear, along with its size is
sufficient to represent the n + 1 different sized linears that can be stored in a n
element 1list. If, instead, we kept track of, say, the index of the next element as
well as the index of the last element, we could not directly distinguish between
empty and full structures. This is worth thinking about very carefully. Keeping
track of a logical size of the structure is an easy solution to the problem, but
there are others. For example, we could maintain a boolean flag that is True
precisely when the structure is empty. Adding a value to the structure sets this
flag to False. If removing a value makes the structure appear either empty or
full, it must, of course, be empty, so the flag is set to True. This one extra bit of
information makes use of an information-theoretic argument to help convince
ourselves that the structure is in state that is unambiguous.

Here, then, are the details of our BoundedLinear structure. In contrast to
the UnboundedLinear we focus on the implementation of the remove and peek
methods, and promise to implement add in specific extensions to this class.

class BoundedLinear(Linear):
__slots__ = ["_data","_next","_size","_extent"]

def __init__(self, extent):

"""Partically construct a linear.""" 5

super () .__init__()

assert extent>0

self._extent = extent

self._data self._extent*[None]

self._next 0 10
0

self._size

these devices can be challenging, but it is often rewarding to realize how efficient computation can
occur within these imposed limits.
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# subclasses of this type must perform further initialization

Q@property

def empty(self): 15
"""Data structure is empty."""
return self._size == 0

Q@property

def capacity(self): 20

"""Return the size of the underlying buffer."""
return self._extent

Q@property

def full(self): 25
"""Data structure cannot accept more items."""
return self._size == self._extent

Q@abc.abstractmethod
def add(self, value): 30
"""Add a value to the linear structure."""

def remove(self):
"""Remove a value from the linear strucuture.""" 35
if self.empty:
raise EmtpyError()

else:
result = self._data[self._next]
self._datal[self._next] = None 40
self._next = (self._next+1l) Y self._extent
self._size -=1

return result

def peek(self): 45
"""The next value that will be popped. Equivalent to top."""
if self.empty:

raise EmptyError()
else:
return self._datal[self._next] 50

def __len__(self):
"""The number of items in the linear structure."""
return self._size
By implementing the remove operation a this point in the class hierarchy, we
are making the (arbitrary) decision that all buffer-based linear structures will

be oriented in the same direction—the head of the structure is found at index
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_next and, as we move right to through higher indices, we encounter values
that will be removed farther into the future. The task of remove, then, is simply
to remove the value at _next, and return it. A subtle point at line 40 is the
assignment of None to cell logically freed up by this operation. When an object,
result, is logically removed from the linear structure, it is important to make
sure that the actual reference is removed. If we don’t remove it, the garbage
collector in Python has no way to verify that the reference is unnecessary. If
the object referred to here by result would otherwise be unreferenced in the
future, a reference here would make it impossible to reclaim the space used by
the object. This is not a problem in our unbounded implementations of linear
structures because the dereferencing of these objects happens naturally as part
of the List pop method. A failure to dereference values is not a logical error,
it’s simply an space performance optimization that, in some cases, can yield
important space savings through garbage collection.

The details of StackBuffer and QueueBuffer are very similar, with their
only significant differences appearing in the workings of the add method. In the
StackBuffer, the addition of values appears near the _next index:

class StackBuffer (BoundedLinear,LIF0,Freezable):
def __init__(self, extent=10, data=None, frozen=False):
"""Construct a Stack from an iterable source."""

super () .__init__(extent)
# super().__init__() sets frozen false 5
if data:

for v in reversed(data):
self .push(v)
self._frozen = frozen
10
OGmutatormethod
def add(self,value):
if self.full:
raise FullError()
else: 15
self._next = (self._next-1+self._extent)%self._extent;
self._datalself._next] = value
self._size += 1

def __iter__(self): 20
"""An iterator over the Stack."""
return (self._datal[i%self._extent] for i in range(self._next,self._next+self._size))
Notice that we update the _next index, not by subtracting 1, but by adding the
extent less 1. This ensures that all the intermediate values are non-negative,
where the behavior of the modulus operator (%) is well-behaved.® Thus, the val-

3 The concern, here, is that the definition of n%m for n<0 is different for different languages, though
most strive to have the remainder computation meet the constraint that n%m == n-(n/m)*m. In this
particular application, we would like to have the result be a valid index, a value that should never
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ues produced by the next method are found at indices that increase (wrapping
around to index O, if necessary), over time. The iterator, then, must carefully
return the values starting at index _next.

The implementation of QueueBuffer differs only in its add method, which
adds the new value to the tail of the logical list, that is, at _size elements past
_next.

class QueueBuffer (BoundedLinear,FIF0,Freezable):
def __init__(self, extent=10, data=None, frozen=False):
"""Construct a Queue from an iterable source."""
super () .__init__(extent)
# super().__init__() sets frozen false 5
if data:
for v in data:
self .enqueue(v)
self._frozen = frozen
10
Gmutatormethod
def add(self,value):
if self.full:
raise FullError()
else: 15
last = (self._next+self._size)%self._extent
self._datal[last] = value
self._size += 1

def __iter__(self): 20
"""An iterator over the Queue."""

return (self._datal[ilself._extent] for i in range(self._next,self._next+self

Here, of course, the list is made longer simply by increasing _size, provided
that the queue is not full. There is no need to worry about the magnitude of
_size since, if the queue was not full, _size must have been less than _extent.

Because we have oriented the buffer-based stack and queue the same way
(from the perspective of the remove operation), the iterators are precisely the
same. It is reasonable, at this point, to consider whether the __iter__ method
should be pushed back up into the super-class, BoundedLinear, where it might
serve to motivate a similar orientation in other subclasses of BoundedLinear.

be negative. In Python, the sign of the result is always the same as the sign of the divisor (m, above).
In Java, the sign of the result is always the same as the dividend (n). In C the result is defined by the
underlying hardware. From our point of view, Python computes the correct result, but the answer
is never incorrect if we take the extra step described in the text, to guarantee the dividend is always
non-negative.

._size)
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6.5 The Subtleties of Iteration and Equality Testing

We saw, in our previous discussion of linear structures, that traversal of lin-
ear structures is best motivated by the order of values that are encountered
when successive remove operations are performed. In fact, since the underlying
structure is hidden, it is important that the traversal order be motivated by the
semantics of how the structure acts over time, as opposed to the mechanics of
how the structure is implemented.

Another important reason to carefully think about the ordering of traver-
sals is that they often provide the mechanism necessary to help us implement
higher-level operations like equality testing. In Python, recall, two objects are
compared using the eq method. For simple, non-collection objects, two objects
are typically equal if, say, all of their components are, themselves, equal. For
collection objects, testing is more complex. Suppose, for example, that we com-
pare two buffer-based queues. It is important not to implement equality testing
by simply handing the operation of to the underlying 1ist object because (1)
the 1ists may be different lengths or (2) the logical structures may be mapped
to different locations within their respective 1ists. The problem becomes more
complex when we want to support the comparison of structures implemented
in fundamentally different ways, for example, two FIFO structures implemented
using bounded and unbounded linear structures, respectively.

The solution is to base the special method __eq__ on parallel traversals of
the two structures. Now we understand our implementation of __eq__ from the
Linear interface:

def __eq__(self, other):

"""Data structure has equivalent contents in the same order as other."""

if not isinstance(other,Linear) or len(self) != len(other):
return False
for x,y in zip(self, other): 5
if x !'=y:
return False
return True
This is the structure of equality testing for most container classes.

6.6 Python’s deque Collection

Python’s collections package includes a deque or double ended queue. This builtin
type provides all the features of a 1ist, but efficiently implements insertion of
values at low indices. Because of this, it supports new methods, appendleft,
extendleft, and popleft, that act like append, extend, and pop, but that act
on the low-index end of the structure, efficiently Random access indexing is
also available, but it works in time linear in the distance from the nearest list
end.

The technique is, essentially, to support the structure with a sufficient num-
ber small arrays or blocks (typically about 64 elements in length) that are linked
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together to form a doubly linked list. The first element of the deque is located
somewhere within the first block, and the last element is located somewhere
within the last block.* All other elements are stored contiguously from after the
first element, through successive blocks, and until the last element in the last
block. The deque also quietly supports a bounded version of the structure by
allowing the user to specify a maximum length associated with the structure.
Appending values to either end causes excess elements to be lost off the other.
Our version of deque maintains several state variables, including _list, the

underlying doubly linked list; _first and _len, that determine the span of
the deque across the blocks of store; the _maxlen variable is either None if the
deque is unbounded, or the maximum length of the buffer. Here’s how our
implementation of the deque class begins:

from collections import Iterable

from structure.doubly_linked_list import DoublyLinkedList

from structure.decorator import checkdoc, hashmethod, mutatormethod

# size of the blocks of contiguous elements.

5
Qcheckdoc
class deque(Iterable):
blocksize = 64
__slots__ = [ "_list", "_first", "_len", "_maxlen" ] 10

def __init__(self, initial = None, maxlen=None):

"""Initialize deque instance."""

self._maxlen = maxlen

self._list = DoublyLinkedList () 15

self._list.append(deque.blocksizex [None])

self._first = deque.blocksize//2

self. _len = 0

if initial is not Nonme:

for v in initial:
self.append(v)
The DoublyLinkedList maintains a collection of blocks of store, each of which
is a fixed length 1list of size blocksize (here, 64). These structures never
change size, they simply provide potential storage locations.The length of the
structure, _len, is zeroed, and we choose a value of _first that will allow
append operations on either end of the structure to expand into adjacent cells
of the current block.
The location of the last element of the deque is determined by the private
property, _last:
@property
def _last(self):

4 For simplicity, we assume there is always at least one block backing the deque.
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return self._first + self._len - 1
This property computes the index of the last elements, assuming that it is found
somewhere within the first block. Clearly, if _1en becomes large, then this is
not a valid index. With a little ingenuity, we can compute the block index (the
index of the element in _list) and the offset within that block. The private
method _addr takes one of these “virtual” block offsets and returns a 2-tuple
that contains the actual block index and offset:

def _addr(self,offset):

"""Return the block and line pair associated with an offset."""

return (offset//deque.blocksize,offset’deque.blocksize)
A typical use of these methods is the implementation of __getitem__ and

__setitem__ that allow random access and update of elements within the deque:

def __getitem__(self,index):

"""Get a value stored at a position in the deque indicated by index."""

if index >= len(self):

raise IndexError("Index {} out of range.".format(index))
(block,line) = self._addr(self._first + index) 5
return self._list[block] [1line]

def __setitem__(self,index,value):
"""Assign the element of the deque at index to value."""
if index > len(self): 10
raise IndexError("Index {} out of range.".format(index))

(block,line) = self._addr(self._first + index)

self._list[block] [1ine] = value
The reader may find it useful to walk through these methods with index set to
zero: it simply accesses the _first entry of block O of the _list. It is important
to observe, here, that the performance of this routine is O(1) and optimized
to search for the appropriate block from the nearest end of the structure (see
page ??).

We now consider the operations that increase the size of the structure:
append and appendleft. The append operation checks to see if the last block in
the _list is full, potentially extends the list, and then writes the desired value
at the block and index indicated by the new value of _last:

def append(self,value):
"""Append value to the far end of the deque."""
(block,line) = self._addr(self._last+1)
if block >= len(self._list):
self._list.append(deque.blocksize*[None]) 5
self._len += 1
self._list[block] [1ine] = value
if (self._maxlen is not None) and (self._len > self._maxlen):
self.popleft()
Here, we note that increasing the size of the list simply requires incrementing
_len; _first stays where it is and _last is a property whose value depends on
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_first and _size. The appendleft operation is symmetric, save for the need
to update _first:
def appendleft(self,value):
"""Append value to the near end of the list."""
self._first = (self._first-1)J%deque.blocksize
if self._first == deque.blocksize-1:
self._list.insert(0,deque.blocksize*[None]) 5
self._len += 1
self._list[0] [self._first] = value
if (self._maxlen is not None) and (self._len > self._maxlen):
self.pop()
An important part of both of these methods is to enforce any buffer limits that
may have been imposed at the construction of the deque.

All other growth operations are cast in terms of one of the append methods.
For example, extend simply (and efficiently) extends the list through multiple
appends:

def extend(self,iterable):
"""Add elements from iterable to the far end of the deque."""
for v in iterable:
self .append(v)
The extendleft method is the same, but performs an appendleft, instead,
reversing the order of the elements placed at the beginning of the deque.

There are no surprises in the pop and popleft methods. The reader is en-
couraged to sketch out and verify possible implementations.

A single rotate method allows the elements of the deque to shifted, end-
around, to the right (for positive n) or left (for negative n). With a little thought
it becomes clear that these rotates are related and that smaller left (or right)
rotates are preferred over larger right (or left) rotates:

def rotate(self, n=1):
"""Pop elements from one end of list and append on opposite.

If n > 0, this method removes n elements from far end of list and
successively appends them on the near end; a rotate right of n.
If n < 0, the opposite happens: a rotate left of n.

Args:
n: number of elements to rotate deque to the right.

e 10
1 = len(self)
12 = 1//2
n = ((n+ 12)%1)-12
while n < O:

self.append(self.popleft()) 15

n+=1
while n > O:
self.appendleft (self.pop())
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n-=1
While not a feature of Python’s deque objects, insertion and deletion of values at
arbitrary locations can be accomplished by combinations of rotations, appends,
and pops.

Finally, because deque structures support __len__ and __getitem__ meth-
ods, Python constructs a default iterator. Unfortunately, __getitem__ is a linear
operation, so a traversal of the structure with the default iterator leads to O(n?)
performance in time. This can be improved if we use a generator to manage a
long-running traversal over the underlying doubly linked list. One implementa-
tion is as follows:

def __iter__(self):

"""Traverse the elements of the deque from head to tail."""
lit = iter(self._list)
offset = self._first
block = None 5
while offset <= self._last:

index = offsetldeque.blocksize

if block is None:

block = next(lit)

yield block[index] 10
offset += 1
if index == deque.blocksize-1:

block = None

This generator is quite efficient, but it is not as pretty as one might expect,
largely because care has to be taken when _first or _last fall at one of the
ends of an underlying block.

Python’s deque, which is implemented in a manner similar to this, provides
a general alternative to linear structure implementation. Because of a versatil-
ity that provides many features that we may not want accessible in our linear
structures, it may allow users to violate desired FIFO or LIFO behaviors we de-
sire. It remains, however, a suitable container atop which we may implement
more restrictive interfaces that support only FIFO or LIFO operations. Because,
for example, the deque does not provide a general insert method, it cannot
be classified as a list. Such a method would be easy to construct, provided we
think carefully about which element should be removed if the insert grows the
deque beyond its desired maximum length.

6.7 Conclusions

Often, one of the most important features of a container class is to take away
features of an underlying container. For linear structures, we seek to guarantee
certain order relationships between the values inserted into the linear structure
and those extracted from it. In our examples and, as we shall continue to see in
later chapters, these relationships are important to making sure that algorithms
achieve a desired performance or, even more critically, compute the correct re-
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sult.



Chapter 7
Sorting

Computers spend a considerable amount of their time keeping data in order.
When we view a directory or folder, the items are sorted by name or type or
modification date. When we search the Web, the results are returned sorted by
“applicability.” At the end of the month, our checks come back from the bank
sorted by number, and our deposits are sorted by date. Clearly, in the grand
scheme of things, sorting is an important function of computers. Not surpris-
ingly, data structures can play a significant role in making sorts run quickly. This
chapter begins an investigation of sorting methods.

7.1 Approaching the Problem

For the moment we assume that we will be sorting an unordered list of integers
(see Figure 7.1a).! The problem is to arrange the integers so that every adjacent
pair of values is in the correct order (see Figure 7.1b). A simple technique to sort
the list is to pass through the list from left to right, swapping adjacent values
that are out of order (see Figure 7.2). The exchange of values is accomplished
with a parallel assignment statement:

(a,b) = (b,a)
This is equivelent to the packing and unpacking of a 2-tuple, or a sequential
series of statements:

temp = a
a=>b
b = temp

but the temporary variable (temp) is implied.

After a single pass the largest value will end up “bubbling” up to the high-
indexed side of the list. The next pass will bubble up the next largest value, and
so forth. The sort—called bubble sort—must be finished after n — 1 passes. Here
is how we might write bubble sort in Python:

def bubble(l,n):
for sorted in range(O,n):
for i in range(1,n-sorted):
if 1[i] < 1[i-1]:

1 We focus on list of integers to maintain a simple approach. These techniques, of course, can be
applied to other container classes, provided that some relative comparison can be made between
two elements. This is discussed in Section 7.9.
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Figure 7.1 The relations between entries in unordered and sorted lists of integers.
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Observe that the only potentially time-consuming operations that occur in this
sort are comparisons (on line 4) and exchanges (on line 5). While the cost
of comparing integers is relatively small, if each element of the list were to
contain a long string (for example, a DNA sequence) or a complex object (for
example, a Library of Congress entry), then the comparison of two values might
be a computationally intensive operation. Similarly, the cost of performing an
exchange is to be avoided.? We can, therefore, restrict our attention to the
number of comparison and exchange or data movement operations that occur
in sorts in order to adequately evaluate their performance.

In bubble sort each pass of the bubbling phase performs n — 1 comparisons
and as many as n — 1 exchanges. Thus the worst-case cost of performing bubble
sort is O(n?) operations. In the best case, none of the comparisons leads to an
exchange. Even then, though, the algorithm has quadratic behavior.

Most of us are inefficient sorters. Anyone having to sort a deck of cards or
a stack of checks is familiar with the feeling that there must be a better way to
do this. As we shall see, there probably is: most common sorting techniques
used in day-to-day life run in O(n?) time, whereas the best single processor
comparison-based sorting techniques are expected to run in only O(nlogn)
time. (If multiple processors are used, we can reduce this to O(logn) time,
but that algorithm is beyond the scope of this text.) We shall investigate some

2 In languages like Python, where objects are manipulated through references, the cost of an ex-
change of even large objects is usually fairly trivial. In some languages, however, the cost of ex-
changing large values stored directly in the list is a real concern.

3 If, as we noted in Figure 7.2, we stopped when we performed a pass with no exchanges, bubble
sort would run in O(n) time on data that were already sorted. Still, the average case would be
quadratic.
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other sorting techniques that run in O(n?) time, on average, and some that run
in O(nlogn) time. In the end we will attempt to understand what makes the
successful sorts successful.

Our first two sorting techniques are based on natural analogies.

7.2 Selection Sort

Children are perhaps the greatest advocates of selection sort. Every October,
Halloween candies are consumed from best to worst. Whether daily sampling
is limited or not, it is clear that choices of the next treat consumed are based
on “the next biggest piece” or “the next-most favorite,” and so on. Children
consume treats in decreasing order of acceptability. Similarly, when we select
plants from a greenhouse, check produce in the store, or pick strawberries from
the farm we seek the best items first.

This selection process can be applied to an list of integers. Our goal is to
identify the index of the largest element of the list. We begin by assuming that
the first element is the largest, and then form a competition among all the re-
maining values. As we come across larger values, we update the index of the
current maximum value. In the end, the index must point to the largest value.
This code is idiomatic, so we isolate it here:

max = 0 # assume element O is the largest
for loc in range(l,unsorted):
if 1[max] < 1[loc]:
# bigger value found
max = loc
# 1[max] is largest value

(Notice that the maximum is not updated unless a larger value is found.) Now,
consider where this maximum value would be found if the data were sorted: it
should be clear to the right, in the highest indexed location. All we need to do is
swap the last element of the unordered elements of the list with the maximum.
Once this swap is completed, we know that at least that one value is in the
correct location—the one on the right—and we logically reduce the size of the
problem—the number of unsorted values—by one. If we correctly place each of
the n — 1 largest values in successive passes (see Figure 7.3), we have selection
sort. Here is how the entire method appears in Python:
def selection(l,n):
for sorted in range(n):
unsorted = n-sorted
max = 0 # assume element O is the largest
for loc in range(l,unsorted): 5
if 1[max] < 1[loc]:
# bigger value found
max = loc
# l[max] is largest value
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target = unsorted-1 # where to stick 1[max] 10
if max != target:
(1[max],1[target]) = (1[target],l[max])

We can think of selection sort as an optimized bubble sort, that simply makes
one exchange—the one that moves the maximum unsorted value to its final
location. Bubble sort performs as many as n — 1 exchanges on each pas. Like
bubble sort, however, selection sort’s performance is dominated by O(n?) time
for comparisons.

The performance of selection sort is independent of the order of the data: if
the data are already sorted, it takes selection sort just as long to sort as if the
data were unsorted. For this reason, selection sort is only an interesting thought
experiment; many other sorts perform better on all inputs. We now think about
sorting with a slightly different analogy.

7.3 Insertion Sort

Card players, when collecting a hand, often consider cards one at a time, in-
serting each into its sorted location. If we consider the “hand” to be the sorted
portion of the list, and the “table” to be the unsorted portion, we develop a new
sorting technique called insertion sort.

In the following Python implementation of insertion sort, the sorted values
are kept in the low end of the list, and the unsorted values are found at the high
end (see Figure 7.4). The algorithm consists of several “passes” of inserting the
lowest-indexed unsorted value into the list of sorted values. Once this is done,
of course, the list of sorted values increases by one. This process continues until
each of the unsorted values has been incorporated into the sorted portion of the
list. Here is the code:

def insertion(l,n):
for i in range(1l,n): # 1..n-1

item = 1[i]

loc = None

for pos in reversed(range(i)): 5
if item < 1[pos]:
loc = pos
1[pos+1] = 1[pos]
else:
break 10

if loc is not Nome:
1[loc] = item

def _is(1,low,high):
for i in range(low+l,high+1): # 1..n-1 15
item = 1[i]
loc = None
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for pos in reversed(range(low,i)):
if item < 1[pos]:
loc = pos 20
1[pos+1] = 1l[pos]
else:
break
if loc is not None:
1[loc] = item

A total of n — 1 passes are made over the list, with a new unsorted value in-
serted each time. The value inserted is likely to be neither a new minimum or
maximum value. Indeed, if the list was initially unordered, the value will, on
average, end up near the middle of the previously sorted values, causing the in-
ner loop to terminate early. On random data the running time of insertion sort
is expected to be dominated by O(n?) compares and data movements (most of
the compares will lead to the movement of a data value).

If the list is initially in order, one compare is needed at every pass to verify
that the value is as big as all the previously sorted value. Thus, the inner loop
is executed exactly once for each of n — 1 passes. The best-case running time
performance of the sort is therefore dominated by O(n) comparisons (there are
no movements of data within the list). Because of this characteristic, insertion
sort is often used when data are very nearly ordered (imagine the cost of adding
a small number of new cards to an already sorted poker hand).

In contrast, if the list was previously in reverse order, the value must be com-
pared with every sorted value to find the correct location. As the comparisons
are made, the larger values are moved to the right to make room for the new
value. The result is that each of O(n?) compares leads to a data movement, and
the worst-case running time of the algorithm is O(n?).

7.4 Quicksort

Since the process of sorting numbers consists of moving each value to its ulti-
mate location in the sorted list, we might make some progress toward a solution
if we could move a single value to its ultimate location. This idea forms the basis
of a fast sorting technique called quicksort.

One way to find the correct location of, say, the leftmost value—called a
pivot—in an unsorted list is to rearrange the values so that all the smaller val-
ues appear to the left of the pivot, and all the larger values appear to the right.
One method of partitioning the data is shown here. It returns the final location
for what was originally the leftmost value:

def _partition(l,left,right):
while left < right:
while left < right and 1[left] < 1l[right]:
right -=1
if left != right: 5
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Figure 7.4 Profile of the passes of insertion sort: shaded values form a “hand” of sorted
values. Circled values are successively inserted into the hand.
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Figure 7.5 The partitioning of a list’s values based on the (shaded) pivot value 40.
Snapshots depict the state of the data after the if statements of the partition method.

(1[1eft],1[right]) = (1[right],1[left])
left += 1

while left < right and 1[left] < 1l[right]:
left += 1

if left != right: 10
(1[left],1lright]) = (1[right],1[left])
right -= 1

return left

The indices left and right start at the two ends of the list (see Figure 7.5) and
move toward each other until they coincide. The pivot value, being leftmost in
the list, is indexed by left. Everything to the left of left is smaller than the
pivot, while everything to the right of right is larger. Each step of the main
loop compares the left and right values and, if they’re out of order, exchanges
them. Every time an exchange occurs the index (1eft or right) that references
the pivot value is alternated. In any case, the nonpivot variable is moved toward
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Figure 7.6 Profile of quicksort: leftmost value (the circled pivot) is used to position
value in final location (indicated by shaded) and partition list into relatively smaller and
larger values. Recursive application of partitioning leads to quicksort.

the other. (Failing to do this simply introduces redundant comparisons.) Since,
at each step, left and right move one step closer to each other, within n steps,
left and right are equal, and they point to the current location of the pivot
value. Since only smaller values are to the left of the pivot, and larger values
are to the right, the pivot must be located in its final location. Values correctly
located are shaded in Figure 7.6.

Because the pivot segregates the larger and smaller values, we know that
none of these values will appear on the opposite side of the pivot in the final
arrangement. This suggests that we can reduce the sorting of a problem of size
n to two problems of size approximately 7. To finish the sort, we need only
recursively sort the values to the left and right of the pivot:

def quicksort(l,n):
_gs(1,0,n-1)

def _gs(1,low,high):
if low < high: 5
i = _partition(l,low,high)
_qs(1,low,i-1)
_gs(1,i+1,high)

In practice, of course, the splitting of the values is not always optimal (see the
placement of the value 4 in Figure 7.6), but a careful analysis suggests that even
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with these “tough breaks” quicksort takes only O(nlogn) time.

When either sorted or reverse-sorted data are to be sorted by quicksort, the
results are disappointing. This is because the pivot value selected (here, the
leftmost value) finds its ultimate location at one end of the list or the other.
This reduces the sort of n values to n — 1 values (and not n/2), and the sort
requires O(n) passes of an O(n) step partition. The result is an O(n?) sort.
Since nearly sorted data are fairly common, this result is to be avoided.

Notice that picking the leftmost value is not special. If, instead, we attempt
to find the correct location for the middle value, then other arrangements of
data will cause the degenerate behavior. In short, for any specific or determin-
istic partitioning technique, a degenerate arrangement exists. The key to more
consistent performance, then, is a nondeterministic partitioning that correctly
places a value selected at random (see Problem ??). There is, of course, a very
unlikely chance that the data are in order and the positions selected induce a
degenerate behavior, but that chance is small and successive runs of the sorting
algorithm on the same data are exceedingly unlikely to exhibit the same behav-
ior. So, although the worst-case behavior is still O(n?), its expected behavior is
O(nlogn).

Improving Quicksort

While the natural implementation strategy for quicksort is recursive, it’s impor-
tant to realize that Python has a limited number of method calls that can be
outstanding at one time. A typical value for this limit is 1000. That means, for
example, sorting a list of 1024 values that is already sorted not only incurs a per-
formance penalty, it will actually fail when the recursive calls cascade beyond
1000 deep. We consider how this limit can be avoided.

When data is randomly ordered, there can be as many as O(log n) outstand-
ing calls to quicksort. The limit of 1000 levels of recursion is not a problem in
cases where the partitioning of the list is fairly even. However, quicksort can
have degenerate behavior when the correct location for the selected pivot is at
one end of the list or the other. The reason is that the larger half of the par-
titioned list is nearly as large as the list itself. This can lead to O(n) levels of
recursion.

There are two ways that this can be dealt with. First, we can choose, at each
partitioning, a random element as the pivot. Our partitioning strategy is easily
adapted to this approach: we simply begin the partition by swapping the left
element with some other element picked at random. In this way, the selection
of extreme values at each partitioning stage is quite unlikely. It is also possible
to simply shuffle the data at the beginning of the sort, with similar expected
runtime behavior. Randomization leads to expected O(nlogn) running time
and O(logn) stack depth.

A second optimization is to note that once the partition has been completed,
the remaining tasks in quicksort are recursive calls. When a procedure ends
with a recursive call it is called tail recursion, which can be converted into a
simple call-free loop. Quicksort ends with two calls: one can be converted into
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aloop, and the other cannot be eliminated in any direct way. Thus the following
procedure is equivalent to our previous formulation:
def _qs(1,low,high):
while low < high:
i = _partition(l,low,high)
_gs(1,low,i-1)
low = i+1
The order of the recursive calls in quicksort is, of course, immaterial. If we
choose to convert one of the recursive calls, we should choose to eliminate the
call that sorts the large half of the list. The following code eliminates half of the
calls and ensures the depth of the stack never grows larger than O(logn) call
frames:
def _qs(1,low,high):
while low < high:
i = _partition(l,low,high)
if i < (low+high)//2:
# sort fewer smaller numbers recursively 5
_gqs(1,low,i-1)
low = i+1
else:
# sort fewer larger numbers recursively
_qs(1,i+1,high)
high = i-1

Quicksort is an excellent sort when data are to be sorted with little extra
space. Because the speed of partitioning depends on the random access nature
of lists, quicksort is not suitable when used with structures that don’t support
efficient indexing. In these cases, however, other fast sorts are often possible.

7.5 Mergesort

Suppose that two friends are to sort a list of values. One approach might be
to divide the deck in half. Each person then sorts one of two half-decks. The
sorted deck is then easily constructed by combining the two sorted half-decks.
This careful interleaving of sorted values is called a merge.

It is straightforward to see that a merge takes at least O(n) time, because
every value has to be moved into the destination deck. Still, within n — 1 com-
parisons, the merge must be finished. Since each of the n — 1 comparisons
(and potential movements of data) takes at most constant time, the merge is no
worse than linear.

There are, of course, some tricky aspects to the merge operation—for exam-
ple, it is possible that all the cards in one half-deck are smaller than all the cards
in the other. Still, the performance of the following merge code is O(n):

def _merge(1,10,h0,11,hl1,temp):
# save left sub-array into temp
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for i in range(10,11):
temp[i] = 1[i]
target = 10 5
while 10 <= hO and 11 <= hil:
if 1[11] < temp[10]:
1[target] = 1[11]
11 += 1
else: 10
1[target] = temp[10]
10 += 1
target += 1
while (10 <= h0):
1[target] = temp[10] 15
target += 1
10 += 1

This code is fairly general, but a little tricky to understand (see Figure 7.7). We
assume that the data from the two lists are located in the two lists—we copy
the lower half of the range into temp and the upper half of the range remains
in 1 (see Figure 7.7a). The first loop compares the first remaining element of
each list to determine which should be copied over to 1 first (Figure 7.7b). That
loop continues until one of the two sublists is emptied (Figure 7.7c). If 1 is the
emptied sublist, the remainder of the temp list is transferred (Figure 7.7d). If
the temp list was emptied, the remainder of the 1 list is already located in the
correct place—in 1!

Returning to our two friends, we note that before the two lists are merged
each of the two friends is faced with sorting half the cards. How should this be
done? If a deck contains fewer than two cards, it’s already sorted. Otherwise,
each person could recursively hand off half of his or her respective deck (now
one-fourth of the entire deck) to a new individual. Once these small sorts are
finished, the quarter decks are merged, finishing the sort of the half decks, and
the two half decks are merged to construct a completely sorted deck. Thus, we
might consider a new sort, called mergesort, that recursively splits, sorts, and
reconstructs, through merging, a deck of cards. The logical “phases” of merge-
sort are depicted in Figure 7.8.

def _ms(1l,low,high,temp):
if high <= low:

return
mid = (low+high)//2
if low < mid: 5

_ms(1,low,mid, temp)
if mid+1 < high:
_ms(1,mid+1,high,temp)
_merge(1l,low,mid,mid+1,high,temp)

Note that this sort requires a temporary list to perform the merging. This tem-
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Figure 7.7 Four stages of a merge of two six element lists (shaded entries are partic-
ipating values): (a) the initial location of data; (b) the merge of several values; (c) the
point at which a list is emptied; and (d) the final result.
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Figure 7.8 Profile of mergesort: values are recursively split into unsorted lists that are
then recursively merged into ascending order.

porary list is only used by a single merge at a time, so it is allocated once and
garbage collected after the sort. We hide this detail with a public wrapper pro-
cedure that allocates the list and calls the recursive sort:
def mergesort(l,n):
temp = len(1l)*[None]
_ms(1,0,n-1,temp)

Clearly, the depth of the splitting is determined by the number of times that n
can be divided in two and still have a value of 1 or greater: log, n. At each level
of splitting, every value must be merged into its respective sublist. It follows that
at each logical level, there are O(n) compares over all the merges. Since there
are log, n levels, we have O(n - logn) units of work in performing a mergesort.

One of the unappealing aspects of mergesort is that it is difficult to merge
two lists without significant extra memory. If we could avoid the use of this
extra space without significant increases in the number of comparisons or data
movements, then we would have an excellent sorting technique.

Recently, there has been renewed interest in designing sorts that are com-
binations of the sorts we have seen so far. Typically, the approach is to select
an appropriate sort based on the characteristics of the input data. In our next
section, we see how this adaptation can be implemented.
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Figure 7.9 The relative performance of mergesort and insertion sort for lists of length
1 through 256. Note that mergesort is more efficient than insertion sort only for lists
larger than 32 elements.

7.5.1 Adaptive Sorts

We have seen a number of different types of sorting, each with slightly differ-
ent performance characteristics. We also noted, earlier, that the main concern
about performance was the number of comparisons and memory movements,
it is sometimes necessary to consider, more carefully, the actual time it takes to
perform all parts of the algorithm. For example, mergesort, which is recursive
and involves some fairly large control overhead in the _mergeroutine, is in the
best case O(n logn), but the constant associated with the performance curve is,
undoubtedly, much larger than the constant associated with insertion sort. This
means, for example, that for small values of n, insertion sort may be expected
to perform better than mergesort.

Since mergesort (and quicksort) naturally approach the problem through
recursive sorting, we have the opportunity to substitute in a more efficient sort
when the subarray becomes sufficiently short. Mergesort can, for example, call
insertion sort when that technique appears to be more efficient on a subarray. To
determine the appropriate list length to adapt to insertion sort, we can measure
the relative performance of sorting methods. In Figure 7.9 we see the relative
performance of mergesort and insertion sort for array sizes up to 128 elements.
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Since insertion sort (on random data) appears to be more efficient than
merge sort when a list has 64 or fewer elements, we can modify our mergesort
algorithm to take advantage of that fact:

def adaptivemergesort(l,n):
temp = n*[None]
_ams(1,0,n-1,temp)

def _ams(1l,low,high,temp): 5
n = high-low+1
if n < 64:
_is(1,1low,high)
else:
if high <= low: 10

return
mid = (low+high)//2
if low < mid:
_ams(1,low,mid,temp)
if mid+1 < high: 15
_ams (1,mid+1,high,temp)
_merge(l,low,mid,mid+1,high,temp)
Clearly, mergesort is really insertion sort for smaller list sizes, but for larger lists
the mergesort call tree is trimmed of 6 levels of recursive calls in favor of the
relatively fast insertion sort technique. In Figure ??, the adaptive merge sort
takes on the characteristics of insertion sort for lists of length 64 or less, and the
shape of the curve is determined primarily by the characteristics of mergesort
for larger lists.

Quicksort can benefit from the same type of analysis and we find that, sim-
ilarly, for lists of length 64 or less, insertion sort is preferred. To introduce the
optimization we note that partitioning the values into sublists that are relatively
small and large compared to the pivot, we know the values in the sublist must
occupy that space in the sorted list. We could sort small sublists immediately,
with insertion sort, or we can delay the sorting of small sublists until after the
quicksort has otherwise completed its activity. A single insertion sort on the
entire list will be fairly efficient: each element is close to its final destination
(and thus quickly slid into place with an insertion pass) and elements that were
pivots are in precisely the correct location (so insertion sort will not move them
at all). Our optimized adaptive quicksort appears, then, as follows:

def quicksorta(l,n):
shuffle(1,n)
_gsa(l,0,n-1)
insertion(1,0,n-1)

def _gsa(l,low,high):
while low+64 < high:
i = _partition(l,low,high)
if i < (high+low)//2:
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Figure 7.10 The relative performance of insertion, merge, and adaptive merge sorts.

_gsa(l,low,i-1) 10
low = i+l
else:
_gsa(l,i+1,high)
high = i-1

7.6 Stability

When the objects to be sorted are complex, we frequently determine the order-
ing of the data based on a sort key. Sort keys either appear directly in the object,
or are derived from data found within the object. In either case, the keys for two
objects may be equal even if the objects are not. For example, we may perform
a sort of medical records based on the billing id, a value that may be shared
among many individuals in a family. While the billing id for family members is
the same, their medical histories are not.

Of course, some objects may have an option of several different sort keys.
Voters, for example, may be sorted by surname, or by the street or precinct
where they live. Having the choice of keys allows us to combine or pipeline
two or more sorts on different keys. The result is a full sort that distinguishes



7.6 Stability

143

individuals in useful ways. In order for combined sorts to be effective, it is
important that each sort be stable, that is, that when sort keys are equal for
several data values in a list, their relative ordering is preserved. If, for example,
we sort a voter registry first by name and then, using a stable sort, by precinct,
we can be certain that all individuals in Precinct 1 appear in alphabetical order.*

To design a stable sort, we need to make sure that the sorting algorithm does
not have the potential of exchanging two equal items. In the simple comparison
sorts, like bubble and insertion sort, this is accomplished by only swapping two
adjacent values when a “less than” comparison indicates they are out of order;
when keys are equal, they cannot be swapped. In selection sort, we must make
sure that when we select a largest value that it is the rightmost maximum value
found. In mergesort, reordering can only happen during a merge operation. If
we assume the two halves of the list were sorted in a stable manner, the only
way two equal values could exchange position is if a value from the “right” list
could be placed before an equal counterpart from the “left” list. Again, a careful
analysis of our merging operation demonstrates that when equal values could
be compared (merge only ever compares values from the two lists), the value
from the left list is merged-in first.

In our version of quicksort, the ordering of values is accomplished by the
_partition function. This function finds the “correct” location for the pivot
by a swapping the pivot with a smaller or larger value. This swapping, how-
ever, causes the pivot to jump over equal values, causing them to be shuffled
compared to their original ordering. Quicksort, in this implementation, is not
a stable sort. Partitioning in a stable way will require the use of more space or
time.

Fortunately, an unstable sort can always be turned into a stable sort, through
a simple transformation of the input data. For each value v; at the i*" position
in the input list, we construct a pair, (v;,%) to be sorted in its place. When the
sort is finished, the list element at j is replaced with the first element of the pair
found at location ;.

for i in range(len(l)):
10i] = (1[id,1)
sort (1)
for j in range(len(1)):
1031 = 1[j1[o]

This approach is an instance of the idiom commonly referred to as the decorate-
sort-undecorate or DSU. Why does this work? First, it's important to observe that
tuples (and in this particular case, a pair) are ordered in “dictionary order”: the
relative ordering of two pairs is determined by the relative ordering of their
first components. If these values are equal, the comparison falls through to the

4 Indeed, before the advent of computer-based sorting, names were sorted using punched cards,
with several passes of a stable mechanical sort based on the character punched in a particular
column. A stable sort was made on each column, from right to left, leaving the punch cards in
alphabetical order at the end of all passes.
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next component of the tuple. This continues until an ordering is determined. If
no ordering is determined through this process, then the tuples are determined
to be equal. Now, if all the original values of the list are distinguishable by
value (i.e. no pair of the values are equal), then this wrapping process produces
pairs that can be distinguished, just by looking at their first component. In
particular, this wrapping process has no ill-effect on the sort. The other extreme,
where all the values are the same, produces pairs that are all distinguishable by
their second component, and that ordering represents the original order that they
appeared within the array. Whenever two original values are equal, their order
is determined by their original index order.

The overhead of decorating and undecorating the data is a relatively simple
O(n) operation in time (and space) that is unlikely to have a significant impact
on the performance of most sorting techniques. Still, when stable sorts can be
promised, or where stability is not important, the decoration-based paradigm is
unnecessary.

7.7 Key Functions: Supporting Multiple Sort Keys

When data items support multiple sort keys, we must have a mechanism that
allows us to tell a sorting method how the key is found for each data item. The
approach that Python uses is to provide a key function. This is a general function
that, given a data element, returns the key associated with that element. This
function should be deterministic: the key function should return the same key
each time the data value is provided.

One obvious advantage of the use of key functions is that the choice how data
is ordered is independent of how data is encoded. When we design a structure to
hold information about baseball players, we needn’t worry about whether they
primary way they will be ordered is by their name or their batting average. In-
stead, we can provide a variety of key functions that generate the key required.
Notice that the key function need not directly find the data, but may actually
compute, say, a baseball statistic on-the-fly.

Provided the key function, it is tempting to modify one’s sorts so that in-
stead of comparing data elements, we compare the values returned by the key
function:

if keyFun(a) < keyFun(b):

but this means that the key functions are called many times. In the best case of
comparison-based sorts, this is at least 1 time per value, but could be as many
as O(n). When the complexity of the key function is great, we would like to
place firm limits on this overhead.

One approach is to use the decorate-sort-undecorate paradigm to generate
a list of key-value pairs. The KV item stored at location i has a value of 1[i]
and a key that is the key associated with i*® original element. The decoration is

accomplished as follows:
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for i in range(len(1)):
1[i] = KV(keyfun(1[i]),1[il)

This list can then be sorted independently of the original list since KV values
are compared based just on their keys. Once the sort is finished, the list is
undecorated with:

for i in range(len(1)):
1[i] = kvlist[i].value

Notice that these decorate operations are not list comprehension since the list
is to be sorted in place. As with the process of stabilizing a sort, we could have
used tuples instead of key-value pairs, but because the key function may return
equal key values for list elements that are not equal, it is important to make sure
that comparisons never fall through to the component that carries the original
value. The correct approach, then, is a decoration strategy that used 3-tuples:

for i in range(len(1)):
1[i] = (keyfun(1[il), i, 1[iD)

Because equal key values reduce to the comparison of original list index val-
ues, which are necessarily distinguishable, the 3-tuples are clearly compared
without accessing the original value, 1[i]. A pleasant side-effect of this time-
saving strategy is the introduction of stability in any otherwise unstable sort.
The undecorate appears as

for i in range(len(1)):

1[i] = 1[i][2]

7.8 Radix and Bucket Sorts

After investigating a number of algorithms that sort in O(n?) or O(nlogn) time,
one might wonder if it is possible to sort in linear time. If the right conditions
hold, we can sort certain types of data in linear time. First, we must investigate
a pseudogame, 52 pickup!

Suppose we drop a deck of 52 cards on the floor, and we want to not only
pick them up, but we wish to sort them at the same time. It might be most
natural to use an insertion sort: we keep a pile of sorted cards and, as we pick
up new cards, we insert them in the deck in the appropriate position. A more
efficient approach makes use of the fact that we know what the sorted deck
looks like. We simply lay out the cards in a row, with each position in the row
reserved for the particular card. As we pick up a card, we place it in its reserved
location. In the end, all the cards are in their correct location and we collect
them from left to right.

Exercise 7.1 Explain why this sorting technique always takes O(n) time for a
deck of n cards.
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Such an approach is the basis for a general sorting technique called bucket sort.
By quickly inspecting values (perhaps a word) we can approximately sort them
into different buckets (perhaps based on the first letter). In a subsequent pass
we can sort the values in each bucket with, perhaps a different sort. The buck-
ets of sorted values are then accumulated, carefully maintaining the order of
the buckets, and the result is completely sorted. Unfortunately, the worst-case
behavior of this sorting technique is determined by the performance of the al-
gorithm we use to sort each bucket of values.

Exercise 7.2 Suppose we have n values and m buckets and we use insertion sort
to perform the sort of each bucket. What is the worst-case time complexity of this
sort?

Such a technique can be used to sort integers, especially if we can partially sort
the values based on a single digit. For example, we might develop a support
function, digit, that, given a number n and a decimal place d, returns the
value of the digit in the particular decimal place. If d was 0, it would return the
units digit of n. Here is a recursive implementation:

Here is the code for placing a list of integer values among 10 buckets, based on
the value of digit d. For example, if we have numbers between 1 and 52 and we
set d to 2, this code almost sorts the values based on their 10’s digit.

We now have the tools to support a new sort, radix sort. The approach is to

use the bucketPass code to sort all the values based on the units place. Next,
all the values are sorted based on their 10’s digit. The process continues until
enough passes have been made to consider all the digits. If it is known that
values are bounded above, then we can also bound the number of passes as
well. Here is the code to perform a radix sort of values under 1 million (six
passes):
After the first bucketPass, the values are ordered, based on their units digit.
All values that end in 0 are placed near the front of data (see Figure 7.11), all
the values that end in 9 appear near the end. Among those values that end in 0,
the values appear in the order they originally appeared in the list. In this regard,
we can say that bucketPass is a stable sorting technique. All other things being
equal, the values appear in their original order.

During the second pass, the values are sorted, based on their 10’s digit.
Again, if two values have the same 10’s digit, the relative order of the values is
maintained. That means, for example, that 140 will appear before 42, because
after the first pass, the 140 appeared before the 42. The process continues, until
all digits are considered. Here, six passes are performed, but only three are
necessary (see Problem ??).

There are several important things to remember about the construction of
this sort. First, bucketPass is stable. That condition is necessary if the work
of previous passes is not to be undone. Secondly, the sort is unlikely to work if
the passes are performed from the most significant digit toward the units digit.
Finally, since the number of passes is independent of the size of the data list,
the speed of the entire sort is proportional to the speed of a single pass. Careful
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Figure 7.11 The state of the data list between the six passes of radixSort. The bound-
aries of the buckets are identified by vertical lines; bold lines indicate empty buckets.
Since, on every pass, paths of incoming values to a bucket do not cross, the sort is stable.
Notice that after three passes, the radixSort is finished. The same would be true, no
matter the number of values, as long as they were all under 1000.
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design allows the bucketPass to be accomplished in O(n) time. We see, then,
that radixSort is a O(n) sorting method.

While, theoretically, radixSort can be accomplished in linear time, practi-
cally, the constant of proportionality associated with the bound is large com-
pared to the other sorts we have seen in this chapter. In practice, radixSort is
inefficient compared to most other sorts.

7.9 Sorting Objects

Sorting lists of integers is suitable for understanding the performance of various
sorts, but it is hardly a real-world problem. Frequently, the object that needs to
be sorted is an Object with many fields, only some of which are actually used
in making a comparison.

Let’s consider the problem of sorting the entries associated with an electronic
phone book. The first step is to identify the structure of a single entry in the
phone book. Perhaps it has the following form:

We have added the compareTo method to describe the relation between two
entries in the phone book (the shaded fields of Figure 7.12). The compareTo
method returns an integer that is less than, equal to, or greater than 0 when
this is logically less than, equal to, or greater than other. We can now modify
any of the sort techniques provided in the previous section to sort a list of phone
entries:

Careful review of this insertion sort routine shows that all the < operators have
been replaced by checks for negative compareTo values. The result is that the
phone entries in the list are ordered by increasing phone number.

If two or more people use the same extension, then the order of the resulting

entries depends on the stability of the sort. If the sort is stable, then the relative
order of the phone entries with identical extensions in the sorted list is the
same as their relative order in the unordered list. If the sort is not stable, no
guarantee can be made. To ensure that entries are, say, sorted in increasing
order by extension and, in case of shared phones, sorted by increasing name,
the following compareTo method might be used:
Correctly specifying the relation between two objects with the compareTo meth-
od can be difficult when the objects cannot be totally ordered. Is it always possi-
ble that one athletic team is strictly less than another? Is it always the case that
one set contains another? No. These are examples of domains that are partially
ordered. Usually, however, most types may be totally ordered, and imagining
how one might sort a collection of objects forces a suitable relation between
any pair.

7.10 Ordering Objects Using Comparators

The definition of the compareTo method for an object should define, in a sense,
the natural ordering of the objects. So, for example, in the case of a phone
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0 iP{ Blumenauer, Earl ‘ Rep. l 54881 ‘ 1406 ‘ Longworth ‘
1 i»{ DeFazio, Peter | Rep. [ 56416 [ 2134[Rayburn |
2 i»{ Hooley, Darlene ‘ Rep. l 55711 ‘ 1130 ‘ Longworth ‘
3 i»{ smith, Gordon \ Senator | 43753 | 404 \ Russell \
4 i»{ Walden, Greg | Rep. [ 56730 [ 1404 [Longworth |
5 i»{ Wu, David | Rep. [ 50855 | 1023 ]Longworth |
6 i»{ Wyden, Ron \ Senator | 45244 | 516 \ Hart \
o Data before sorting
0 iﬁ Smith, Gordon ‘ Senator l 43753 ‘ 404 ‘ Russell ‘
17—»{ Wyden, Ron | senator [ 45244 | 516 [Hart \
2 i»{ Wu, David ‘ Rep. l 50855 ‘ 1023 ‘ Longworth ‘
3 i»{ Blumenauer, Earl ‘ Rep. l 54881 ‘ 1406 ‘ Longworth ‘
4 i»{ Hooley, Darlene | Rep. [ 55711 [ 1130 [Longworth |
5 i»{ DeFazio, Peter ‘ Rep. l 56416 ‘ 2134 ‘ Rayburn ‘
6 i»{ Walden, Greg ‘ Rep. l 56730 ‘ 1404 ‘ Longworth ‘

Data after sorting by telephone

Figure 7.12 A list of phone entries for the 107th Congressional Delegation from Ore-
gon State, before and after sorting by telephone (shaded).
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book, the entries would ideally be ordered based on the name associated with
the entry. Sometimes, however, the compareTo method does not provide the
ordering desired, or worse, the compareTo method has not been defined for an
object. In these cases, the programmer turns to a simple method for specifing an
external comparison method called a comparator. A comparator is an object that
contains a method that is capable of comparing two objects. Sorting methods,
then, can be developed to apply a comparator to two objects when a comparison
is to be performed. The beauty of this mechanism is that different comparators
can be applied to the same data to sort in different orders or on different keys.
In Java a comparator is any class that implements the java.util.Comparator
interface. This interface provides the following method:

Like the compareTo method we have seen earlier, the compare method re-
turns an integer that identifies the relationship between two values. Unlike
the compareTo method, however, the compare method is not associated with
the compared objects. As a result, the comparator is not privy to the implemen-
tation of the objects; it must perform the comparison based on information that
is gained from accessor methods.

As an example of the implementation of a Comparator, we consider the
implementation of a case-insensitive comparison of Strings, called Caseless-
Comparator. This comparison method converts both String objects to upper-
case and then performs the standard String comparison:

The result of the comparison is that strings that are spelled similarly in different
cases appear together. For example, if a list contains the words of the children’s
tongue twister:

we would expect the words to be sorted into the following order:

This should be compared with the standard ordering of String values, which
would generate the following output:

To use a Comparator in a sorting technique, we need only replace the use
of compareTo methods with compare methods from a Comparator. Here, for
example, is an insertion sort that makes use of a Comparator to order the values
in a list of Objects:

Note that in this description we don’t see the particulars of the types involved.
Instead, all data are manipulated as Objects, which are specifically manipulated
by the compare method of the provided Comparator.

7.11 Vector-Based Sorting

We extend the phone book example one more time, by allowing the PhoneEntrys
to be stored in a Vector. There are, of course, good reasons to use Vector over
lists, but there are some added complexities that should be considered. Here is
an alternative Java implementation of insertionSort that is dedicated to the
sorting of a Vector of PhoneEntrys:

Recall that, for Vectors, we use the get method to fetch a value and set to
store. Since any type of object may be referenced by a vector entry, we verify the
type expected when a value is retrieved from the vector. This is accomplished
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through a parenthesized cast. If the type of the fetched value doesn’t match
the type of the cast, the program throws a class cast exception. Here, we cast
the result of get in the compareTo method to indicate that we are comparing
PhoneEntrys.

It is unfortunate that the insertionSort has to be specially coded for use
with the PhoneEntry objects.

Exercise 7.3 Write an insertionSort that uses a Comparator to sort a Vector
of objects.

7.12 Conclusions

Sorting is an important and common process on computers. In this chapter we
considered several sorting techniques with quadratic running times. Bubble sort
approaches the problem by checking and rechecking the relationships between
elements. Selection and insertion sorts are based on techniques that people
commonly use. Of these, insertion sort is most frequently used; it is easily
coded and provides excellent performance when data are nearly sorted.

Two recursive sorting techniques, mergesort and quicksort, use recursion
to achieve O(nlogn) running times, which are optimal for comparison-based
techniques on single processors. Mergesort works well in a variety of situations,
but often requires significant extra memory. Quicksort requires a random access
structure, but runs with little space overhead. Quicksort is not a stable sort
because it has the potential to swap two values with equivalent keys.

We have seen with radix sort, it is possible to have a linear sorting algorithm,
but it cannot be based on compares. Instead, the technique involves carefully
ordering values based on looking at portions of the key. The technique is, practi-
cally, not useful for general-purpose sorting, although for many years, punched
cards were efficiently sorted using precisely the method described here.

Sorting is, arguably, the most frequently executed algorithm on computers
today. When we consider the notion of an ordered structure, we will find that
algorithms and structures work hand in hand to help keep data in the correct
order.

Self Check Problems

Solutions to these problems begin on page ??.
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Chapter 8

Instrumentation and Analysis

An important aspect of data structure design is analysis of performance. The
data structures we use in our programs and algorithms can play a dominant role
in performance. As an informed engineer, it is important that we take the time
to carefully instrument our data structures and programs to allow us to collect
information about the performance of our data structures. It’s also important
that we be able to identify when the performance we measure suggests that
there may be ways that we can improve our design.

This chapter develops the tools and strategies that are important to devel-
oping not only correct programs but programs that perform as well as possi-
ble. We begin with an understanding of decoration, an important tool for tool
builders we then follow with a discussion of performance measurement and pro-
filing strategies. We end with the development of a few lightweight tools that
can improve the performance of many programs.

8.1 Decoration

A large portion of this chapter is about the development of programs that help
us instrument and measure characteristics about other programs. One of the
strengths of Python is its ability to support this engineering process. The first
step along this path is an understanding of a process called decoration, or the
annotation of functions and classes.

Suppose we have designed a data structure that provides a feature that is
used in many different placeses in a program. An example might be the append
method of a 1ist implementation. How might we keep track of the number of
times we call this method? It is likely to be error-prone to find the places where
the method is called, and count those; we might not even have access to all of
those call sites. Clearly, it would be necessary to modify the code itself.

We might imagine, however, that the process of gathering these statistics
could be complex—perhaps at least as complex as the code associated with
append. It is likely, also, that success in analyzing the frequency of append
methods will lead, ultimately, to the analysis of other methods of the 1ist class
as well. In all of this, it is important that we not confuse the analysis tool with
the method itself. For this reason, it is frequently useful to “abstract away” the
details of the analysis in the hope that it lowers the barrier to use and that it
does not obscure the object being analyzed.

Python provides a very simple syntactic mechanism, called a method called
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a decorator, that can be used to augment our definitions of other methods and
classes. Remember, in Python, functions are first-class objects. Once a function
is defined, references to it can be passed around and operated on like any other
object.! A decorator is a higher order function that is called with another func-
tion as its only parameter. The purpose of the decorator is to return an alterna-
tive function to be used it its place. Typically the alternative function is simply
a new function that wraps the original: it performs some preprocessing of the
function’s arguments, calls the function with its arguments, and then performs
some post processing of the results. Once defined, the higher order function
is applied by mentioning it as a decoration just before the original function is
defined:

@decorator
def f(x):
print (x)

is the same as
def f(x)
print (x)

f = decorator(f)

8.1.1 Example: Counting method calls

As a simple example, we will write a decorator that allows us to keep track
of the number of times a method is called. Such a decorator might be used to
identify how deep recursion runs, or to count the number of times a comparison
occurs in a sorting routine.

To begin, we think about how a decorator might be used, syntactically. In a
class, a method might be decorated as:

Q@accounting
def fun(self,x):

Again, this is equivalent to the sequence of statements

def fun(self,x):

fun = accounting(fun)

Our job is to write the decorator method, accounting.
Our first version is as follows:
def accounting(f):

1 As we shall see, shortly, the same holds true of classes. When we define a class, it becomes a
callable object, just like a method.
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"""Keep track of calls to function f."""

Quraps (f)

def wrapped_f (xargs,**kargs) :

wrapped_f.counter += 1 5
return f(*args,**kargs)

wrapped_f.counter = 0

return wrapped_f
When the accounting decorator is referenced, the method definition that fol-
lows it is passed as £. Again, this happens when we are defining £, well before
the method is ever called. Within the accounting decorator, a new method is
constructed and referred to as wrapped_f. Looking ahead, this is the return
value for the decorator, so this method is what will actually be called, whenever
we imagine we're calling the method being decorated; when we define £, this
is the actual value of that binding. Because we don’t know anything about the
parameters used in £, we must be ready to accept all the positional parameters
(xargs) and all of the keyword parameters (**kargs). If wrapped_f is ever
called, it is really a request to call method £ with the particular parameters.
Thus, we increment the number of times this method is called. This integer
is stored as an attribute of the wrapped_f function called counter. Before we
return wrapped_£f as our wrapped definition of £, we add the counter attribute
to the newly synthesized method and initialize it to zero.

Because we have provided an alternate definition of the function £, any
effort to look at the f’s documentation will fail. In addition, if an error is gener-
ated within the wrapper function, the wrapper call is exposed in the traceback.
This is because the documentation associated with the method £ is stored in the
docstring (__doc__) that is an attribute of £ and not wrapped_f. A decorator
wraps, imported from Python’s functools package copies over all of the special
variables that are useful in giving wrapped_f the identity of its wrapped func-
tion, f. The reader is encourage to think about how the wraps decorator might
be written.

As an excercise in understanding how our accounting decorator might be
used, we think about the straightforward recursive implementation of a function
to compute the n'” member of the Fibonacci sequence,

f=1{0,1,1,2,3,5,...}

where f, = f_1 + fn_2. A common first effort in Python is:
def fibo(n):
if n <= 1:
return 1
else:
return fibo(n-1) + fibo(n-2)
Testing out our new function quickly demonstrates its potential computational
complexity:
>>> fibo(3)
3
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>>> fibo(5)
8
>>> fibo(10) 5
89
>>> fibo(2000)
(significant time passes, humanity fades)
So, what is happening? Since the amount of computation directly attributed to
a single call to fibo is small (a condition test and a possible addition), it must
be the case that many function calls are being performed. To see how many, we
can decorate fibo with our newfound accounting decorator:
Q@accounting
def fibo(n):
if n <= 1:
return 1
else:
return fibo(n-1) + fibo(n-2)
The effect of this is to quietly wrap fibo with code that increments the counter
each time the function is called. We can now use this to count the actual calls
to the fibo method:
>>> fibo(3)
3
>>> fibo.counter
5
>>> fibo.counter = 0; fibo(5) 5
8
>>> fibo.counter
15
>>> fibo.counter = 0; fibo(20)
10946 10
>>> fibo.counter
21891
Clearly, things get out of hand rather quickly. Our next decorator demonstrates
how we can dramatically reduce the complexity of our recursive implementation
without losing its beauty.

Exercise 8.1 Write a new method, fibocalls(n), that computes the number of
calls that £ibo (n) will make.

8.1.2 Example: Memoizing Functions

Functions like fibo of the previous section perform lots of redundant computa-
tion. If we consider what is required to compute fibo(4), we see it is based on
fibo(3) and fibo(2). But notice that the computation of £ibo (3), itself, must
call fibo(2). Looking at the computation involved with £ibo(5), we see that
we compute fibo(2) twice for fibo(4), and third time for fibo(3). Figure 8.1
demonstrates the intractability of our naive implementation of fibo.
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fibocalls(n)
1
1

5
9
15
25
41
67
109
177
21891
100 1146295688027634168201
200 | 907947388330615906394593939394821238467651

NE5ovowouhwh e~ os

Figure 8.1 The number of calls made by fibo for various values of n.

It would help considerably if we could record, perhaps in a table, the results
of any computation that we perform. If a computation is requested later, we
can look it up in our table and return the result previously computed. When we
compute, on behalf of fibo(5), the values of fibo(4) and fibo(3), the value
of £ibo (3) is computed exactly once, as a part of the computation of fibo (4).
A little thought will convince us that this will make the computation of fibo(n)
a linear operation. This table-driven process is called memoization.

Ideally, the memoization of fibo should be relatively transparent. For this
reason we opt to make use of a decorator, memoize, instead of modifying the
fibo function itself. Our approach makes use of a dictionary, which allows us to
look up a value associated with an arbitrary constant key. In Python, dictionar-
ies are implemented as dict objects. The value associated with a key, k, in dict
d may be obtained as d[k]. To enter or update a key-value pair in the dictionary,
we use simple assignment: d[k] = v. In our implementation of memoize, we
think of our dictionary as a cache:

def memoize(f):
"""Wrap f with a cache of prior computations."""
@uraps (f)
def wrapped_f (xargs):
a = tuple(args) # keys must be constant 5
if a not in wrapped_f.cache:
result = f(xargs)
wrapped_f.cache[a] = result
else:
result = wrapped_f.cache[a] 10
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return result

wrapped_f.cache = dict()

return wrapped_£f
The wrapper function, wrapped_f, uses a tuple of the particular arguments
passed to the function £ to look up any pre-computed results. If the function call
was previously computed, the previous result is returned, avoiding the overhead
of redundantly computing it. Otherwise, the result of the new computation is
recorded for possible future use and then returned.

Before the wrapper is returned as the new definition, we attach an empty
dictionary as the cache attribution on the wrapper. Over time, of course, this
dictionary fills with the history of function calls and their respective results.

To make use of the memoize decorator, we tuck it between the accounting
decorator and the function definition so that we may count the number of mem-
oized calls:

Q@accounting
Gmemoize
def fibo(n):
if n <= 1:
return 1 5
else:
return fibo(n-1) + fibo(n-2)
This decoration order is a shorthand for

def fibo(n):

fibo = accounting( memoize( fibo ) )

Armed with our memoized version of fibo we can get answers to questions

we had not been able to compute:

>>> £ibo(50)

20365011074

>>> fibo.counter

99

>>> fibo.counter = 0; fibo(20) 5

10946

>>> fibo.counter

1

>>> fibo.counter = 0; fibo(100)

573147844013817084101 10

>>> fibo.counter

199

>>> fibo (200)

453973694165307953197296969697410619233826
In our final implementation of £ibo, of course, we would probably remove the
accounting decorator—which was only there for as a performance indicator—
and keep the memoize decorator—which is a performance optimization.
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8.1.3 Example: Decorate-Sort-Undecorate Idiom

When discussing sorting we introduced the idiom decorate-sort-undecorate (DSU).

Recall that this programming pattern pre-processed the list to be sorted in a way
that reduced the number of sort key computations and guaranteed stability for
otherwise unstable sorts. The notion of wrapping the underlying sort technique
was natural, and so we are motivated to provide a decorator for sort functions
that provides a sorting interface that Python users expect in their sorting rou-
tines. We call this decorator sortoptions:

def sortoptions(f):

"""Decorator for sorting methods that adds key and reverse options."""

Quraps (f)
def wrapper (1,n=None,key=None,reverse=False):
if n is Nome: 5
n = len(1)
if key is Nome:
key = lambda x: x
for i in range(n):
1[i] = (key(1[il),i,1[i]) 10
£(1,n)
for i in range(n):
1[i] = 1[E][-1]
if reverse:
1[:n] = reversed(1[:n])
return wrapper
The technical details of the DSU approach were discussed earlier (see page ??),
but we point out a few decoration-specific details, here. Python’s sorted method
supports the keyword arguments key and reverse. Because they were not im-
portant to our discussion of particular sorting techniques, our sort methods did
not support these keyword arguments. Instead, all of our sort methods took a
list and the number of elements from the list we wished to sort. It is the job of
the DSU wrapper, then, to interpret the keyword arguments and, if the number
of elements is not provided to have it default to the length of the list. The author
tried to develop a wrapper that was efficient enough to have negligible impact
on the underlying sort. If further optimizations can be identified, however,
modifying the decorator ensures that all the sorts are improved simultaneously.

As a glimpse of the power of this interface, we experiment with using quicksort

to sort the first 20 integers based on the length of their Syracuse sequence (see
page ??):

>>> 1 = list(range(20))

>>> 1

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

>>> [syrlen(i) for i in 1]

(1, 1, 2, 8, 3, 6, 9, 17, 4, 20, 7, 15, 10, 10, 18, 18, 5, 13, 21, 21]

>>> quicksort(l,key=syrlen)
>>> 1
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[o, 1, 2, 4, 8, 16, 5, 10, 3, 6, 12, 13, 17, 11, 7, 14, 15, 9, 18, 19]

>>> 1 = list(reversed(range(20)))

>>> 1 10

[19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

>>> quicksort(l,key=syrlen)

>>> 1

[1, 0, 2, 4, 8, 16, 5, 10, 3, 6, 13, 12, 17, 11, 7, 15, 14, 9, 19, 18]
Notice that the relative ordering of values that have the same Syracuse trajec-
tory length is determined by the initial ordering of the list to be sorted. Because
the sortoptions decorator is used for each of our sorting techniques, the results
of the experiment are the same no matter which sort we use.

8.2 Timing and Tracing

Python, like most languages, provides a simple mechanism to get the current
wall clock time: the time method imported from the time module is called
with no arguments and returns the number of seconds since the 1960’s.? This,
itself, is not particularly useful, but differences in wall clock time can help us
establish a fairly accurate measure of the time elapsed. On most systems the
measurement of time is accurate to the microsecond.

Let’s imagine we would like to measure the time it takes to quicksort 1000
values in a randomly ordered list 1. A good first guess would code similar to

starttime = time()

quicksort(1l)

stoptime = time()

elapsedtime = stoptime-starttime

print ("The elapsed time is {} seconds.".format(elapsedtime))

Another approach would be to develop a timeaccounting decorator that
does much the same thing:
def timeaccounting(f):
"""Keep track of elapsed time for last call to function f."""
Quraps (f)
def wrapped_f (¥args,**kargs) :
starttime = time() 5
result = f(xargs,**kargs)
stoptime = time()
wrapped_f.elapsedtime = stoptime-starttime
return result
wrapped_f.elapsedtime = 0
return wrapped_£f
This version keeps track of the elapsed time associated with the most recently

2 Thursday, January 1, 1970 is known as the Unix Epoch.



8.2 Timing and Tracing

161

finished call to the function f. Decorating the quicksort method would then
allow us to perform the following:

>>> quicksort (1)

>>> quicksort.elapsedtime

0.004123442259382993
This tells us that it took three fourths of a second to perform the sort. If we run
the experiment ten times, we get the following output:

>>> for i in range(10):

k = list(1)
quicksort (k)
print("ime is {} seconds.".format(quicksort.elapsedtime))
5
Time is 0.008211135864257812 seconds.
Time is 0.006258964538574219 seconds.
Time is 0.004125833511352539 seconds.
Time is 0.003949880599975586 seconds.
Time is 0.004060029983520508 seconds. 10
Time is 0.003949165344238281 seconds.
Time is 0.004272937774658203 seconds.
Time is 0.0040531158447265625 seconds.
Time is 0.003945112228393555 seconds.

Time is 0.004277944564819336 seconds.

How are we to interpret this data? Clearly there is some variability in the
elapsed time. Most modern computers run tens or even hundreds of processes
that, at various times, may interrupt your experiment as it progresses. For ex-
ample, the system clock needs to be updated, mail is checked, the mouse image
is moved, garbage is collected, and the display is updated. If any of these dis-
tractions happens during your experiment, the elapsed time associated with
quicksort is increased. When multiple experiments are timed, each may be
thought of as an upper bound on the length of time. It is appropriate, then to
take the minimum time as a reasonable estimate of the time consumed. Further
measurements may be larger, but over many experiments, the estimate becomes
more accurate. Here, for example, we see that quicksort can sort 1000 integers
in approximately 3922 microseconds.

Some experiments, of course, are finished in well under the resolution of the
clock. In this book, all times are measured in units informally called a click, the
length of time it takes Python to increment an integer. On the author’s machine,
a click is approximately 34 nanoseconds. In these cases it can be useful to
repeat the experiment enough times to make the total time significantly greater
than the resolution of the clock. If, for example, we measure 1000 repeated
experiments that take a total of 1000 microseconds, the time of each individual
experiment is about 1 microsecond. One must take care, of course, to consider
the overhead associated with running the experiments 1000 times. Again, on
the author’s machine, that may be as much as 63 nanoseconds per iteration.

On most modern unix-based operating systems, the system allows a wait-
ing process to run largely uninterrupted, until the next scheduling event. That
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quantum of time is called a jiffy and is in the range of ﬁ to 1—10 of a second. If
possible, we try to measure elapsed times that are smaller than a jiffy. Certain
actions will cause our Python process to give up the machine earlier than a jiffy.
For example, if we perform a read or write operation it is likely that some pro-
cess serving the keyboard, display, or file, will have to be woken up. For this
reason, we try to avoid doing any I/0O until after all of our experiments have
been performed. Because writing to I/0 devices can be slow, and often causes
many interruptions to concurrently executing processes, we may even see the

effects of I/0 that happened before our experiments.

8.2.1 The timeit Module

Timing snippets of code is a common task of analyzing the performance of code
we write. For this reason, Python provides a module of timing tools, called
timeit. These tools allow you to perform scripted, interactive, or standalone
timing experiments. We will investigate, here, how to perform standalone tim-
ing experiments.

One of the most important uses of the timeit module is to investigate the
timing of Python code. The approach is very similar to that of the previous
section, but has the great advantage that it can be used as a quick, off-the-
shelf tool precisely when needed. Often, the results are quite surprising. As an
ongoing example to motivate our tour of timeit, we'll investigate the time it
takes to perform an operation, the increment of a small integer. As mentioned,
we use this quantum of time throughout this text as a basic unit that is relatively
independent of the type of machine. Presenting timing information in this way
helps us to focus on what is important: algorithmic resource utilization trends.

From the point-of-view of timeit, all experiments are performed as part of
a generic Python loop:

setup-statment
for trial in range(trials):
experiment

When us use the timeit utility, you can specify the setup-statement and one
or more experiment statements. The setup is exectuted precisely once, while
the experiment—the statement we are trying to measure—is executed trials
times. The particular value of trials can be specified directly or, by default,
the timeit module will determine an appropraite value for trials.

Now, let’s imagine we would like to measure the length of time it takes to
perform the computation

i4=1

The variable i, of course, we take to be an integer. We can ensure that by
initializing i to zero as our setup statement. Now it is time to figure out how to
actually run timeit as a utility.

Many modules have a dual personality: when imported for use in a program,
the provide a set of classes and functions for the programmer’s use. When run
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as a standalone program, however, they can be used directly as an analysis tool.
This latter approach is how we will use the timeit module here. The timeit
tool is generally called as:

python3 -m timeit

In the past, when we’ve wanted to run standalone Python programs, those pro-
grams have been located in the current directory. The -m switch tells Python to
use the standard module-locating techniques to find the indicated module, and
then to run it as a standalone program.

The timeit module provides a number of switches that configure and control
the timing experiment. Some of these switches are presented in Table 8.2. For
our simple purposes, here, we use the following command line:

python3 -m timeit -s ’i=0’ -- ’i+=1’
and the result is:
10000000 loops, best of 3: 0.0469 usec per loop

Here, timeit has determined that 10 million increments were needed to make
the timing sufficiently accurate—the total experiment time was about a half a
second. timeit also reports the best measurement: the entire measurement
process was repeated 3 times, and the values reported here were the minimum.
The reasons for this have been discussed in the previous section.

| Switch | Purpose

-n Directly specify the number of trials to be timed

-s Specify the setup statement

-r Specify the number of times to repeat the entire experiment (default is 3)
-- Separate switches from statements to be timed

Figure 8.2 Switches available as part of the standalone timeit module.

By specifying multiple statements to be timed, we can perform even more
intereseting experiments. For example,

python3 -m timeit -s ’i=0’ -- ’i+=1’ ’i+=1’
10000000 loops, best of 3: 0.086 usec per loop

This is slightly strange: why does repeating the statement cause the total time
measured to increase to less than twice the previous time? The reason is subtle.
Because Python has arbitrary precision arithmetic, the notion of “incrementing
an integer” depends on how big the integer is. Because 10 million experiments
are performed, the value of i takes on values that approach 20 million. The cost
of incrementing larger integers is (slightly) different than incrementing smaller
integers.
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We can test out our theory by timing increasingly complex experiments. Our
simplest is to increment an integer variable.

i+=1
The timeit module reports this as taking about 45 nanoseconds:
10000000 loops, best of 10: 0.0445 usec per loop

Our second experiment is to measure the time it takes to increment i, im-
mediately followed by a decrement:

i+=1
i 1

This snippet of code takes about 61 nanoseconds:
10000000 loops, best of 10: 0.0609 usec per loop

These two experiments lead us to a small surprise: the timing of two similar
statments is less than twice the time for just one. A possible reason for this
is that incrementing i 10 million times takes i from O to nearly 10 million. In
Python, which supports arbitrary precision arithmetic, the cost of performing an
addition on a small integer takes less time than on a larger value. The second
experiment, then, leaves i as a value that is either zero or one, so the two
operations are much simpler, on average, than the single operation on a large
value.
We can test our hypothesis by initializing i to 5 million:

python3 -m timeit -s ’i=5000000’ -- ’i+=1’ ’i-=1°
which, not surprisingly, takes more than 80 nanoseconds:
10000000 loops, best of 3: 0.0822 usec per loop

We will take, as our definition of the time it takes to increment an integer, half
the time of our increment-decrement experiment, or about 30 nanoseconds.
Again, it is important to remember that these results will differ, significantly, on
different platforms; the reader is encouraged to perform these experiments on
their own machines.

One might be tempted, as an alternative, to time the initialization of i:

python3 -m timeit -- ’i=0’
100000000 loops, best of 3: 0.0137 usec per
loop

and then use that to expose the time of an increment that follows:

python3 -m timeit -- ’i=0’ ’i+=1’
10000000 loops, best of 3: 0.0408 usec
per loop
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which yields a somewhat smaller time of about 27 nanoseconds. The reason for
this is the fact that the Python interpreter can optimize these two instructions
into a single simpler operation that directly loads 1 into i.
The ability to perform very precise timings allows for careful experimental
design and evaluation of algorithms. Expand on

this.
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Chapter 9

Sorted Structures

One important use of data structures is to help keep data sorted—the smallest
value in the structure might be stored close to the front, while the largest value
would be stored close to the rear. Once a structure is kept sorted it also becomes
potentially useful as a sorting method: we simply insert our possibly unordered
data into the structure and then extract the values in sorted order. To do this,
however, it is necessary to compare data values to see if they are in the correct
order. In this chapter we will discuss approaches to the various problems as-
sociated with maintaining ordered structures. First we review material we first
encountered when we considered sorting.

9.1 Comparable Objects

In Python, most types that are native to the language can be compared. This
ordering is determined by a group of rich comparison methods that correspond
to the various comparisons. These are indicated in Table 9.1.

| Operator | Special method |

< __1t__
<= __le__
== __eq__
1= __ne__
>= __ge__
> __gt__

Figure 9.1 Comparison operators and their rich comparision methods.

Python has a very complex scheme to make sure that ordering can be deter-
mined, even when specific comparison methods have not been defined. In ad-
dition, Python, does not make assumptions about the consistency of the rela-
tionships between the comparison methods; for example, it’s not necessary that
== and != return opposite boolean values. While it may sometimes be useful
to define these operations in inconsistent ways, most classes defined in Python
benefit from the definition of one or more of these methods, in a consistent
manner.
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Let’s see a particular example. Suppose, for example, that we’re interested
in determining the relative ordering of Ratio values. (Recall, we first met the
Ratio class in Chapter ??, on page ??.) The relative ordering of Ratio types
depends not indirectly on the ordering of values held internally, but the order-
ing of the products of opposite numerators and denominators of the Ratios
involved. For this reason the implementation of the special ordering methods is
nontrivial. As examples, we consider the definition of the __1t__ and __eq__
methods from that class:

def __1t__(self,other):
"""Compute self < other."""
return self._top*other._bottom < self._bottom*other._top

def __le__(self,other): 5
"""Compute self < other."""
return self._top*other._bottom <= self._bottom*other._top

def __eq__(self,other):
"""Compute self == other.""" 10
return (self._top == other._top) and \
(self._bottom == other._bottom)

When two Ratio values are compared, the appropriate products are computed
and compared, much as we learned in grade school. Note that the implemen-
tation of the __1t__ special method involves a < comparison of the products—
integer values. This, of course, calls the special method __1t__ for integers.
The implementation of the <= operator follows the same pattern. The imple-
mentation of the __eq__ method ultimately performes a == test of numerators
and denominators, and depends on the ratios always being represented in their
least terms, which, as you may recall, they are. Other operators can be defined,
for the Ratio class, in a similar manner.

Some classes, of course, represent values that cannot be ordered in a partic-
ular manner (Complex values, for example). In these cases, the rich comparison
methods are not defined and an error is thrown if you attempt to compare them.
In the context of our current thinking, of course, it is meaningless, then to place
values of this type in a sorted structure.

In implementations similar to Ratio, of course, it is important that we define
these methods in a consistent manner. Careful attention, of course, will make
this possible, but given there are a half dozen methods that are related, it is
important that maintainers of these classes be vigilant: a change to one method
should be reflected in the implementation of all the methods.

Python provides, as part of the functools package, a class decorator, total_ordering,
that, given the implementation of one or more of the comparison methods, de-
fines each of the others in a consistent manner. For example, the Ratio class
is decorated with the total_ordering decorator to guarantee that each of the
rich comparison methods is correctly defined. Typically, when efficient opera-
tions cannot be inherited, specific definitions are given for the __1t le

- - -

and __eq__, and the remaining rich comparison functions are provided by the
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total_ordering class decorator.

9.2 Keeping Structures Ordered

We can make use of the natural ordering of classes suggested by the __1t__
method to organize our structure. Keeping data sorted, however, places signif-
icant constraints on the type of operations that should be allowed. If a compa-
rable value is added to a structure that orders its elements, the relative position
of the new value is determined by the data, not the structure. Since this place-
ment decision is predetermined, ordered structures have little flexibility in their
interface. It is not possible, for example, to insert data at random locations.
While simpler to use, these operations also tend to be more costly than their
sorted counterparts. Typically, the increased energy required is the result of an
increase in the friction associated with decisions needed to accomplish add and
remove.

The implementation of the various structures we see in the remainder of this
chapter leads to simpler algorithms for sorting, as we will see in Section ??.

9.2.1 The Sorted Interface

Recall that a container is any traversable structure that allows us to add and
remove elements and perform membership checks (see Section ??). Since the
Structure interface also requires the usual size-related methods (e.g., size,
isEmpty, clear), none of these methods actually requires that the data within
the structure be kept in order. To ensure that the structures we create order
their data (according to their native ordering), we make them abide by an ex-
tended interface, Sorted:

Qcheckdoc

class Sorted(Iterable, Sized):

An abstract base class for SortedList, SkipList, SearchTree, SplayTree,
and RedBlackSearchTree.

For more information on sorted data structures, see sorted.py.

10
@abc.abstractmethod
def add(self, value):
"""Insert value into data structure."""
15

@abc.abstractmethod
def remove(self, value):
"""Remove value from data structure."""
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20
def __eq__(self, other):
"""Data structure has equivalent contents to other."""
if len(self) !'= len(other):
return False
for x,y in zip(self, other): 25

if x !=y:
return False
return True

This interface demands that implementors ultimately provide methods that add
values to the structure and remove them by value. Since the values are always
held within the structure in fully sorted ordering, the equality test for these
containers can perform pairwise comparisons of the values that occur in the
traversals.

9.2.2 The SortedList and Binary Search

We can now consider the implementation of a sorted list of values. Since it
implements the Sorted interface, we know that the order in which elements
are added does not directly determine the order in which they are ultimately
removed. Instead, when elements are added to the SortedList, they are kept
ascending in their natural order.

Constructing an sorted list requires little more than allocating the underlying
list:

def __init__(self, data=None, frozen=False):
"""Construct a SortedList from an iterable source."""
self._data = []
if data:
for x in data:
self.add(x)
Rather obviously, if there are no elements in the underlying Vector, then all of
the elements are in order. Initially, at least, the structure is in a consistent state.
We must always be mindful of consistency.

Because finding the correct location for a value is important to both adding
and removing values, we focus on the development of an appropriate search
technique for SortedLists. This process is much like looking up a word in a
dictionary, or a name in a phone book (see Figure 9.2). First we look at the value
halfway through the list and determine if the value for which we are looking is
bigger or smaller than this median. If it is smaller, we restart our search with
the left half of the structure. If it is bigger, we restart our search with the
right half of the list. Whenever we consider a section of the list consisting of
a single element, the search can be terminated, with the success of the search
dependent on whether or not the indicated element contains the desired value.
This approach is called binary search.
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We present here the code for determining the index of a value in an SortedList.

Be aware that if the value is not in the 1ist, the routine returns the ideal loca-
tion to insert the value. This may be a location that is just beyond the bounds
of the 1list.
def _locate(self, target):
"""Find the correct location to insert target into list."""

low = 0
high = len(self._data)
mid = (low + high) // 2 5

while high > low:
mid_obj = self._data[mid]
if target < mid_obj:

# if the object we’re trying to place is less than mid_obj, look left

# new highest possible index is mid 10
high = mid
else:

# otherwise, lowest possible index is one to the right of mid

low = mid + 1
# recompute mid with new low or high 15
mid = (low + high) // 2
# if target is in the list, the existing copy is located at self
return low
For each iteration through the loop, 1ow and high determine the bounds of the
list currently being searched. mid is computed to be the middle element (if
there are an even number of elements being considered, it is the leftmost of
the two middle elements). This middle element is compared with the parame-
ter, and the bounds are adjusted to further constrain the search. The _locate
imagines that you're searching for an ideal insertion point for a new value. If
values in the list are equal to the value searched for, the _locate method will
return the index of the first value beyond the equal values. This approach makes
it possible to implement stable sorting relatively easily. Since the portion of the
list participating in the search is roughly halved each time, the total number of
times around the loop is approximately O(log,n). This is a considerable im-
provement over the implementation of the __contains__ method for lists of
arbitrary elements—that routine is linear in the size of the structure.
Notice that _locate is declared with a leading underscore and is thought
of as a private member of the class. This makes it difficult for a user to call di-
rectly, and makes it hard for a user to write code that depends on the underlying
implementation. To convince yourself of the utility of this, several Sorted con-
tainers of this chapter have exactly the same interface (so these data types can
be interchanged), but they are completely different structures. If the _locate
method were made public, then code could be written that makes use of this
list-specific method, and it would be impossible to switch implementations.
Implementation of the _locate method makes most of the nontrivial Sorted
methods more straightforward. The __contains__ special method is imple-
mented by searching for the appropriate location of the value in the sorted list

._data[low - 1]



9.2 Keeping Structures Ordered

173

and returns true if this location actually contains an equivalent value. Because
_locate would return an index one beyond any equivalent values, we would
expect to find equivalent values at the location just prior to the one returned by
_locate.
def __contains__(self, value):

"""Determine if a SortedList contains value."""

index = self._locate(value) - 1

# if list is empty, value cannot be in it

if index == -1: 5

return False
return self._datal[index] == value

The add operator simply adds an element to the SortedList in the position
indicated by the _locate operator:
def add(self, value):

"""Insert value at the correct location in the SortedList."""

index = self._locate(value)

self._data.insert(index, value)
Notice that if two equal values are added to the same SortedList, the last value
added is inserted later in the list.

To remove a value, we first attempt to locate it. If it is found, we capture the
value in the list for return, and then remove it from the list. In all other cases,
the operation does not return a value:

def remove(self, value):
"""Remove and return one instance of value list, if present."""
index = self._locate(value) - 1
if index >= O:
target = self._datalindex] 5
if target == value:
del self._datal[index]
return target
return None
Notice that we use the del operation to remove a specific location in the under-
lying 1ist; the remove operation from 1ist removes by value, not location. We
also return the value stored in the list, even though we know it to be equal to
the value that was to be removed. The reason we do this is because, though the
values may be equal, they may, in fact, be substantially different. For example,
we may remove a driver from a driver data base using a driver specification that
is sufficient only for the purposes of comparison. Other features that play no
role in the comparison—say, dates of license renewal and driving record—are
only features of the record stored within the database.
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9.3 Skip Lists

The sorted list structure provides an improvement for applications that require
many queries of the data structure. Because the structure is still, effectively,
a list, the time it takes to add or remove a value from the structure is still
linear. When we studied linked list structures we realized that insertion and
removal could be fast, but searching the structure was slow. Is there some
approach that is fast for both lookup and modification of the structure? We will
see many structures—most of them not obviously “list-like” in their structure—
that have the promise of fast queries and modification. At this point, however, it
is useful to investigate a list-like linked structure that is likely to provide efficient
operations, the skip list.

Linked lists are slow to traverse because it is not easy to make great strides
over many elements: each element has one reference to the value that follows.
If, however, we had a second reference that skipped the next node and refer-
enced a node two away, one could imagine the search for a relatively large value
in a list could be accomplished by first taking strides of two and then possibly
a single stride of one. Adding this second pointer would improve the lookup
time by a factor of two. Removal of a value would have to readjust, of course,
more pointers. By adding a third pointer, finding a value would take only thi
the time. Indeed, adding O(log, n) pointers to each node would allow one to
find a value in O(log, n) time. The number of pointers that must be adjusted,
however, begins to make modification considerably more difficult.

One might imagine the approach used by mass transit authorities in larger
cities. Busses or trains for a single route might be either “local” and “express”.
Local busses stop at every stop along the route, while express busses are faster
because they only ever stop at, say, every fifth stop. Most riders looking to get
home quickly with such an arrangement can expect to have to transfrer between
express and local busses. Express stops service see both types of busses, while
other most local stops only see local busses. The system is fast not because every
stop has an express option, but just that many stops have that option.

In skip lists, there are several linked paths through the list. Some paths visit
a only a few nodes, allowing for a quick traverals, while other paths are longer,
allowing for more accurate local searching of values. Since a single node may
appear on several paths, it is convenient to think of the “height” of a node as
the number of paths it supports. All nodes have height at least 1 (linked as a
linked list), but a few nodes are height 2, and fewer still are higher. The height
of a node is determined when it is created, and it remains fixed throughout the
its life. This allows the linkage between nodes to remain stable most of the
time. An important aspect of the performance of skip lists is that the height
is determined randomly, and is independent of the actual data stored in the
list. This allows for us to make bold statements about the expected behavior of
operations, even though, in most cases, worst case behavior linear and rare.

To support the implementation of skip lists, we store data in nodes that have
one or more next pointers. Because this is a structure that is not exported, we
allow for direct access to both fields from the list itself:
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class SkipListNode():

"""A node for use in SkipList."""

__slots__ = ["data", "next"]

def __init__(self, data=None, next=None):
self.data = data 5
# pointer to next node in SkipList
# next[i] is the next node at level i
self.next = [] if next is None else next

The SkipList is, essentially, a linked list of node structures. It keeps explicit
track of its size, a probability associated with computing the node height, and
a list of next pointers, one for each path through the list. It is initialized in the
following manner:

@checkdoc
class SkipList(Sorted):

__slots__ = [ "_p", "_size", "_head", "_frozen", "_hash" ]

def __init__(self, data=None, p=0.5, frozen=False):

"""Construct a SkipList from an iterable source.

p is a probability that a node will have more than one linkage pointer"""

# pointer to first node in SkipList at each level

self._head = SkipListNode(None) 10

self._head.next = [Nonel

self._size = 0

# probability that a node goes to the next level

self. p=p

if data: 15

for x in data:
self.add(x)
The number of paths through the list is the height of the list. As mentioned
previously, all nodes in the list have height at least 1. The probability p is the
percentage of nodes that have height at least two. Typically, we set p to be 0.5;
each path is composed of approximately half the length of the path at the layer
below. The SkipList maintains the heads of each of the paths through the list.
We will make use of a number of properties associated with skip lists:
Q@property
def p(self):
"""The probability that a node goes to the next level."""

return self._p

@property
def height(self):
"""The highest level of an actual node in the SkipList."""
return len(self._head.next)
10
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def __len__(self):
"""The length of the list at level 0."""
return self._size

Now, let’s assume that there are several elements in the list. What is nec-
essary to locate a particular value? The search begins along the highest level,
shortest path. This path, i, connects only a few nodes, and helps us get to the
approximate location. We walk along the path, finding the largest value on the
path that is less than the value sought. This is the predecessor of our value (if it
is in the list) at level i. Since this node is in every lower level path, we transfer
the search to the next lower level, i-1. As we find the predecessor at each level,
we save a reference to each node. If the list has to be modified—by removing
the value sought, or adding a copy if it is missing—each of these nodes must
have their respective paths updated.

def _find(self, value):
"""Create a list of the nodes immediately to the left of where value should be located
node = self._head
predecessors = []
for 1 in reversed(range(self.height)): 5
# search for predecessor on level 1
nextNode = node.next[1]
while (nextNode is not None) and (nextNode.data < value):
(node,nextNode) = (nextNode,nextNode.next[1])
# we’ve found predecessor at level 1 10
predecessors. append (node)
# note that we continue from node’s lower pointers
predecessors.reverse()
return predecessors
Notice that it is important that the search begin with the highest level path;
going from the outer path to the innermost path guarantees that we find the
predecessor nodes quickly. If we consider the paths from lower levels upward,
we must begin the each of each path at the head; this does not guarantee a
sub-linear performance.

How can we evaluate the performance of the _find operation? First, let’s
compute the approximate length of each path. The lowest level path (level 0)
has n nodes. The second lowest path has pn nodes. Each successively higher
path is reduced in length to p‘n for the path at level i. Given this, the number
of paths through the list is approximately log% n, the number of times that n

can be reduced by p. Another way to think about this is that between each
pair of nodes at level 4, there are approximately % nodes at level 7 — 1. Now, a
_find operation searches, in the expected case, about half the way through the
top-most path. Once the appropriate spot is found, the search continues at the
next level, considering some portion of the % nodes at that level. This continues

log 1 n times. The result is a running time of %1og; n, or O(logn) steps.
P p
The result of _find is a list of references to nodes that are the largest values
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smaller than the value sought. Entry 0 in this list is a reference to the predeces-
sor of the value sought. If the value that follows the node referenced by entry 0
in this list is not the value we seek, the value is not in the list.
def __contains__(self,value):

"""yalue is in SkipList."""

location = self._find(value)

target = location[0].next[0]

return (target is not None) and (target.data == value)
Another way to think about the result is find is that it is a list of nodes whose
links might be updated if the node sought was to be inserted. In the case of
removals, these nodes are the values that must be updated when the value is
removed.

The add method performs a _find operation which identifies, for each path,
the node that would be the predecessor in a successful search for the value. A
new node is constructed, its height is randomly selected (that is, the number
of paths that will include the node). The insertion of the node involves con-
structing the next points for the new node; these pointers are simply the next
references currently held by the predecessor nodes. For each of these levels it
is also necessary to update the next pointers for the predecessors so they each
point the our new node. Here is the code:

Gmutatormethod
def add(self, value):

"""Insert a SkipListNode with data set to value at the appropriate location."""

# create node
node = SkipListNode(value) 5
nodeHeight = self._random_height ()
for 1 in range(self.height,nodeHeight):
self._head.next.append(None)
# list of nodes whose pointers must be patched
predecessors = self._find(value) 10
# construct the pointers leaving node
node.next = [predecessors[i] .next[i] for i in range(nodeHeight)]
for i in range(nodeHeight):
predecessors[i] .next[i] = node
self._size += 1
It is possible to improve, slightly, the performance of this operation by merging
the code of _find and add methods, but the basic complexity of the operation
is not changed.

The remove operation begins with code that is similar to the __contains__
method. If the value-holding node is found, remove replaces the next fields of
the predecessors with references from the node targeted for removal:

@mutatormethod

def remove(self, value):
"""Remove value from SkipList at all levels where it appears."""
predecessors = self._find(value)
target = predecessors[0].next[0] 5
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if (target is None) or (target.data != value):
return None
height = len(target.next)
for i in range(height):
predecessors[i] .next[i] = target.next[i] 10
while (len(self._head.next) > 1) and (self._head.next[-1] is None):
self._head.next.pop()
self._size -= 1

9.4 Performance Analysis

We have seen two different implementations of lists that keep their elements
in order. One is based on Python’s built-in 1ist class, the other based on a
linked structure. Although the linked structure has the overhead of possibly
many pointers, the number of pointers per node asymptotically approaches ﬁ
for a skip list whose probability is p. For example, when p = 2, the skip list has
a space utilization of a doubly linked list. The advantage of these extra pointers
is that insertion and removal operations is reduced to the expected complexity

of finding the appropriate location, O(log1 n). This is an expected cost because

the structure of the list depends on the selection of nodes of random heights.

Insertion of values into either type of list involved identifying the appro-
priate location for the value to be inserted. In both of these structures, this
operation takes O(log n) time. Insertion in a list requires the shifting of a poten-
tially large number of values, but the SkipList requires the updating of several
pointers. Not surprisingly, the performance of the SkipList is no better than
the SortedList for small values of n, but as n increases, the O(n) insertion
time of SortedList loses out to the SkipList. We can see this in the tables of
Figure ??.

9.5 Conclusions
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Chapter 10

Binary Trees

RECURSION IS A BEAUTIFUL APPROACH TO STRUCTURING. We commonly think of
recursion as a form of structuring the control of programs, but self-reference can
be used just as effectively in the structuring of program data. In this chapter,
we investigate the use of recursion in the construction of branching structures
called trees.

Most of the structures we have already investigated are linear—their natural
presentation is in a line. Trees branch. The result is that where there is an
inherent ordering in linear structures, we find choices in the way we order the
elements of a tree. These choices are an indication of the reduced “friction” of
the structure and, as a result, trees provide us with the fastest ways to solve
many problems.

Before we investigate the implementation of trees, we must develop a con-
cise terminology.

10.1 Terminology

A tree is a collection of elements, called nodes, and relations between them,
called edges. Usually, data are stored within the nodes of a tree. Two trees are
disjoint if no node or edge is found common to both. A trivial tree has no nodes
and thus no data. An isolated node is also a tree.

From these primitives we may recursively construct more complex trees. Let
r be a new node and let 71,75, ..., T, be a (possibly empty) set—a forest—of
distinct trees. A new tree is constructed by making r the root of the tree, and
establishing an edge between r and the root of each tree, T}, in the forest. We
refer to the trees, T;, as subtrees. We draw trees with the root above and the
trees below. Figure ??g is an aid to understanding this construction.

The parent of a node is the adjacent node appearing above it (see Figure ??).
The root of a tree is the unique node with no parent. The ancestors of a node
n are the roots of trees containing n: n, n’s parent, n’s parent’s parent, and so
on. The root is the ancestor shared by every node in the tree. A child of a node
n is any node that has n as its parent. The descendants of a node n are those
nodes that have n as an ancestor. A leaf is a node with no children. Note that
n is its own ancestor and descendant. A node m is the proper ancestor (proper
descendant) of a node n if m is an ancestor (descendant) of n, but not vice versa.
In a tree 7', the descendants of n form the subtree of T rooted at n. Any node of
a tree T that is not a leaf is an interior node. Roots can be interior nodes. Nodes
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m and n are siblings if they share a parent.

A path is the unique shortest sequence of edges from a node n to an ancestor.
The length of a path is the number of edges it mentions. The height of a node n
in a tree is the length of any longest path between a leaf and n. The height of a
tree is the height of its root. This is the maximum height of any node in the tree.
The depth (or level) of a node n in its tree T is the length of the path from n
to T’s root. The sum of a node’s depth and height is no greater than the height
of the tree. The degree of a node n is the number of its children. The degree of
a tree (or its arity) is the maximum degree of any of its nodes. A binary tree is
a tree with arity less than or equal to 2. A 1-ary tree is termed degenerate. A
node n in a binary tree is full if it has degree 2. In an oriented tree we will call
one child the left child and the other the right child. A full binary tree is a tree
whose internal nodes are all full. A perfect binary tree (or a maximally heapable
tree) is a full tree of height h that has leaves only on level h. The addition of
a node to a perfect binary tree causes its height to increase. A complete binary
tree (or a heapable tree) of height h is a perfect binary tree with O or more of the
rightmost leaves of level i removed.

10.2 Example: Pedigree Charts

With the growth of the Internet, many people have been able to make contact
with long-lost ancestors, not through some new technology that allows contact
with spirits, but through genealogical databases. One of the reasons that ge-
nealogy has been so successful on computers is that computers can organize
treelike data more effectively than people.

One such organizational approach is a pedigree chart. This is little more than
a binary tree of the relatives of an individual. The root is an individual, perhaps
yourself, and the two subtrees are the pedigrees of your mother and father.!
They, of course, have two sets of parents, with pedigrees that are rooted at your
grandparents.

To demonstrate how we might make use of a BinTree class, we might imag-
ine the following code that develops the pedigree for someone named George
Bush:?

JSBush = BinTree("Rev. James");

HEFay = BinTree("Harriet");

SPBush = BinTree("Samuel",JSBush,HEFay) ;

RESheldon = BinTree("Robert");

MEButler = BinTree("Mary"); 5
FSheldon = BinTree("Flora",RESheldon,MEButler);

PSBush = BinTree("Prescott",SPBush,FSheldon);

DDWalker = BinTree("David");

L At the time of this writing, modern technology has not advanced to the point of allowing nodes
of degree other than 2.
2 This is the Texan born in Massachusetts; the other Texan was born in Connecticut.
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MABeaky = BinTree("Martha");

GHWalker = BinTree("George",DDWalker,MABeaky) ; 10
JHWear = BinTree("James II");

NEHolliday = BinTree("Nancy");

LWear = BinTree("Lucretia",JHWear,NEHolliday);

DWalker = BinTree("Dorothy",GHWalker,LWear);

GHWBush = BinTree("George" ,PSBush,DWalker);

For each person we develop a node that either has no links (the parents were
not included in the database) or has references to other pedigrees stored as
BinTrees. Arbitrarily, we choose to maintain the father’s pedigree on the left
side and the mother’s pedigree along the right. We can then answer simple
questions about ancestry by examining the structure of the tree. For example,
who are the direct female relatives of the President?
person = GHWBush
while not person.right.empty:
person = person.right
print (person.value)
The results are
Dorothy
Lucretia
Nancy

Exercise 10.1 These are, of course, only some of the female relatives of President
Bush. Write a program that prints all the female names found in a BinTree
representing a pedigree chart.

One feature that would be useful, would be the ability to add branches to
a tree after the tree was constructed. For example, we might determine that
James Wear had parents named William and Sarah. The database might be up-
dated as follows:
JHWear.left = BinTree("William")
SAYancey = BinTree("Sarah")
JHWear.right = SAYancey

A little thought suggests a number of other features that might be useful in
supporting the pedigree-as-BinTree structure.

10.3 Example: Expression Trees

Most programming languages involve mathematical expressions that are com-
posed of binary operations applied to values. An example from Python program-
ming is the simple expressionr = 1 + (1 - 1) * 2. This expression involves
four operators (=, +, -, and *), and 5 values (zr, 1, 1, 1, and 2). Languages often
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represent expressions using binary trees. Each value in the expression appears
as a leaf, while the operators are internal nodes that represent the reduction of
two values to one (for example, 1 - 1 is reduced to a single value for use on
the left side of the multiplication sign). The expression tree associated with our
expression is shown in Figure 10.1a. We might imagine that the following code
constructs the tree and prints —1:

# two variables, 1 and r, both initially zero

1 = BinTree(["1",0])

r = BinTree(["r",0])

compute r = 1+(1-1)%*2 5
= BinTree(operator(’-’),1,BinTree(1))

BinTree (operator(’*’),t,BinTree(2))

BinTree (operator(’+’) ,BinTree(1),t)

BinTree (operator(’=’),r,t)

print(eval(t)) 10

¢ o o+ o+ H
]

# evaluate and print expression
print(r.value[1])

Once an expression is represented as an expression tree, it may be evaluated
by traversing the tree in an agreed-upon manner. Standard rules of mathe-
matical precedence suggest that the parenthesized expression (1-1) should be
evaluated first. (The 1 represents a value previously stored in memory.) Once
the subtraction is accomplished, the result is multiplied by 2. One is then then
added to the product. The result of the addition is assigned to r. The assign-
ment operator is treated in a manner similar to other common operators; it just
has lower precedence (it is evaluated later) than standard mathematical oper-
ators. Thus an implementation of binary trees would be aided by a traversal
mechanism that allows us to manipulate values as they are encountered.

10.4 Implementation

We now consider the implementation of binary trees. As with our linked list
implementations, we will construct a self-referential binary tree class, BinTree.
The recursive design motivates implementation of many of the BinTree opera-
tions as recursive methods. However, because the base case of recursion often
involves an empty tree we will make use of a dedicated “sentinel” node that
represents the empty tree. This simple implementation will be the basis of a
large number of more advanced structures we see throughout the remainder of
the text.
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(®)

Figure 10.1 Expression trees. (a) An abstract expression tree representing
r=1+(1-1)*2. (b) A possible connectivity of an implementation using references.
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Figure 10.2 The structure of a BinTree. The parent reference opposes a left or right
child reference in parent node.

10.4.1 The BinTree Implementation

Our first step toward the development of a binary tree implementation is to
represent an entire subtree as a reference to its root node. The node will main-
tain a reference to user data and related nodes (the node’s parent and its two
children) and directly provides methods to maintain a subtree rooted at that
node. All empty trees will be represented by a single instance of a BinTree
called BinTree.Empty. This approach is not unlike the “dummy nodes” pro-
vided in our study of linked lists. Allowing the empty tree to be an object allows
programs to call methods on trees that are empty. If the empty tree were repre-
sented by Nomne, it would be impossible to apply methods to the structure.
Figure 10.1b depicts the use of BinTrees in the representation of an entire
tree. We visualize the structure of a BinTree as in Figure 10.2. To construct
such a node, we require three pieces of information: a reference to the data
that the user wishes to associate with this node, and left and right references to
binary tree nodes that are roots of subtrees of this node. The parent reference
is determined implicitly from opposing references. The BinTree is initialized as
follows:
@checkdoc
class BinTree(Iterable, Sized, Freezable):

# This object represents the empty tree

# All empty references are to self.Empty

# Initialization happens after class definition 5

Empty = None

__slots__ = ["_data", "_left", "_right", "_parent", "_frozen", "_hash"]

def __init__(self,data=None,left=None,right=None,dummy=False,frozen=False):
"""Construct a binary tree node."""
self._hash = None
if dummy:
# this code is typically used to initialize self.Empty
self._data = None 15
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self._left = self
self._right = self
self._parent = None
self._frozen = True
else: 20
# first, declare the node as a disconnected entity
self._left = None
self._right = None
self._parent = None
self._data = data 25
self._frozen = False
# now, nontrivially link in subtrees
self.left = left if left is not None else self.Empty
self.right = right if right is not None else self.Empty
if frozen:
self.freeze()

We call the initializer with dummy set to True when an empty BinTree is needed.
The result of this initializer is the single empty node that will represent mem-
bers of the fringe of empty trees found along the edge of the binary tree. The
most common initialization occurs when dummy is False. Here, the initializer
makes calls to “setting” routines. These routines allow one to set the references
of the left and right subtrees, but also ensure that the children of this node ref-
erence this node as their parent. This is the direct cost of implementing forward
and backward references along every link. The return, though, is the consid-
erable simplification of other code within the classes that make use of BinTree
methods.

Principle 6 Don't let opposing references show through the interface.

When maintenance of opposing references is left to the user, there is an oppor-
tunity for references to become inconsistent. Furthermore, one might imagine
implementations with fewer references (it is common, for example, to avoid the
parent reference); the details of the implementation should be hidden from the
user, in case the implementation needs to be changed.

Here is the code associated with maintaining the left subtree as a property
associated with BinTree. As is typical, the accessor property method simply
returns the internal reference, while the “setter” performs a non-trivial amount
of work to maintain a consistent state in the tree.

Q@property

def left(self):
“"'This node’s left child."""
return self._left

Qleft.setter
def left(self,newlLeft):
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"""Hang new left tree off node."""

assert isinstance(newLeft,BinTree)

if self.empty: 10

return
# carefully dissolve any relation to left subtree
if self.left is not None and self.left.parent is self:
self.left.parent = None

self._left = newlLeft

newLeft.parent = self
If the setting of the left child causes a subtree to be disconnected from this node,
and that subtree considers this node to be its parent (if the subtree is not the
empty tree, it should), we disconnect the node by setting its parent to None.
We then set the left child reference to the value passed in. Any dereferenced
node sets its parent reference to None. We also take care to set the opposite
parent reference by calling the parent setter method of the root of the associ-
ated non-trivial tree. Why? Because it is important that we not set the parent
field of BinTree.Empty. Because we want to maintain consistency between the
downward child references and the upward parent references, we declare the
actual reference, _parent with a leading underscore to make it difficult for the
user to refer to directly:

@property
def parent(self):
"""This node’s parent."""

return self._parent

@parent.setter
def parent(self,newParent):
if self is not self.Empty:
self._parent = newParent

Once the node has been constructed, its value can be inspected and modi-
fied using the value-based functions that parallel those we have seen with other
types:

@property

def value(self):
"""The data stored in this node."""
return self._data

Q@value.setter

def value(self,newValue):
self._data = newValue

The BinTree may be used as the basis for our implementation of some fairly
complex programs and structures.
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Does it have a horn? ‘

a computer

Is it magical?

a unicorn

Figure 10.3 The state of the database in the midst of playing infinite_questions.

10.5 Example: An Expert System

Anyone who has been on a long trip with children has played the game Twenty
Questions. It’s not clear why this game has this name, because the questioning
often continues until the entire knowledge space of the child is exhausted. We
can develop a very similar program, here, called infinite_questions. The
central component of the program is a database, stored as a BinTree. At each
leaf is an object that is a possible guess. The interior nodes are questions that
help distinguish between two groups of guesses; these nodes are full.

Figure 10.3 demonstrates one possible state of the database. To simulate a
questioner, one asks the questions encountered on a path from the root to some
leaf. If the response to the question is positive, the questioning continues along
the left branch of the tree; if the response is negative, the questioner considers
the right.

Exercise 10.2 What questions would the computer ask if you were thinking of a
truck?

Of course, we can build a very simple database with a single value—perhaps
a computer. The game might be set up to play against a human as follows:
def main():

database = BinTree("a computer")

answer = input("Do you want to play a game? ")

while answer == "yes":
print ("Think of something...I’1ll guess it.") 5
play(database)
answer = input("Do you want to play again? ")

print("Have a good day!")

When the game is played, the computer is very likely to lose. The database
can still benefit by incorporating information about the losing situation. If the
program guessed a computer and the item was a car, we could incorporate the
car and a question “Does it have wheels?” to distinguish the two objects. As it
turns out, the program is not that difficult.
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def play(database):
if not database.left.empty:

# ask a question

answer = input(database.value+" ")

if answer == "yes": 5
play(database.left)

else:
play(database.right)

else:

# make a guess 10

answer = input("Is it "+database.value+"? ")

if answer == "yes":
print ("I guessed it!")

else:
answer = input("Darn! What were you thinking of? ")
newObject = BinTree(answer)
oldObject = BinTree(database.value)
database.left = newObject
database.right = oldObject
database.value = \ 20

input ("What question would distinguish {} from {}7 "\
.format (newObject.value,oldObject.value))

The program can distinguish questions from guesses by checking to see there is
a left child. This situation would suggest this node was a question since the two
children need to be distinguished.

The program is very careful to expand the database by adding new leaves
at the node that represents a losing guess. If we aren’t careful, we can easily
corrupt the database by growing a tree with the wrong topology.

Here is the output of a run of the game that demonstrates the ability of the
database to incorporate new information—that is to learn:

Do you want to play a game?

Think of something...I’ll guess it

Is it a computer?

Darn. What were you thinking of?

What question would distinguish a car from a computer? 5
Do you want to play again?

Think of something...I’ll guess it

Does it have a horn?

Is it a car?

Darn. What were you thinking of? 10
What question would distinguish a unicorn from a car?

Do you want to play again?

Think of something...I’1l guess it

Does it have a horn?

Is it magical? 15
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Is it a car?

I guessed it!

Do you want to play again?
Have a good day!

Exercise 10.3 Make a case for or against this program as a (simple) model for
human learning through experience.

We now discuss the implementation of a general-purpose Iterator for the
BinTree class. Not surprisingly a structure with branching (and therefore a
choice in traversal order) makes traversal implementation more difficult. Next,
we consider the construction of several Iterators for binary trees.

10.6 Recursive Methods

Trees are recursively defined structures, so it would seem reasonable to con-
sider recursive implementations of iterators. The difficulty is that generators
must maintain their state whenever a yield occurs. Any recursive approach to
traversal would encounter nodes while deep in recursion, and the state of the
generator’s call stack would have to be preserved. This is so problematic that
Python actively discourages the use of recursion in generator specification.

One way around the difficulties of suspending the recursion is to initially
perform the entire traversal, generating a 1ist of values encountered. Since
the entire traversal happens all at once, the list can be constructed during the
recursion.

Using this idea, we can reconsider the in-order traversal:

def inOrderR(self):
def listify(tree,lst):
if not tree.empty:
listify(tree.left,lst)
1st.append(tree.value) 5
listify(tree.right,lst)

temp = []

listify(self,temp)

return iter(temp)
The core of this implementation is the protected method enqueueInorder. It
simply traverses the tree rooted at its parameter and enqueues every node en-
countered. Since it recursively enqueues all its left descendants, then itself, and
then its right descendants, it is an in-order traversal. Since the queue is a FIFO,
the order is preserved and the elements may be consumed at the user’s leisure.

Exercise 10.4 Rewrite the other iteration techniques using the recursive approach.

Rewrite this
section
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It is reassuring to see the brevity of these implementations. Unfortunately,
while the recursive implementations are no less efficient, they come at the obvi-
ous cost of a potentially long delay whenever the iterator is primed. In addition,
if the height of the tree to be traversed is greater than Python’s stack limit, the
recursion is doomed. For this reason, the iterative approaches seem most re-
silient. Still, for many applications recursion may be satisfactory.

10.7 Traversals of Binary Trees

We have seen, of course, there is a great industry in selling calculators that allow
users to enter expressions in what appear to be arbitrary ways. For example,
some calculators allow users to specify expressions in infix form, where keys
associated with operators (+ and the like) are pressed between the values they
operate on, operands. Other calculators advocate a postfix® form, where the
operator is pressed only after the operands have been entered. Considering our
representation of expressions as trees, we observe that there must be a similar
variety in the ways we traverse a BinTree structure. We consider those here.

When designing iterators for linear structures there are usually few useful
choices: start at one end and visit each element until you get to the other end.
Many of the linear structures we have seen provide an elements method that
constructs an iterator for traversing the structure. For binary trees, there is
no obviously preferred order for traversing the structure. Here are four rather
distinct mechanisms:

Preorder traversal. Each node is visited before any of its children are visited.
Typically, we visit a node, and then each of the nodes in its left subtree,
followed by each of the nodes in the right subtree. A preorder traversal of
the expression tree in the margin visits the nodes in the order: =, r, +, 1,
%, —, [, 1, and 2.

In-order traversal. Each node is visited after all the nodes of its left subtree
have been visited and before any of the nodes of the right subtree. The in-
order traversal is usually only useful with binary trees, but similar traversal
mechanisms can be constructed for trees of arbitrary arity. An in-order
traversal of the expression tree visits the nodes in the order: r, =, 1,
+, 1, —, 1, %, and 2. Notice that, while this representation is similar to
the expression that actually generated the binary tree, the traversal has
removed the parentheses.

Postorder traversal. Each node is visited after its children are visited. We visit
all the nodes of the left subtree, followed by all the nodes of the right
subtree, followed by the node itself. A postorder traversal of the expression

3 Reverse Polish Notation (RPN) was developed by Jan Lukasiewicz, a philosopher and mathemati-
cian of the early twentieth century, and was made popular by Hewlett-Packard in their calculator
wars with Texas Instruments in the early 1970s.
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tree visits the nodes in the order: r, 1, I, 1, —, 2, *, +, and =. This is
precisely the order that the keys would have to be pressed on a “reverse
Polish” calculator to compute the correct result.

Level-order traversal. All nodes of level i are visited before the nodes of level
1+ 1. In a Level-order traversal the nodes of the expression tree are visited
in the order: =, r, +, 1, x, —, 2, [, and 1. (This particular ordering of the
nodes is motivation for another implementation of binary trees we shall
consider later and in Problem ??.)

As these are the most common and useful techniques for traversing a binary
tree we will investigate their respective implementations. Traversing BinTrees
involves constructing an iterator that traverses the entire set of subtrees. For
this reason, and because the traversal of subtrees proves to be just as easy, we
discuss implementations of iterators for BinTrees.

Most implementations of iterators maintain a linear structure that keeps
track of the state of the iterator. In some cases, this auxiliary structure is not
strictly necessary (see Problem ??) but may reduce the complexity of the imple-
mentation and improve its performance.

10.7.1 Preorder Traversal

For a preorder generator, we wish to yield each node of the tree before any of
its proper descendants (recall the node is a descendant of itself). To accomplish
this, we keep a local stack of nodes whose right subtrees have not been investi-
gated. In particular, the current node is the topmost element of the stack, and
elements stored deeper within the stack are more distant ancestors.

The iterator accepts a single parameter—the root of the subtree to be tra-
versed. An important thing to note is that the traversal from a node should stay
within the subtree rooted at that node.

def preOrder(self):
"""Traverse subtree by visiting parent before children."""
def addNode (node,todo):
if not node.empty:
todo.add (node) 5

todo = Stack()
addNode (self,todo)
while not todo.empty:
tree = todo.pop() 10
yield tree.value
addNode (tree.right,todo)
addNode (tree.left,todo)
As we can see, todo is the private stack used to keep track of references to
unvisited nodes encountered while visiting other nodes. Another way to think
about it is that it is the frontier of nodes encountered on paths from the root
that have not yet been visited.
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Figure 10.4 Three cases of determining the next current node for preorder traversals.
Node A has a left child A’ as the next node; node B has no left, but a right child B’; and
node C is a leaf and finds its closest, “right cousin,” C".

Whenever we encounter an unvisited node, directly, or as a child of the a
visited node, we push it on the stack of nodes to be considered. The traversal,
then involves popping nodes off the todo list, and yielding the value. Since the
current node has just been visited, we push on any children of the node—first, a
possible right child, then a possible left. If the node has a left child (see node A
of Figure 10.4), that node (A’) is the next node to be visited. If the current node
(see node B) has only a right child (B’), it will be visited next. If the current
node has no children (see node C), the effect is to visit the closest unvisited
right cousin or sibling (C”).

It is clear that over the life of the iterator each of the n values of the tree
is pushed onto and popped off the stack exactly once; thus the total cost of
traversing the tree is O(n). A similar observation is possible for each of the
remaining iteration techniques.

10.7.2 In-order Traversal

The inorder iterator is constructed from a generator that visits left children of
a node, then the node, then the node’s right children. Again, we construct the
iterator using a generator that keeps a stack of unvisited ancestors of the node
currently being visited. The stack is initialized by pushing on the root of the
tree and all the descendants along the leftmost branch.

When a node is popped off the todo list it either has no left subtree or all
the nodes of the left subtree have been visited. The node is then visited. After
the visit, we traverse the right subtree by pushing on its left branch. Here’s the
process:

def inOrder(self):
def pushLeftDescendants(tree,todo):
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while not tree.empty:
todo.push(tree)
tree = tree.left 5

todo = Stack()
pushLeftDescendants(self,todo)
while not todo.empty:
tree = todo.pop() 10
yield tree.value
pushLeftDescendants(tree.right,todo)
Since the first element considered in an in-order traversal is the leftmost descen-
dant of the root, pushing each of the nodes from the root down to the leftmost
descendant places that node on the top of the stack.
When the current node is popped from the stack, the next element of the
traversal must be found. We consider two scenarios:

1. If the current node has a right subtree, the nodes of that tree have not
been visited. At this stage we should push the right child, and all the
nodes down to and including its leftmost descendant, on the stack.

2. If the node has no right child, the subtree rooted at the current node has
been fully investigated, and the next node to be considered is the closest
unvisited ancestor of the former current node—the node just exposed on
the top of the stack.

As we shall see later, it is common to order the nodes of a binary tree so that
left-hand descendants of a node are smaller than the node, which is, in turn,
smaller than any of the rightmost descendants. In such a situation, the in-order
traversal plays a natural role in presenting the data of the tree in order. For this
reason, the __iter__ method returns the iterator formed from the he inOrder
generator.

10.7.3 Postorder Traversal

Traversing a tree in postorder also maintains a stack of uninvestigated nodes.
Each of the elements on the stack is a node whose descendants are currently
being visited. Since the first element to be visited is the leftmost descendant
of the root, the generator begins by pushing on each of the nodes from the
root to the leftmost leaf using the internal method, pushToLeftmostLeaf. If
this procedure is called on an empty binary tree, no nodes are actually pushed
onto the stack. An important observation is that the todo stack always contains
all of the (unvisited) nodes from the current (visited) node to the root of the
traversal.
def postOrder(self):
def pushToLeftLeaf (tree,todo):
while not tree.empty:
todo.push(tree)
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if not tree.left.empty: 5
tree = tree.left

else:
tree = tree.right

todo = Stack() 10
pushToLeftLeaf (self,todo)
while not todo.empty:
node = todo.pop()
yield node.value
if not todo.empty: 15
# parent is on top (todo.peek())
parent = todo.peek()
if node is parent.left:
pushToLeftLeaf (parent.right,todo)
Once the stack has been initialized, the top element on the stack is the leftmost
leaf, the first value to be visited. The node is popped from the stack and yielded.
Now, if a node has just been traversed (as indicated by the yield statement), it
and its descendants must all have been visited thus far in the traversal. Either
the todo stack is empty (we're currently at the root of the traversal) or the top of
the stack is the parent of the current node. If the current node is its parent’s left
child, we speculatively continue the search through the parent’s right subtree. If
there is no right subtree, or if the current node is a right child, no further nodes
are pushed onto the stack and the next iteration will visit the parent node.
Since the todo stack simply keeps track of the path to the root of the traversal
the stack can be dispensed with by simply using the nodes that are singly linked
through the parent pointers. One must be careful, however, to observe two
constraints on the stackless traversal. First, one must make sure that traversals
of portions of a larger tree are not allowed to “escape” through self, the vir-
tual root of the traversal. Second, since there is one BinTree.Empty, we have
carefully protected that node from being “re-parented”. It is important that the
traversal not accidentally step off of the tree being traversed into the seemingly
disconnected empty node.

10.7.4 Level-order Traversal

A level-order traversal visits the root, followed by the nodes of level 1, from
left to right, followed by the nodes of level 2, and so on. This can be easily
accomplished by maintaining a queue of the next few nodes to be visited. More
precisely, the queue contains the current node, followed by a list of all siblings
and cousins to the right of the current node, followed by a list of “nieces and
nephews” to the left of the current node.
def levelOrder(self):
def addNode(node,todo):
if not node.empty:
todo.add (node)
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5
todo = Queue()
addNode (self,todo)
while not todo.empty:
tree = todo.dequeue()
yield tree.value 10

addNode (tree.left,todo)
addNode (tree.right,todo)

The traversal is initialized by adding the root of the search to the queue (pre-
suming the traversed subtree is not empty). The traversal step involves remov-
ing a node from the queue. Since a queue is a first-in first-out structure, this is
the node that has waited the longest since it was originally exposed and added
to the queue. After we visit a node, we enqueue the children of the node (first
the left the the right). With a little work it is easy to see that these are either
nieces and nephews or right cousins of the next node to be visited; it is impos-
sible for a node and its descendants to be resident in the queue at the same
time.

Unlike the other iterators, this method of traversing the tree is meaningful
regardless of the degree of the tree. On the other hand, the use of the queue,
here, does not seem to be optional; the code would be made considerably more
complex if it were recast without the queue.

In each of these iterators we have declared utility functions (addNode, etc.)
that have helped us describe the logical purpose behind the management of the
linear todo structure. There is, of course, some overhead in declaring these
functions, but from a code-clarity point-of-view, these functions help consid-
erably in understanding the motivations behind the algorithm. The method
addNode is common to two different traversals (preOrder and levelOrder),
but the type of the linear structure was different. The use of the add method
instead of the structure specific equivalents (push and enqueue) might allow us
a small degree of conceptual code reuse.

10.8 Property-Based Methods

At this point, we consider the implementation of a number of property-based
methods. Properties such as the height and fullness of a tree are important
to guiding updates of a tree structure. Because the binary tree is a recursive
structure, the proofs of tree characteristics (and the methods that verify them)
often have a recursive feel. To emphasize the point, in this section we allow
theorems about trees and methods that verify them to intermingle. Again, the
methods described here are written for use on BinTrees, but they are easily
adapted for use with more complex structures.

Our first method makes use of the fact that the root is a common ancestor
of every node of the tree. Because of this fact, given a BinTree, we can identify
the node as the root, or return the root of the tree containing the node’s parent.
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@property
def root(self):
"""Root of containing tree."""
result = self
while result.parent != None: 5
result = result.parent
return result

If we count the number of times the root routine is recursively called, we
compute the number of edges from the node to the root—the depth of the node.
A more general purpose method, pathLength allows us to count the number of
edges along a path from a node to an ancestor.

def pathLength(self,ancestor):
"""Count edges between a node and ancestor."""
if self.empty:
return -1
length = 0 5
node = self
while node is not ancestor:
node = node.parent
length += 1
return length
Remembering that the root of a tree is an ancestor for every node in the tree,
we can determine the depth by computing the length of the path from a node
to its root.
@property
def depth(self):
"""Depth of the node in the tree."""
return self.pathLength(self.root)
The time it takes is proportional to the depth of the node, though it follows that
path twice: once to compute the root and a second time to count the edges. In
cases where the root is known, or we are seeking the depth of a node in a rooted
subtree, there is a computational advantage to avoiding the root computation.
Notice that in the empty case we return a height of —1. This is consistent with
our recursive definition, even if it does seem a little unusual. Often, making
tough decisions about base cases can play an important role in making your
interface useful. Generally, a method is more robust, and therefore more usable,
if you handle as many cases as possible.

Principle 7 Write methods to be as general as possible.

Having computed the depth of a node, it follows that we should be able to
determine the height of a tree rooted at a particular BinTree. We know that
the height is simply the length of a longest path from the root to a leaf. If we
perform a level-order traversal of the tree, the last node encountered is found
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Figure 10.5 Several perfect (and complete) binary trees.

on the last level. The depth of this node below the root of the traversal is the
height of the tree.
To facilitate this computation we make use of a private level-order traversal,
_nodes, that yields not values, but BinTree nodes:
def _nodes(self):
"""A level-order traversal of the binary tree nodes in this tree."""
def addNode (node,todo):
if not node.empty:
todo.add (node) 5

todo = Queue()
addNode (self,todo)
while not todo.empty:
node = todo.remove () 10
yield node
addNode (node.left,todo)
addNode (node.right,todo)
Traversing a tree with n nodes this traversal takes O(n) time and the size of the
todo structure may grow to include references to as many as [ | nodes.

Exercise 10.5 Rewrite the levelOrder generator based on the _nodes traversal.

Now, with the _nodes generator, we can write the height property by re-
turning the depth of the last node encountered.

Q@property

def height(self):
"""Height of the tree rooted at this node."""
if self.empty:

return -1 5

node = list(self._nodes())[-1]
# how far below self is the last lowest node?
return node.pathLength(self)
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Observation 10.1 A perfect binary tree of height h > 0 has 2"+ — 1 nodes.

Proof: We prove this by induction on the height of the tree. Suppose the tree
has height 0. Then it has exactly one node, which is also a leaf. Since 2! —1 =1,
the observation holds, trivially.

Our inductive hypothesis is that perfect trees of height k& < h have 2+ — 1
nodes. Since h > 0, we can decompose the tree into two perfect subtrees of
height h — 1, under a common root. Each of the perfect subtrees has 2("~D+! —
1 = 2" — 1 nodes, so there are 2(2" — 1) + 1 = 2""! — 1 nodes. This is the result
we sought to prove, so by induction on tree height we see the observation must
hold for all perfect binary trees. ¢

This observation suggests that if we can compute the height and size of a
tree, we have a hope of detecting a perfect tree by comparing the height of the
tree to the number of nodes:

Q@property
def perfect(self):
if self.empty:
return True
nodes = list(self._nodes()) 5
last = nodes[-1]
height = last.pathLength(self)
return (1<<(height+1))-1 == len(nodes)
Notice the return statement makes use of shifting 1 to the left by height+1
binary places. This is equivalent to computing 2* (h+1). The result is that the
function can detect a perfect tree in the time it takes to traverse the entire tree,
O(n).

There is one significant disadvantage, though. If you are given a tree with
height greater than 100, the result of the return statement may have to compute
very large values for reasonably small trees.

Exercise 10.6 Rewrite the perfect method so that it avoids the manipulation of
large values for small trees.

We now prove some useful facts about binary trees that help us evaluate per-
formance of methods that manipulate them. First, we consider a pretty result:
if a tree has lots of leaves, it must branch in lots of places.

Observation 10.2 The number of full nodes in a binary tree is one less than the
number of leaves.

Proof: Left to the reader.c

With this result, we can now demonstrate that just over half the nodes of a
perfect tree are leaves.

Observation 10.3 A perfect binary tree of height h > 0 has 2" leaves.
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Proof: In a perfect binary tree, all nodes are either full interior nodes or leaves.
The number of nodes is the sum of full nodes F' and the number of leaves /.
Since, by Observation 10.2, ' = L — 1, we know that the count of nodes is
F+ L =2L—1=2"1 _1. This leads us to conclude that L = 2" and that
F=2"—1.0¢

This result demonstrates that for many simple tree methods half of the time is
spent processing leaves.

Using the _nodes traversal we can identify full trees by rejecting any tree
that contains a node with one child:

@property
def full(self):
"""All nodes are parents of 2 children or are leaves"""
for node in self._nodes():
if node.degree == 1: 5
return False
return True
Since this procedure can be accomplished by simply looking at all of the nodes,
it runs in O(n) time on a tree with n nodes.

We can recognize a complete binary tree by performing a level-order traver-
sal and realizing that any full nodes appear before any leaves. Between these
two types of nodes is potentially one node with just a left subtree.

@property
def complete(self):
"""Leaves of tree at one or two levels, deeper leaves at left."""
allowableDegree = 2
for node in self._nodes(): 5
degree = node.degree
if degree > allowableDegree:
return False
if degree < 2:
if not node.right.empty: 10
return False
allowableDegree = 0
return True
Again, because all of the processing can be accomplished in a single pass of all
of the nodes, a complete tree can be identified in O(n) time.

10.9 Example: Huffman Compression

Information within machines is stored as a series of bits, or 1’s and 0’s. Because
the distribution of the patterns of 1’s and 0’s is not always uniform, it is possible
to compress the bit patterns that are used and reduce the amount of storage
that is necessary. For example, consider the following 56 character phrase:

The mountains, the mountains, we greet them with a song!
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Figure 10.6 The Mountains huffman tree. Leaves are labeled with the characters they
represent. Paths from root to leaves provide huffman bit strings.

If each letter in the string is represented by 8 bits (as they often are), the entire
string takes 256 bits of storage. Clearly this catchy phrase does not use the full
range of characters, and so perhaps 8 bits are not needed. In fact, there are 13
distinct characters so 4 bits would be sufficient (4 bits can represent any of 16
values). This would halve the amount of storage required, to 128 bits.

If each character were represented by a unique variable-length string of bits,
further improvements are possible. Huffman encoding of characters allows us to
reduce the size of this string to only 111 bits by assigning frequently occurring
letters (like “o”) short representations and infrequent letters (like “a”) relatively
long representations.

Huffman encodings can be represented by binary trees whose leaves are the
characters to be represented. In Figure 10.6 left edges are labeled 0, while right
edges are labeled 1. Since there is a unique path from the root to each leaf, there
is a unique sequence of 1’s and 0’s encountered as well. We will use the string
of bits encountered along the path to a character as its representation in the
compressed output. Note also that no string is a prefix for any other (otherwise
one character would be an ancestor of another in the tree). This means that,
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Figure 10.7 The Huffman tree of Figure 10.6, but with nodes labeled by total frequen-
cies of descendant characters.

given the Huffman tree, decoding a string of bits involves simply traversing the
tree and writing out the leaves encountered.

The construction of a Huffman tree is an iterative process. Initially, each
character is placed in a Huffman tree of its own. The weight of the tree is the
frequency of its associated character. We then iteratively merge the two most
lightweight Huffman trees into a single new Huffman tree whose weight is the
sum of weights of the subtrees. This continues until one tree remains. One
possible tree for our example is shown in Figure 10.7.

Our approach is to use BinTrees to maintain the structure. This allows the
use of recursion and easy merging of trees. Leaves of the tree carry descriptions
of characters and their frequencies:

Q@total_ordering
class leaf (object):
__slots__ = ["frequency","ch"]
def __init__(self,c):
self.ch = ¢ 5
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self.frequency = 1

def __lt__(self,other):
return self.ch < other.ch
10
def __eq__(self,other):
return self.ch == other.ch

def __str__(self):
return "leaf ({} with frequency {})".format(self.ch,self.frequency)
Intermediate nodes carry no data at all. Their relation to their ancestors deter-
mines their portion of the encoding. The entire tree is managed by a wrapper
class, huffmanTree:
Q@total _ordering
class huffmanTree(object):
__slots__ = ["root","totalWeight"]

def __init__(self, 1 = None, left = None, right = None): 5
if 1 is not None:
self.root = BinTree(l)
self.totalWeight = 1.frequency
else:
self.totalWeight = left.totalWeight + right.totalWeight
self .root = BinTree(left.root.value,left.root,right.root)

def __1t__(self,other):
return (self.totalWeight < other.totalWeight) or ((self.totalWeight == other.totall
15
def __eq__(self,other):
return (self.totalWeight == other.totalWeight) and (self.root.value == other.root.v

def print(self):
printTree(self.root,"") 20

def __str__(self):
if self.root.height ==
return "huffmanTree({})".format(self.root.value)
else:
return "huffmanTree({},{},{})".format(self.totalWeight,self.root.left,self.root
This class is an ordered class because it implements the 1t method and is dec-
orated with the @totally_ordered decorator. That method allows the trees to
be ordered by their total weight during the merging process. The utility method
print generates our output recursively, building up a different encoding along
every path.
We now consider the construction of the tree:
def main(Q):
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s = stdin
freq = LinkedList()

for line in s: 5
for ¢ in line:

if ¢ == ’\n’:
continue

query = leaf(c)

if not query in freq: 10
freq.insert (0,query)

else:
item = freq.remove(query)
item.frequency += 1
freq.insert(0,item) 15

trees = SortedList([huffmanTree(l=t) for t in freq]l)

while len(trees) > 1:
i = iter(trees) 20
smallest = next(i)
small = next (i)
trees.remove(smallest)
trees.remove(small)
trees.add(huffmanTree(left=smallest,right=small)) 25

if len(trees) > O:
ti = iter(trees)
next (ti) .print ()
There are three phases in this method: the reading of the data, the construction
of the character-holding leaves of the tree, and the merging of trees into a single
encoding. Several things should be noted:

1. We store characters in a list. Since this list is likely to be small, keeping it
ordered requires more code and is not likely to improve performance.

2. The huffmanTrees are kept in an SortedList. Every time we remove val-
ues we must construct a fresh iterator and remove the two smallest trees.
When they are merged and reinserted, the wrappers for the two smaller
trees can be garbage-collected. (Even better structures for managing these
details in Chapter ??.)

3. The resulting tree is then printed out. In an application, the information
in this tree would have to be included with the compressed text to guide
the decompression.

When the program is run on the input
The mountains, the mountains, we greet them with a song!
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it generates the output:
Encoding of a is 0000 (frequency was 3)
Encoding of i is 0001 (frequency was 3)

Encoding of e is 001 (frequency was 6)

Encoding of m is 0100 (frequency was 3)

Encoding of o is 0101 (frequency was 3) 5
Encoding of r is 01100 (frequency was 1)

Encoding of ! is 011010 (frequency was 1)

Encoding of T is 011011 (frequency was 1)

Encoding of s is 0111 (frequency was 3)

Encoding of t is 100 (frequency was 6) 10

Encoding of , is 10100 (frequency was 2)

Encoding of g is 10101 (frequency was 2)

5 0

Encoding of h is 1011 (frequency was 4)

Encoding of is 110 (frequency was 9)

Encoding of u is 11100 (frequency was 2) 15
Encoding of w is 11101 (frequency was 2)

Encoding of n is 1111 (frequency was 5)

Again, the total number of bits that would be used to represent our com-
pressed phrase is only 111, giving us a compression rate of 56 percent. In these
days of moving bits about, the construction of efficient compression techniques
is an important industry—one industry that depends on the efficient implemen-
tation of data structures.

10.10 Example Implementation: Ahnentafel

Having given, in Section 10.2, time to the Republican genealogists, we might
now investigate the heritage of a Democrat, William Jefferson Clinton. In Fig-
ure 10.8 we see the recent family tree presented as a list. This arrangement is
called an ahnentafel, or ancestor table. The table is generated by performing a
level-order traversal of the pedigree tree, and placing the resulting entries in a
table whose index starts at 1.

This layout has some interesting features. First, if we have an individual
with index i, the parents of the individual are found in table entries 2i and
2¢ + 1. Given the index 7 of a parent, we can find the child (there is only one
child for every parent in a pedigree), by dividing the index by 2 and throwing
away the remainder.

We can use this as the basis of an implementation of short binary trees. Of
course, if the tree becomes tall, there is potentially a great amount of data in the
tree. Also, if a tree is not full, there will be empty locations in the table. These
must be carefully managed to keep from interpreting these entries as valid data.
While the math is fairly simple, our list classes are stored with the first element
at location 0. The implementor must either choose to keep location 0 blank or
to modify the indexing methods to make use of zero-origin indices.
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William Jefferson Clinton
William Jefferson Blythe III
Virginia Dell Cassidy
William Jefferson Blythe II
Lou Birchie Ayers

Eldridge Cassidy

Edith Grisham

Henry Patton Foote Blythe
Frances Ellen Hines

10 | Simpson Green Ayers

11 | Hattie Hayes

12 | James M. Cassidy

13 | Sarah Louisa Russell

14 | Lemma Newell Grisham
15 | Edna Earl Adams

O RO U W N -

Figure 10.8 The genealogy of President Clinton, presented as a linear table. Each
individual is assigned an index . The parents of the individual can be found at locations
2¢ and 27 + 1. Performing an integer divide by 2 generates the index of a child. Note the
table starts at index 1.

Exercise 10.7 Modify an existing list class so that it keeps track of the index of
its first element. This value may be any integer and should default to zero. Make
sure, then, that the item-based methods respect this new indexing.

One possible approach to storing tree information like this is to store entries
in key-value pairs in the list structure, with the key being the index. In this way,
the tree can be stored compactly and, if the associations are kept in an ordered
structure, they can be referenced with only a logarithmic slowdown.

Exercise 10.8 Describe what would be necessary to allow support for trees with
degrees up to eight (called octtrees). At what cost do we achieve this increased
functionality?

In Chapter ?? we will make use of an especially interesting binary tree called
a heap. We will see the ahnentafel approach to storing heaps in a vector shortly.
10.11 Conclusions
The tree is a nonlinear structure. Because of branching in the tree, we will

find it is especially useful in situations where decisions can guide the process of
adding and removing nodes.
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Our approach to implementing the binary tree—a tree with degree 2 or
less—is to visualize it as a self-referential structure. This is somewhat at odds
with an object-oriented approach. It is, for example, difficult to represent empty
self-referential structures in a manner that allows us to invoke methods. To re-
lieve the tension between these two approaches, we represent the empty tree
with class instances that represent “empty” trees.

The power of recursion on branching structures is that significant work
can be accomplished with very little code. In recursion-limited languages, like
Python, it frequently pays to consider efficient implementation that make use of
iterative approaches. As we have seen here, traversals often provide a fruitful
mechanism for implementing the properties.
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Priority Queues

SOMETIMES A RESTRICTED INTERFACE IS A FEATURE. The priority queue, like an
ordered structure, appears to keep its data in order. Unlike an ordered structure,
however, the priority queue allows the user only to access its smallest element.
The priority queue is also similar to the Linear structure: values are added to
the structure, and they later may be inspected or removed. Unlike their Linear
counterpart, however, once a value is added to the priority queue it may only
be removed if it is the minimum value. It is precisely this restricted interface to
the priority queue that allows many of its implementations to run quickly.

Priority queues are used to schedule processes in an operating system, to
schedule future events in a simulation, and to generally rank choices that are
generated out of order.

11.1 The Interface

Because we will see many contrasting implementations of the priority queue
structure, we describe it as abstractly as possible in Python—with an interface:
@checkdoc
class PriorityQueue(Sized):
Wi
An abstract base class for Heap and SkewHeap.
5
For more information on priority queues, see priority_queue.py.

Q@abc.abstractmethod
def add(self): 10
"""Insert value into data structure."""

Q@abc.abstractmethod
def first(self): 15
"""The next value that will be removed."""

Q@abc.abstractmethod
def remove(self): 20

Think triage.
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"""Remove next value from data structure."""

def values(self):
"""View of all items contained in data structure.""" 25
return View(self)

def __eq__(self, other):
"""Data structure has equivalent contents to other."""
if len(self) !'= len(other): 30
return False
for x,y in zip(self.values(), other.values()):
if x !=y:
return False
return True 35

def __hash__(self):
"""Hash value for data structure."""
# total starting constant from builtin tuplehash function
total = 1000003 40
for v in self.values():
try:
x = hash(v)
except TypeError as y:
raise y 45
total = total + x
return total

def __repr__(self):
"""Parsable string representation of data structure."""
return self.__class__.__name__ + "(" + repr(list(self.values())) + ")"
Because they must be kept in order, the elements of a PriorityQueue are totally
ordered. In this interface the smallest values are found near the front of the
queue and will be removed soonest.! The add operation is used to insert a new
value into the queue. At any time a reference to the minimum value can be
obtained with the first method and is removed with remove. A view method
exposes the elements through a traversal. The remaining methods are similar
to those we have seen before.
Notice that the PriorityQueue only extends the Sized interface. First, as
a matter of convenience, PriorityQueue methods consume and return val-
ues that must be orderable. Most structures we have encountered manipulate
unconstrained generic objects. Though similar, the PriorityQueue is not a

L If explicit priorities are to be associated with values, the user may insert a tuple whose first value
is an ordered value such as an int. In this case, the associated value—the data element—need not
be ordered.
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Queue. There is, for example, no dequeue method. Though this might be reme-
died, it is clear that the PriorityQueue need not act like a first-in, first-out
structure. At any time, the value about to be removed is the current minimum
value. This value might have been the first value inserted, or it might have just
recently “cut in line” before larger values. Still, the priority queue is just as
general as the stack and queue since, with a little work, one can associate with
inserted values a priority that forces any Linear behavior in a PriorityQueue.

The simplicity of the abstract priority queue makes its implementation rela-
tively straightforward. In this chapter we will consider three implementations:
one based on use of an SortedStructure and two based on a novel structure
called a heap. First, we consider an example that emphasizes the simplicity of
our interface.

11.2 Example: Improving the Huffman Code

In the Huffman example from Section 10.9 we kept track of a pool of trees.
At each iteration of the tree-merging phase of the algorithm, the two lightest-
weight trees were removed from the pool and merged. There, we used a
SortedList to maintain the collection of trees:

trees = SortedList([huffmanTree(1l=t) for t in freq])

Huffman

while len(trees) > 1:
i = iter(trees)
smallest = next(i) 5
small = next(i)
trees.remove(smallest)
trees.remove(small)
trees.add (huffmanTree (left=smallest,right=small))
To remove the two smallest objects from the list, we must construct an itera-
tor and remove the first two elements we encounter. This code can be greatly
simplified by storing the trees in a PriorityQueue. We then remove the two
minimum values:
trees = PriorityList([huffmanTree(l=t) for t in freq])

while len(trees) > 1:
smallest = trees.remove()

small = trees.remove() huffman2

trees.add (huffmanTree (left=smallest,right=small))
After the merging is complete, access to the final result is also improved.

A number of interesting algorithms must have access to the minimum of a
collection of values, and yet do not require the collection to be sorted. The extra
energy required by an Orderedlist to keep all the values in order may, in fact,
be excessive for some purposes.
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11.3 A List-Based Implementation

Perhaps the simplest implementation of a PriorityQueue is to keep all the val-
ues in a SortedList. Of course, the constructor is responsible for initialization:

def __init__(self, data=None, key=None, reverse=False, frozen=False):
"""Construct a priority list from an iterable source."""
self._data = []
self._frozen = False
if data is not Nome: 5
for x in data:
self.add(x)
self._frozen = frozen
self._dirty = False
Here, notice that we keep the smallest value at the leftmost index.

The priority queue is very similar to the implementation of the Orderedlist
structure. In fact, the implementations of the add method and the “helper”
method __contains__ can be directly handed off to similar methods for the
SortedList. Still, values of a priority queue are not removed by value. Instead,
method first and the parameterless remove operate on the 1ist element that
is smallest (leftmost). The implementation of these routines is straightforward:

@property

def first(self):
"""The smallest value in the priority queue."""
return self._datal[-1]

5

@mutatormethod
def remove(self):

"""Remove the smallest value from the priority queue."""

self._dirty = True

return self._data.pop() 10
@mutatormethod
def add(self,value):

"""Add value to priority queue."""

self._data.append(None) 15

j = len(self._data)-1
while (j > 0) and not (value < self._datalj-11):
self._datal[j] = self._datal[j-1]
j -=1
self._data[j] = value
self._dirty = True
The first operation takes constant time. The remove operation caches and
removes the first value of the SortedList with a linear-time complexity. This
can be easily avoided by reversing the way that the values are stored in the
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SortedList (see Problem ??).

It is interesting to see the evolution of the various types encountered in the
discussion of the PriorityList. Although the List took an entire chapter to
investigate, the abstract notion of a list seems to be a relatively natural struc-
ture here. Abstraction has allowed us to avoid considering the minute details of
the implementation. For example, we assume that Listss automatically extend
themselves. The abstract notion of an SortedList, on the other hand, appears
to be insufficient to directly support the specification of the Prioritylist.
The reason is that the SortedList does not support list operations like the
index-based get (i) and remove(i). These could, of course, be added to the
SortedList interface, but an appeal for symmetry might then suggest imple-
mentation of the method add (i). This would be a poor decision since it would
then allow the user to insert elements out of order.

Principle 8 Avoid unnaturally extending a natural interface.

Designers of data structures spend considerable time weighing these design
trade-offs. While it is tempting to make the most versatile structures support
a wide variety of extensions, it surrenders the interface distinctions between
structures that often allow for novel, efficient, and safe implementations.

Exercise 11.1 Although the SortedList class does not directly support the PriorityQueue

interface, it nonetheless can be used, protected inside another class. What are the
advantages and disadvantages?

In Section 11.4 we discuss a rich class of structures that allow us to maintain
a loose ordering among elements. It turns out that even a loose ordering is
sufficient to implement priority queues.

11.4 A Heap Implementation

In actuality, it is not necessary to develop a complete ranking of the elements
of the priority queue in order to support the necessary operations. It is only
necessary to be able to quickly identify the minimum value and to maintain a
relatively loose ordering of the remaining values. This realization is the motiva-
tion for a structure called a heap.

Definition 11.1 A heap is a binary tree whose root references the minimum value
and whose subtrees are, themselves, heaps.

An alternate definition is also sometimes useful.

Definition 11.2 A heap is a binary tree whose values are in ascending order on
every path from root to leaf.
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Figure 11.1 Four heaps containing the same values. Note that there is no ordering
among siblings. Only heap (b) is complete.

We will draw our heaps in the manner shown in Figure ??, with the mini-
mum value on the top and the possibly larger values below. Notice that each of
the four heaps contains the same values but has a different structure. Clearly,
there is a great deal of freedom in the way that the heap can be oriented—for
example, exchanging subtrees does not violate the heap property (heaps (c)
and (d) are mirror images of each other). While not every tree with these four
values is a heap, many are (see Problems ?? and ??). This flexibility reduces the
friction associated with constructing and maintaining a valid heap and, there-
fore, a valid priority queue. When friction is reduced, we have the potential for
increasing the speed of some operations.

Principle 9 Seek structures with reduced friction.

We will say that a heap is a complete heap if the binary tree holding the values
of the heap is complete. Any set of n values may be stored in a complete heap.
(To see this we need only sort the values into ascending order and place them
in level order in a complete binary tree. Since the values were inserted in as-
cending order, every child is at least as great as its parent.) The abstract notion
of a complete heap forms the basis for the first of two heap implementations of
a priority queue.

11.4.1 List-Based Heaps

As we saw in Section 10.10 when we considered the implementation of Ah-
nentafel structures, any complete binary tree (and therefore any complete heap)
may be stored compactly in a list. The method involves traversing the tree in
level order and mapping the values to successive slots of the list. When we are
finished with this construction, we observe the following (see Figure ??):

1. The root of the tree is stored in location 0. If non-null, this location
references the minimum value of the heap.
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Figure 11.2 An abstract heap (top) and its list representation. Arrows from parent to

child are not physically part of the list, but are indices computed by the heap’s 1eft and
right methods.

2. The left child of a value stored in location 7 is found at location 27 + 1.

3. The right child of a value stored in location ¢ may be found at the location
following the left child, location 2(i + 1) = (2¢ + 1) + 1.

4. The parent of a value found in location i can be found at location |*51].
Since division of integers in Java-like languages throws away the remain-
der for positive numbers, this expression is written (i-1)/2.

These relations may, of course, be encoded as functions. In Figure ?? we see the
mapping of a heap to a list, with tree relations indicated by arrows in the list.
Here are the private Heap methods that maintain these relations:
def _parent(i):
"""The index of the parent of i."""
return (i-1)//2

def _left(i): 5
"""The index of the left child of i."""
return 2xi+1

def _right(i):
"""The index of the right child of i."""
return 2*(i+1)

The functions _parent, _left, and _right are standalone methods (that is,
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they’re not declared as part of the Heap class, to indicate that they do not ac-
tually have to be called on any instance of a heap. Instead, their values are
functions of their parameters only. Their names contain a leading underscore to
emphasize that their use is limited to the Heap module.

Principle 10 Declare standalone object-independent functions when they may be
useful to more than one class.

Notice, in this mapping, that while the list is not maintained in ascending
order, any path from the root to a leaf does encounter values in ascending order.
Initially, the Heap is represented by an empty list that we expect to grow. If the
list is ever larger than necessary, slots not associated with tree nodes are set to
None. The Heap initialization method is fairly straightforward:

@checkdoc
class Heap(PriorityQueue,Freezable):

__slots__ = ["_data", "_dirty", "_frozen", "_hash"]
5
def __init__(self,data=None,frozen=False,key=None,reverse=False):
"""Construct a Heap from an iterable source."""
self._data = []

Now consider the addition of a value to a complete heap. We know that
the heap is currently complete. Ideally, after the addition of the value the heap
will remain complete but will contain one extra value. This realization forces
us to commit to inserting a value in a way that ultimately produces a heap
with the desired structure. Since the first free element of the 1ist will hold a
value, we optimistically insert the new value in that location (see Figure ??).
If, considering the path from the leaf to the root, the value is in the wrong
location, then it must be “percolated upward” to the correct entry. We begin
by comparing and, if necessary, exchanging the new value and its parent. If the
values along the path are still incorrectly ordered, it must be because of the new
value, and we continue to percolate the value upward until either the new value
is the root or it is greater than or equal to its current parent. The only values
possibly exchanged in this operation are those appearing along the unique path
from the insertion point. Since locations that change only become smaller, the
integrity of other paths in the tree is maintained.

The code associated with percolating a value upward is contained in the pri-
vate Heap method, _percolateUp. This function takes an index of an value that
is possibly out of place and pushes the value upward toward the root until it
reaches the correct location. While the routine takes an index as a parameter,
the parameter passed is usually the index of the rightmost leaf of the bottom
level.

def _percolateUp(self,leaf):
"""Move a (possibly small) leaf value up in a (possibly) nonheap
to form a min-heap in 0(log n) time."""
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Figure 11.3 The addition of a value (2) to a list-based heap. (a) The value is inserted
into a free location known to be part of the result structure. (b) The value is percolated
up to the correct location on the unique path to the root.
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parent = _parent(leaf)
value = self._datal[leaf] 5
while (leaf > 0) and (value < self._data[parent]):
self._data[leaf] = self._datal[parent]
leaf = parent
parent = _parent(leaf)
self._data[leaf] = value

Adding a value to the priority queue is then only a matter of appending it
to the end of the list (the location of the newly added leaf) and percolating the
value upward until it finds the correct location.

@mutatormethod
def add(self,value):
"""Add a comparable value to the Heap."""
self._dirty = True
self._data.append(value)
self._percolateUp(len(self) - 1)
Let us consider how long it takes to accomplish the addition of a value to the
heap. Remember that the tree that we are working with is an n-node complete
binary tree, so its height is |log, n|. Each step of the percolateUp routine takes
constant time and pushes the new value up one level. Of course, it may be posi-
tioned correctly the first time, but the worst-case behavior of inserting the new
value into the tree consumes O(logn) time. This performance is considerably
better than the linear behavior of the PriorityList implementation described
in Section 11.3. What is the best time? It is constant when the value added is
large compared to the values found on the path from the new leaf to the root.

Next, we consider the removal of the minimum value (see Figures ?? and
??). It is located at the root of the heap, in the first slot of the list. The removal
of this value leaves an empty location at the top of the heap. Ultimately, when
the operation is complete, the freed location will be the rightmost leaf of the
bottom level, the last element of the underlying list. Again, our approach is first
to construct a tree that is the correct shape, but potentially not a heap, and then
perform transformations on the tree that both maintain its shape and bring the
structure closer to being a heap. Thus, when the minimum value is removed,
the rightmost leaf on the bottom level is removed and re-placed at the root of
the tree (Figure ??a and b). At this point, the tree is the correct shape, but it
may not be a heap because the root of the tree is potentially too large. Since the
subtrees remain heaps, we need to ensure the root of the tree is the minimum
value contained in the tree. We first find the minimum child and compare this
value with the root (Figure ??a). If the root value is no greater, the minimum
value is at the root and the entire structure is a heap. If the root is larger, then
it is exchanged with the true minimum—the smallest child—pushing the large
value downward. At this point, the root of the tree has the correct value. All but
one of the subtrees are unchanged, and the shape of the tree remains correct. All
that has happened is that a large value has been pushed down to where it may
violate the heap property in a subtree. We then perform any further exchanges
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recursively, with the value sinking into smaller subtrees (Figure ??b), possibly
becoming a leaf. Since any single value is a heap, the recursion must stop by
the time the newly inserted value becomes a leaf.
Here is the private method associated with the pushing down of the root:
def _pushDownRoot(self,root):
"""Take a (possibly large) value at the root and two subtrees that are
heaps, and push the root down to a point where it forms a single heap in 0(log n) time."""
heapSize = len(self)
value = self._datal[root] 5
while root < heapSize:
childpos = _left(root)
if childpos < heapSize:
if (_right(root) < heapSize) and \
self._data[childpos+1] < self._datal[childpos]: 10
childpos += 1
# Assert: childpos indexes smaller of two children
if self._datal[childpos] < value:
self._datal[root] = self._datalchildpos]

root = childpos 15
else:
self._datalroot] = value
return
else:

self._datal[root] = value

return

The remove method simply involves returning the smallest value of the heap,
but only after the rightmost element of the list has been pushed downward.
Omutatormethod
def remove(self):

"""Remove the minimum element from the Heap."""

assert len(self) > 0

self._dirty = True 5

minVal = self.first

self._datal[0] = self._datal[len(self)-1];

self._data.pop()

if len(self) > 1

self._pushDownRoot (0) ;

return minVal
Each iteration in pushDownRoot pushes a large value down into a smaller heap
on a path from the root to a leaf. Therefore, the performance of remove is
O(logn), an improvement over the behavior of the Prioritylist implementa-
tion.

Since we have implemented all the required methods of the PriorityQueue,

the Heap implements the PriorityQueue and may be used wherever a priority
queue is required.
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Figure 11.4 Removing a value from the heap shown in (a) involves moving the right-
most value of the list to the top of the heap as in (b). Note that this value is likely to
violate the heap property but that the subtrees will remain heaps.
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Figure 11.5 Removing a value (continued). In (a) the newly inserted value at the
root is pushed down along a shaded path following the smallest children (lightly shaded
nodes are also considered in determining the path). In (b) the root value finds, over
several iterations, the correct location along the path. Smaller values shift upward to
make room for the new value.
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The advantages of the Heap mechanism are that, because of the unique map-
ping of complete trees to the 1ist, it is unnecessary to explicitly store the con-
nections between elements. Even though we are able to get improved perfor-
mance over the Prioritylist, we do not have to pay a space penalty. The
complexity arises, instead, in the code necessary to support the insertion and
removal of values.

11.4.2 Example: Heapsort

Any priority queue, of course, can be used as the underlying data structure for
a sorting mechanism. When the values of a heap are stored in a 1ist, an empty
location is potentially made available when they are removed. This location
could be used to store a removed value. As the heap shrinks, the values are
stored in the newly vacated elements of the 1ist. As the heap becomes empty,
the 1ist is completely filled with values in descending order.

Unfortunately, we cannot make assumptions about the structure of the val-
ues initially found in the list; we are, after all, sorting them. Since this ap-
proach depends on the values being placed in a heap, we must consider one
more operation: a constructor that “heapifies” the data found in an arbitrarily
ordered list passed to it:

def _heapify(self):

"""Rearrange randomly ordered data into a heap in 0(n) time."""

# Work from lowest parents rootward, making heaps.

n = len(self._data)

for i in reversed(range(1+_parent(n-1))):

self._pushDownRoot (i)

The process of constructing a heap from an unordered 1ist obviously takes the
time of n add operations, each of which is O(logn). The worst-case cost of
“heapifying” is, therefore, O(nlogn). (This can be improved—see Problem ??.)

To demonstrate the utility of this standalone method, we can use it in our
Heap constructor to quickly add the initial data elements, which are likely to be
disordered.

def __init__(self,data=None,frozen=False,key=None,reverse=False):
"""Construct a Heap from an iterable source."""
self._data = []
# bulk addition is most efficient using heapify
if data: 5
self._data.extend(data)
self._heapify()

Now, returning to heapsort, we observe gathering the values from smallest to
largest requires n remove operations. This phase also has worst-case complexity
O(nlogn). We have, therefore, another sorting algorithm with O(nlogn) be-
havior.

@sortoptions
def heapsort(l):
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"""Perform heapsort of values."""
h = Heap(1)
for i in range(len(l)):
1[i] = h.remove()
At any time, of course, the amount of space used is exactly n list entries.

The feature of a heap that makes the sort so efficient is the heap’s short
height. The values are always stored in as full a tree as possible and, as a
result, we may place a logarithmic upper bound on the time it takes to insert
and remove values. In Section 11.4.3 we investigate the use of unrestricted
heaps to implement priority queues. These structures have amortized cost that
is equivalent to heaps built atop lists.

11.4.3 Skew Heaps

The performance of list-based heaps is directly dependent on the fact that
these heaps are complete. Since complete heaps are a minority of all heaps, it
is reasonable to ask if efficient priority queues might be constructed from unre-
stricted heaps. The answer is yes, if we relax the way we measure performance.
We consider, here, the implementation of heaps using dynamically struc-

tured binary trees. A direct cost of this decision is the increase in space. Whereas
a list stores a single reference, the binary tree node keeps an additional three
references. These three references allow us to implement noncomplete heaps,
called skew heaps, in a space-efficient manner (see Problem ??). Here are the
protected data and the initializer for this structure:

@checkdoc

class SkewHeap(PriorityQueue):

__slots__ = ["_root", "_count", "_dirty", "_frozen", "_hash",

"_keyfun", "_reverse", "_cmp"] 5 SkewHeap

def __init__(self,data=None,frozen=False, key=None, reverse=False):

"""Construct a SkewHeap from an iterable source."""
self._root = BinTree.Empty
self._count = 0 10
self._frozen = False
self._cmp = Comparator(key=key,reverse=reverse)
if data:

for x in data:

self.add(x) 15

self._frozen = frozen
self._hash = None

Notice that we keep track of the size of the heap locally, rather than asking the
BinaryTree for its size. This is simply a matter of efficiency, but it requires us
to maintain the value within the add and remove procedures. Once we commit
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to implementing heaps in this manner, we need to consider the implementation
of each of the major operators.
The implementation of first simply references the value stored at the root.
Its implementation is relatively straightforward:
@property
def first(self):
"""The first value in the priority queue."""
return self._root.value

Before we consider the implementation of the add and remove methods, we
consider a (seemingly unnecessary) operation, _merge. This method takes two
heaps and merges them together. This is a destructive operation: the elements
of the participating heaps are consumed in the construction of the result. Our
approach will be to make _merge a recursive method that considers several
cases. First, if either of the two heaps participating in the merge is empty, then
the result of the merge is the other heap. Otherwise, both heaps contain at least
a value—assume that the minimum root is found in the left heap (if not, we can
swap them). We know, then, that the result of the merge will be a reference to
the root node of the left heap. To see how the right heap is merged into the left
we consider two cases:

1. If the left heap has no left child, make the right heap the left child of the
left heap (see Figure 11.6b).

2. Otherwise, exchange the left and right children of the left heap. Then
merge (the newly made) left subheap of the left heap with the right heap
(see Figure 11.6d).

Notice that if the left heap has one subheap, the right heap becomes the left
subheap and the merging is finished. Here is the code for the merge method:
def _merge(self, left, right):
"""Merge two BinTree heaps into ome."""
if left.empty: return right
if right.empty: return left
leftVal = left.value 5
rightVal = right.value
if self._cmp(rightVal, leftVal) < O:
result = self._merge(right,left)
else:
result = left 10
if result.left.empty:
result.left = right
else:
temp = result.right
result.right = result.left 15
result.left = self._merge(temp,right)
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Figure 11.6 Different cases of the merge method for SkewHeaps. In (a) one of the

heaps is empty. In (b) and (c) the right heap becomes the left child of the left heap. In
(d) the right heap is merged into what was the right subheap.




226

Priority Queues

return result

Exercise 11.2 Rewrite the merge method to be iterative.

Once the merge method has been defined, we find that the process of adding
a value or removing the minimum is relatively straightforward. To add a value,
we construct a new BinaryTree containing the single value that is to be added.
This is, in essence, a one-element heap. We then merge this heap with the ex-
isting heap, and the result is a new heap with the value added:
@mutatormethod
def add(self, value):
"""Add a comparable value to the SkewHeap."""
self._dirty = True
smallTree = BinTree(value) 5
self._root = self._merge(smallTree,self._root)
self._count += 1

To remove the minimum value from the heap we must extract and return
the value at the root. To construct the smaller resulting heap we detach both
subtrees from the root and merge them together. The result is a heap with all
the values of the left and right subtrees, but not the root. This is precisely the
result we require. Here is the code:

@mutatormethod

def remove(self):
"""Remove the minimum element from the SkewHeap."""
self._dirty = True
result = self._root.value 5
self._root = self._merge(self._root.left,self._root.right)
self._count -= 1
return result

The remaining priority queue methods for skew heaps are implemented in a
relatively straightforward manner.

Because a skew heap has unconstrained topology (see Problem ??), it is
possible to construct examples of skew heaps with degenerate behavior. For
example, adding a new maximum value can take O(n) time. For this reason
we cannot put very impressive bounds on the performance of any individual
operation. The skew heap, however, is an example of a self-organizing structure:
inefficient operations spend some of their excess time making later operations
run more quickly. If we are careful, time “charged against” early operations can
be amortized or redistributed to later operations, which we hope will run very
efficiently. This type of analysis can be used, for example, to demonstrate that
m > n skew heap operations applied to a heap of size n take no more than
O(mlogn) time. On average, then, each operation takes O(logn) time. For
applications where it is expected that a significant number of requests of a heap
will be made, this performance is appealing.
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Figure 11.7 A circuit for detecting a rising logic level.

11.5 Example: Circuit Simulation

Consider the electronic digital circuit depicted in Figure 11.7. The two devices
shown are logic gates. The wires between the gates propagate electrical signals.
Typically a zero voltage is called false or low, while a potential of 3 volts or more
is true or high.

The triangular gate, on the left, is an inverter. On its output (pin 0) it “in-
verts” the logic level found on the input (pin 1): false becomes true and true
becomes false. The gate on the right is an and-gate. It generates a true on pin 0
exactly when both of its inputs (pins 1 and 2) are true.

The action of these gates is the result of a physical process, so the effect
of the inputs on the output is delayed by a period of time called a gate delay.
Gate delays depend on the complexity of the gate, the manufacturing process,
and environmental factors. For our purposes, we’ll assume the gate delay of the
inverter is 0.2 nanosecond (ns) and the delay of the and-gate is 0.8 ns.

The question is, what output is generated when we toggle the input from
low to high and back to low several times? To determine the answer we can
build the circuit, or simulate it in software. For reasons that will become clear
in a moment, simulation will be more useful.

The setup for our simulation will consist of a number of small classes. First,
there are a number of components, including an Inverter; an And; an input, or
Source; and a voltage sensor, or Probe. When constructed, gates are provided
gate delay values, and Sources and Probes are given names. Each of these
components has one or more pins to which wires can be connected. (As with
real circuits, the outputs should connect only to inputs of other components!)
Finally, the voltage level of a particular pin can be set to a particular level. As
an example of the interface, we list the public methods for the And gate:

class And(Component) :
def __init__(self,delay):
init__(delay,3)

super () .
def set(self,t,pinNum,level):

Notice that there is a time associated with the set method. This helps us doc-
ument when different events happen in the component. These events are sim-

Circuit
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ulated by a comparable Event class. This class describes a change in logic level
on an input pin for some component. As the simulation progresses, Events are
created and scheduled for simulation in the future. The ordering of Events is
based on an event time. Here are the details:
Q@total_ordering
class Event(object):
__slots__ = ["_time", "_level", "_c" 1]
def __init__(self, conn, t, 1): 5
self._c = conn
self._time = t
self. _level =1

def go(self): 10
self._c.component.set(self._time,self._c.pin,self._level)

def __1t__(self,other):
return self._time < other._time

The Connection mentioned here is simply a component’s input pin.

Finally, to orchestrate the simulation, we use a priority queue to correctly
simulate the order of events. The following method simulates a circuit by re-
moving events from the priority queue and setting the logic level on the appro-
priate pins of the components. The method returns the time of the last event to
help monitor the progress of the simulation.

EventQueue = None
time = 0

def simulate():
global EvenQueue,time 5
# post: run simulation until event queue is empty
# returns final clock time
low = 0.0 # voltage of low logic
high = 3.0 # voltage of high logic
clock = 0.0 10
while not EventQueue.empty:
e = EventQueue.remove()
# keep track of time
clock = e._time

# simulate the event 15
e.go()
print("-- circuit stable after {} ns --".format(clock))

return clock

As events are processed, the logic level on a component’s pins are updated. If
the inputs to a component change, new Events are scheduled one gate delay
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later for each component connected to the output pin. For Sources and Probes,
we write a message to the output indicating the change in logic level. Clearly,
when there are no more events in the priority queue, the simulated circuit is
stable. If the user is interested, he or she can change the logic level of a Source
and resume the simulation by running the simulate method again.

We are now equipped to simulate the circuit of Figure 11.7. The first portion
of the following code sets up the circuit, while the second half simulates the

effect of toggling the input several times:
global time, EventQueue
low = 0 # voltage of low logic
high = 3 # voltage of high logic
EventQueue = Heap()

# set up circuit

inv = Inverter(0.2)

and_gate = And(0.8)

output = Probe("output")

input = Source("input",inv.pin(1))

input.connectTo(and_gate.pin(2))
inv.connectTo(and_gate.pin(1))
and_gate.connectTo(output.pin(1))

# simulate circuit
time = 0

simulate ()
input.set(time+1.0,0,high) # first: set
time = simulate()
input.set(time+1.0,0,low) # later: set
time = simulate()
input.set(time+1.0,0,high) # later: set
time = simulate()

time

input.set(time+1.0,0,1low) # later: set
simulate ()

When run, the following output is generated:
1.0 ns: output now O volts
-- circuit stable after 1.0 ns --
2.0 ns: input set to 3 volts
2.8 ns: output now 3 volts
3.0 ns: output now O volts
-- circuit stable after 3.0 ns --
4.0 ns: input set to O volts
-- circuit stable after 5.0 ns --
6.0 ns: input set to 3 volts
6.8 ns: output now 3 volts
7.0 ns: output now O volts

input high

input low

input high

input low

10

15

20

10
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-- circuit stable after 7.0 ns --
8.0 ns: input set to O volts
-- circuit stable after 9.0 ns --

When the input is moved from low to high, a short spike is generated on the
output. Moving the input to low again has no impact. The spike is generated by
the rising edge of a signal, and its width is determined by the gate delay of the
inverter. Because the spike is so short, it would have been difficult to detect it
using real hardware.? Devices similar to this edge detector are important tools
for detecting changing states in the circuits they monitor.

11.6 Conclusions

We have seen three implementations of priority queues: one based on a list
that keeps its entries in order and two others based on heap implementations.
The list implementation demonstrates how any ordered structure may be
adapted to support the operations of a priority queue.

Heaps form successful implementations of priority queues because they relax
the conditions on “keeping data in priority order.” Instead of maintaining data
in sorted order, heaps maintain a competition between values that becomes
progressively more intense as the values reach the front of the queue. The cost
of inserting and removing values from a heap can be made to be as low as
O(logn).

If the constraint of keeping values in a 1list is too much (it may be impossi-
ble, for example, to allocate a single large chunk of memory), or if one wants to
avoid the uneven cost of extending a 1ist, a dynamic mechanism is useful. The
SkewHeap is such a mechanism, keeping data in general heap form. Over a num-
ber of operations the skew heap performs as well as the traditional 1ist-based
implementation.

2 This is a very short period of time. During the time the output is high, light travels just over
2 inches!
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Search Trees

STRUCTURES ARE OFTEN THE SUBJECT OF A SEARCH. We have seen, for example,
that binary search is a natural and efficient algorithm for finding values within
ordered, randomly accessible structures. Recall that at each point the algorithm
compares the value sought with the value in the middle of the structure. If they
are not equal, the algorithm performs a similar, possibly recursive search on one
side or the other. The pivotal feature of the algorithm, of course, was that the
underlying structure was in order. The result was that a value could be effi-
ciently found in approximately logarithmic time. Unfortunately, the modifying
operations—add and remove—had complexities that were determined by the
linear nature of the vector.

Heaps have shown us that by relaxing our notions of order we can improve
on the linear complexities of adding and removing values. These logarithmic
operations, however, do not preserve the order of elements in any obviously
useful manner. Still, if we were somehow able to totally order the elements of
a binary tree, then an algorithm like binary search might naturally be imposed
on this branching structure.

12.1 Binary Search Trees

The binary search tree is a binary tree whose elements are kept in order. This is
easily stated as a recursive definition.

Definition 12.1 A binary tree is a binary search tree if it is trivial, or if every
node is simultaneously greater than or equal to each value in its left subtree, and
less than or equal to each value in its right subtree.

To see that this is a significant restriction on the structure of a binary tree,
one need only note that if a maximum of n distinct values is found at the root,
all other values must be found in the left subtree. Figure 12.1 demonstrates
the many trees that can contain even three distinct values. Thus, if one is not
too picky about the value one wants to have at the root of the tree, there are
still a significant number of trees from which to choose. This is important if
we want to have our modifying operations run quickly: ideally we should be as
nonrestrictive about the outcome as possible, in order to reduce the friction of
the operation.

One important thing to watch for is that even though our definition allows
duplicate values of the root node to fall on either side, our code will prefer to
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Figure 12.1 Binary search trees with three nodes.

have them on the left. This preference is arbitrary. If we assume that values
equal to the root will be found in the left subtree, but in actuality some are
located in the right, then we might expect inconsistent behavior from methods
that search for these values. In fact, this is not the case.

To guide access to the elements of a binary search tree, we will consider it
an implementation of an Sorted, supporting the following methods:
@checkdoc
class SearchTree(Sorted,Freezable):
Tree = BinTree

__slots__ = [ "_root", "_count", "_dirty", "_frozen", "_hash",
SearchTree "_cmp" ] 5
def __init__(self,data=None,frozen=False,key=None,reverse=False):
"""Construct a SearchTree from an iterable source."""
Q@property
def empty(self): 10
"""SearchTree contains no items."""
OGmutatormethod
def add(self,value):
"""Add value to SearchTree."""
def _insert(self,value): 15
"""Insert value into appropriate location in SearchTree in 0(log n) time."""
def __contains__(self,value):
"""yalue is in SearchTree."""
OGmutatormethod
def remove(self,value):
"""Remove value from SearchTree."""
Unlike the BinTree, the SearchTree provides only one iterator method. This
Maybe even method provides for an in-order traversal of the tree, which, with some thought,

with no  allows access to each of the elements in order.
thought!
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12.2 Example: Tree Sort

Because the SearchTree is an Sorted it provides the natural basis for sorting.
The algorithm of Section ?? will work equally well here, provided the allocation
of the Sorted is modified to construct a SearchTree. The binary search struc-
ture, however, potentially provides significant improvements in performance.
If the tree can be kept reasonably short, the cost of inserting each element is
O(logn). Since n elements are ultimately added to the structure, the total cost
is O(nlogn).! As we have seen in Chapter ??, all the elements of the under-
lying binary tree can be visited in linear time. The resulting algorithm has a
potential for O(nlogn) time complexity, which rivals the performance of sort-
ing techniques using heaps. The advantage of binary search trees is that the
elements need not be removed to determine their order. To attain this perfor-
mance, though, we must keep the tree as short as possible. This will require
considerable attention.

12.3 Example: Associative Structures

Associative structures play an important role in making algorithms efficient. In
these data structures, values are associated with keys. Typically (though not
necessarily), the keys are unique and aid in the retrieval of more complete
information—the value. In a list, for example, we use integers as indices to
find values. The SymbolTable associated with the PostScript lab (Section ??)
is, essentially, an associative structure.

Associative structures are an important feature of many symbol-based sys-
tems. Here, for example, is a first approach to the construction of a general-
purpose symbol table, with potentially logarithmic performance:

class SymTab(object):
__slots__ = ["_table"]

def __init__(self):
self._table = SearchTree() 5

def __contains__(self,symbol):
return KV(symbol) in self._table

def __setitem__(self,symbol,value): 10
pair = KV(symbol,value)
if pair in self._table:
self._table.remove(pair)
self._table.add(pair)
15
def __getitem__(self,symbol):

1 This needs to be proved! See Problem ??.
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a = KV(symbol, None)
if a in self._table:

a = self._table.get(a)

return a.value 20
else:

return None

def __delitem__(self,symbol):
a = KV(symbol,None) 25
if a in self._table:
self._table.remove(a)

def remove(self,symbol):
a = KV(symbol,None) 30
if a in self._table:
a = self._table.remove(a)
return a.value
else:
return None
Based on such a table, we might have a program that reads in a number of alias-
name pairs terminated by the word END. After that point, the program prints out
the fully translated aliases:
table = SymTab()
reading = True
for line in stdin:
words = line.split()
if len(words) == 0: 5
continue
if reading:
if words[0] == ’END’:
reading = False
else: 10
table[words[0]] = words[1]
else:
name = words[0]
while name in table:
name = table[name]
print (name)
Given the input:
three 3
one unity
unity 1
pi three
END 5
one
two
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three

pi
the program generates the following output:

1

two

3

3
We will consider general associative structures in Chapter ??, when we discuss
dictionaries. We now consider the details of actually supporting the SearchTree
structure.

12.4 Implementation

In considering the implementation of a SearchTree, it is important to remember
that we are implementing an Sorted. The methods of the Sorted accept and
return values that are to be compared with one another. By default, we assume
that the data are ordered and that the natural order is sufficient. If alternative
orders are necessary, or an ordering is to be enforced on elements that do not
directly implement a __1t__ method, alternative key functions may be used.
Essentially the only methods that we depend upon are the compatibility of the
key function and the elements of the tree.

We begin by noticing that a SearchTree is little more than a binary tree
with an imposed order. We maintain a reference to a BinTree and explicitly
keep track of its size. The constructor need only initialize these two fields and
suggest an ordering of the elements to implement a state consistent with an
empty binary search tree:

@checkdoc
class SearchTree(Sorted,Freezable):
Tree = BinTree
__slots__ = [ "_root", "_count", "_dirty", "_frozen", "_hash",
"_cmp" ] 5

def __init__(self,data=None,frozen=False,key=None,reverse=False):

"""Construct a SearchTree from an iterable source."""
self._root = self.Tree.Empty
self._count = 0 10
self._frozen = False
self._cmp = Comparator(key=key,reverse=reverse)
if data:

for x in data:

self.add(x) 15

self._frozen = frozen
self._hash = None

As with most implementations of Sorteds, we develop a method to find the
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correct location to insert the value and then use that method as the basis for
implementing the public methods—add, contains, and remove. Our approach
to the method _locate is to have it return a reference to the location that iden-
tifies the correct point of insertion for the new value. This method, of course,
makes heavy use of the ordering. Here is the Python code for the method:
def _locate(self,value):
"""A private method to return either
(1) a node that contains the value sought, or
(2) a node that would be the parent of a node created to hold value, or
(3) an empty tree if the tree is empty.""" 5
result = node = self._root
while not node.empty:
nodeValue = node.value
result = node
relation = self._cmp(value,nodeValue) 10
if relation == 0: return result
node = node.left if relation < O else node.right
return result
The approach of the _locate method parallels binary search. Comparisons are
made with the _root, which serves as a median value. If the value does not
match, then the search is refocused on either the left side of the tree (among
smaller values) or the right side of the tree (among larger values). In either
case, if the search is about to step off the tree, the current node is returned: if
the value were added, it would be a child of the current node.
Once the _locate method is written, the __contains__ method must check
to see if the node returned by _locate actually equals the desired value:?
def __contains__(self,value):
"""value is in SearchTree."""
if self._root.empty: return False
possibleLocation = self._locate(value)
return O == self._cmp(value,possibleLocation.value)

It now becomes a fairly straightforward task to add a value. We simply lo-
cate the value in the tree using the _locate function. If the value was not
found, _locate returned a node off of which a leaf with the desired value may
be added. If, however, _locate has found an equivalent value, we must insert
the new value as the right child of the predecessor of the node returned by
_locate.?

@mutatormethod

2 We reemphasize at this point the importance of making sure that the __eq__ method for an object
is consistent with the ordering suggested by the _1t method of the particular Comparator.

3 With a little thought, it is clear to see that this is a correct location. If there are two copies of a
value in a tree, the second value added is a descendant and predecessor (in an in-order traversal)
of the located value. It is also easy to see that a predecessor has no right child, and that if one is
added, it becomes the predecessor.
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def add(self,value):
"""Add value to SearchTree."""

self._insert(value)

def _insert(self,value):
"""Insert value into appropriate location in SearchTree in 0(log n) time."""
self._dirty = True
newNode = self.Tree(value)
if self._root.empty: 10
self._root = newNode
else:
insertLocation = self._locate(value)
nodeValue = insertLocation.value
if self._cmp(nodeValue,value) < 0: 15
insertlLocation.right = newNode
else:
if not insertLocation.left.empty:
self._pred(insertLocation).right = newNode
else: 20
insertLocation.left = newNode
self._count += 1
return newNode

Our add code makes use of the protected “helper” function, _pred, which, after
calling _rightmost, returns a pointer to the node that immediately precedes
the indicated root:
def _pred(self,root):
"""Node immediately preceding root."""
return self._rightmost(root.left)

def _rightmost(self,root): 5
"""Rightmost descendant of root."""
result = root
while not result.right.empty:
result = result.right
return result

A similar routine can be written for successor, and would be used if we preferred
to store duplicate values in the right subtree.

We now approach the problem of removing a value from a binary search
tree. Observe that if it is found, it might be an internal node. The worst case
occurs when the root of a tree is involved, so let us consider that problem.

There are several cases. First (Figure 12.2a), if the root of a tree has no
left child, the right subtree can be used as the resulting tree. Likewise (Fig-
ure 12.2b), if there is no right child, we simply return the left. A third case
(Figure 12.2c) occurs when the left subtree has no right child. Then, the right
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Figure 12.2 The three simple cases of removing a root value from a tree.

subtree—a tree with values no smaller than the left root—is made the right sub-
tree of the left. The left root is returned as the result. The opposite circumstance
could also be true.
We are, then, left to consider trees with a left subtree that, in turn, contains
a right subtree (Figure 12.3). Our approach to solving this case is to seek out
the predecessor of the root and make it the new root. Note that even though the
predecessor does not have a right subtree, it may have a left. This subtree can
take the place of the predecessor as the right subtree of a nonroot node. (Note
that this is the result that we would expect if we had recursively performed our
node-removing process on the subtree rooted at the predecessor.)
Finally, here is the Python code that removes the top BinTree of a tree and
returns the root of the resulting tree:
def _remove_node(self,top):
"""Remove the top of the binary tree pointed to by top.
The result is the root of the tree to be used as replacement."""
left,right = top.left,top.right
top.left = top.right = self.Tree.Empty 5
# There are three general cases:
# - the root is empty (avoid): return same

# - the root has fewer than two children: the one (or empty) is new top
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predecessor( x)

Figure 12.3 Removing the root of a tree with a rightmost left descendant.

# - the root has two children:
# the predecessor of the old root use used as parent of left and right
if left.empty:
return right
elif right.empty:
return left
newTop = self._rightmost(left) 15
# At this point, newTop will be the new root of this tree.
# It may be the left node: make right the right child of left
if newTop is left:
newTop.right = right
# It has a parent, but no right child: reparent left child under parent
# then make left and right children of newtop
else:
p = newTop.parent
newTop.clip()
p.right = newTop.left 25
newTop.left,newTop.right = left,right
return newTop

With the combined efforts of the _remove_node and _locate methods, we can
now simply locate a value in the search tree and, if found, remove it from the
tree. We must be careful to update the appropriate references to rehook the
modified subtree back into the overall structure.

Notice that inserting and removing elements in this manner ensures that the
in-order traversal of the underlying tree delivers the values stored in the nodes
in a manner that respects the necessary ordering. We use this, then, as our pre-
ferred iteration method.

def __iter__(self):
"""Iterator over the SearchTree."""
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Splay: to spread
outward.

return self._root.valueOrder()
The remaining methods (size, etc.) are implemented in a now-familiar manner.

Exercise 12.1 One possible approach to keeping duplicate values in a binary search
tree is to keep a list of the values in a single node. In such an implementation,

each element of the list must appear externally as a separate node. Modify the

SearchTree implementation to make use of these lists of duplicate values.

Each of the time-consuming operations of a SearchTree has a worst-case
time complexity that is proportional to the height of the tree. It is easy to see
that checking for or adding a leaf, or removing a root, involves some of the
most time-consuming operations. Thus, for logarithmic behavior, we must be
sure that the tree remains as short as possible.

Unfortunately, we have no such assurance. In particular, one may observe
what happens when values are inserted in descending order: the tree is heavily
skewed to the left. If the same values are inserted in ascending order, the tree
can be skewed to the right. If these values are distinct, the tree becomes, essen-
tially, a singly linked list. Because of this behavior, we are usually better off if
we shuffle the values beforehand. This causes the tree to become, on average,
shorter and more balanced, and causes the expected insertion time to become
O(logn).

Considering that the tree is responsible for maintaining an order among data
values, it seems unreasonable to spend time shuffling values before ordering
them. In Section 12.5 we find out that the process of adding and removing a
node can be modified to maintain the tree in a relatively balanced state, with
only a little overhead.

12.5 Splay Trees

Because the process of adding a new value to a binary search tree is determin-
istic—it produces the same result tree each time—and because inspection of the
tree does not modify its structure, one is stuck with the performance of any
degenerate tree constructed. What might work better would be to allow the
tree to reconfigure itself when operations appear to be inefficient.

The splay tree quickly overcomes poor performance by rearranging the tree’s
nodes on the fly using a simple operation called a splay. Instead of perform-
ing careful analysis and optimally modifying the structure whenever a node is
added or removed, the splay tree simply moves the referenced node to the top
of the tree. The operation has the interesting characteristic that the average
depth of the ancestors of the node to be splayed is approximately halved. As
with skew heaps, the performance of a splay tree’s operators, when amortized
over many operations, is logarithmic.

The basis for the splay operation is a pair of operations called rotations (see
Figure 12.4). Each of these rotations replaces the root of a subtree with one of
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Figure 12.4 The relation between rotated subtrees.

its children. A right rotation takes a left child, x, of a node y and reverses their
relationship. This induces certain obvious changes in connectivity of subtrees,
but in all other ways, the tree remains the same. In particular, there is no
structural effect on the tree above the original location of node y. A left rotation
is precisely the opposite of a right rotation; these operations are inverses of each
other.
The code for rotating a binary tree about a node is a method of the BinTree
class. We show, here, rotateRight; a similar method performs a left rotation.
def rotateRight(self):

"""Rotate this node (a left subtree) so it is the root."""

parent = self.parent

newRoot = self.left

wasChild = parent != None 5

wasLeft = self.isLeftChild

# hook in new root (sets newRoot’s parent, as well)

self.left = newRoot.right

newRoot.right = self

if wasChild: 10

if wasLeft:
parent.left = newRoot
else:

parent.right = newRoot

For each rotation accomplished, the nonroot node moves upward by one
level. Making use of this fact, we can now develop an operation to splay a tree
at a particular node. It works as follows:

e If z is the root, we are done.

e If v is a left (or right) child of the root, rotate the tree to the right (or left)

Finally, a right
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Figure 12.5 Two of the rotation pairs used in the splaying operation. The other cases
are mirror images of those shown here.

about the root.  becomes the root and we are done.

e If z is the left child of its parent p, which is, in turn, the left child of its
grandparent g, rotate right about g, followed by a right rotation about p
(Figure 12.5a). A symmetric pair of rotations is possible if x is a left child
of a left child. After double rotation, continue splay of tree at = with this
new tree.

e If x is the right child of p, which is the left child of g, we rotate left about
p, then right about ¢ (Figure 12.5b). The method is similar if x is the left
child of a right child. Again, continue the splay at z in the new tree.

After the splay has been completed, the node z is located at the root of the
tree. If node = were to be immediately accessed again (a strong possibility),
the tree is clearly optimized to handle this situation. It is not the case that the
tree becomes more balanced (see Figure 12.5a). Clearly, if the tree is splayed at
an extremal value, the tree is likely to be extremely unbalanced. An interesting
feature, however, is that the depth of the nodes on the original path from x to
the root of the tree is, on average, halved. Since the average depth of these
nodes is halved, they clearly occupy locations closer to the top of the tree where
they may be more efficiently accessed.

To guarantee that the splay has an effect on all operations, we simply per-
form each of the binary search tree operations as before, but we splay the tree
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at the node accessed or modified during the operation. In the case of remove,
we splay the tree at the parent of the value removed.

12.6 Splay Tree Implementation

Because the splay tree supports the binary search tree interface, we extend the
SearchTree data structure. Methods written for the SplayTree hide or override
existing code inherited from the SearchTree. Here, for example, is the initial-
izer:

@checkdoc

class SplayTree(SearchTree):

def __init__(self,data=None,frozen=False):
"""Construct a SplayTree from an iterable source."""

super () .__init__(data,frozen)

As an example of how the splay operation is incorporated into the existing
binary tree code, we look at the __contains__ method. Here, the root is reset
to the value of the node to be splayed, and the splay operation is performed on
the tree. The postcondition of the splay operation guarantees that the splayed
node will become the root of the tree, so the entire operation leaves the tree in
the correct state.

def __contains__(self,item):
"""item is in SplayTree."""
if self._root.empty:
return False
possibleLocation = self._locate(item) 5
self._root = self._splay(possibleLocation)
return item == possibleLocation.value

One difficulty with the splay operation is that it potentially modifies the
structure of the tree. For example, the __contains__ method—a method nor-
mally considered nondestructive—potentially changes the underlying topology

of the tree. This makes it difficult to construct iterators that traverse the SplayTree

since the user may use the value found from the iterator in a read-only opera-
tion that inadvertently modifies the structure of the splay tree. This can have
disastrous effects on the state of the iterator. A way around this difficulty is
to have the iterator keep only that state information that is necessary to help
reconstruct—with help from the structure of the tree—the complete state of our
traditional nonsplay iterator. In the case of the __iter__, we keep track of two
references: a reference to an “example” node of the tree and a reference to the
current node inspected by the iterator. The example node helps recompute the
root whenever the iterator is reset. To determine what nodes would have been
stored in the stack in the traditional iterator—the stack of unvisited ancestors of
the current node—we consider each node on the (unique) path from the root to
the current node. Any node whose left child is also on the path is an element of

SplayTree

It can also
wreck your day.
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Figure 12.6 A splay tree iterator, the tree it references, and the contents of the virtual
stack driving the iterator.
our “virtual stack.” In addition, the top of the stack maintains the current node
(see Figure ??).
REWRITE The constructor sets the appropriate underlying references and resets the it-

erator into its initial state. Because the SplayTree is dynamically restructuring,
the root value passed to the constructor may not always be the root of the tree.
Still, one can easily find the root of the current tree, given a node: follow parent
pointers until one is None. Since the first value visited in an inorder traversal
is the leftmost descendant, the reset method travels down the leftmost branch
(logically pushing values on the stack) until it finds a node with no left child.

The current node points to, by definition, an unvisited node that is, logically,
on the top of the outstanding node stack. Therefore, the hasNext and get
methods may access the current value immediately.

All that remains is to move the iterator from one state to the next. The next
method first checks to see if the current (just visited) element has a right child.
If so, current is set to the leftmost descendant of the right child, effectively
popping off the current node and pushing on all the nodes physically linking
the current node and its successor. When no right descendant exists, the sub-
tree rooted at the current node has been completely visited. The next node to
be visited is the node under the top element of the virtual stack—the closest
ancestor whose left child is also an ancestor of the current node. Here is how
we accomplish this in Python:

The iterator is now able to maintain its position through splay operations.

Again, the behavior of the splay tree is logarithmic when amortized over a
number of operations. Any particular operation may take more time to execute,
but the time is usefully spent rearranging nodes in a way that tends to make the
tree shorter.

From a practical standpoint, the overhead of splaying the tree on every oper-



12.7 An Alternative: Red-Black Trees

245

ation may be hard to justify if the operations performed on the tree are relatively
random. On the other hand, if the access patterns tend to generate degenerate
binary search trees, the splay tree can improve performance.

12.7 An Alternative: Red-Black Trees

A potential issue with both traditional binary search trees and splay trees is
the fact that they potentially have bad performance if values are inserted or
accessed in a particular order. Splay trees, of course, work hard to make sure
that repeated accesses (which seem likely) will be efficient. Still, there is no
absolute performance guarantee.

One could, of course, make sure that the values in a tree are stored in as
perfectly balanced a manner as possible. In general, however, such techniques
are both difficult to implement and costly in terms of per-operation execution
time.

Exercise 12.2 Describe a strategy for keeping a binary search tree as short as
possible. One example might be to unload all of the values and to reinsert them in
a particular order. How long does your approach take to add a value?

Because we consider the performance of structures using big-O notation, we
implicitly suggest we might be happy with performance that is within a constant
of optimal. For example, we might be happy if we could keep a tree balanced
within a factor of 2. One approach is to develop a structure called a red-black
tree.

For accounting purposes only, the nodes of a red-black tree are imagined to
be colored red or black. Along with these colors are several simple rules that
are constantly enforced:

1. Every red node has two black children.
2. Every leaf has two black (BinTree.Empty is considered black) children.

3. Every path from a node to a descendent leaf contains the same number of
black nodes.

The result of constructing trees with these rules is that the height of the tree
measured along two different paths cannot differ by more than a factor of 2:
two red nodes may not appear contiguously, and every path must have the
same number of black nodes. This would imply that the height of the tree is
O(logy n).

Exercise 12.3 Prove that the height of the tree with n nodes is no worse than
O(logg n).

Of course, the purpose of data abstraction is to be able to maintain the con-
sistency of the structure—in this case, the red-black tree rules—as the structure
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is probed and modified. The methods add and remove are careful to maintain
the red-black structure through at most O(logn) rotations and re-colorings of
nodes. For example, if a node that is colored black is removed from the tree, it
is necessary to perform rotations that either convert a red node on the path to
the root to black, or reduce the black height (the number of black nodes from
root to leaf) of the entire tree. Similar problems can occur when we attempt to
add a new node that must be colored black.

The code for red-black trees can be found online as RedBlackSearchTree.
While the code is too tedious to present here, it is quite elegant and leads to
binary search trees with very good performance characteristics.

No longer The implementation of the RedBlackSearchTree structure in the structure

true. package demonstrates another approach to packaging a binary search tree that

Rewrite. is important to discuss. Like the BinTree structure, the RedBlackSearchTree is
defined as a recursive structure represented by a single node. The RedBlackSearchTree

also contains a dummy-node representation of the empty tree. This is useful in

reducing the complexity of the tests within the code, and it supports the notion

that leaves have children with color, but most importantly, it allows the user

to call methods that are defined even for red-black trees with no nodes. This

approach—coding inherently recursive structures as recursive classes—leads to

side-effect free code. Each method has an effect on the tree at hand but does not

modify any global structures. This means that the user must be very careful to

record any side effects that might occur. In particular, it is important that meth-

ods that cause modifications to the structure return the “new” value of the tree.

If, for example, the root of the tree was the object of a remove, that reference is

no longer useful in maintaining contact with the tree.

To compare the approaches of the SearchTree wrapper and the recursive
RedBlackSearchTree, we present here the implementation of the SymTab struc-
ture we investigated at the beginning of the chapter, but cast in terms of RedBlackSearchTrees.
Comparison of the approaches is instructive (important differences are high-
lighted with uppercase comments).

class RBSymTab(object):
__slots__ = ["_table"]

def __init__(self):
self._table = RedBlackSearchTree() 5

def __contains__(self,symbol):
return KV(symbol,None) in self._table

def __setitem__(self,symbol,value): 10
a = KV(symbol,value)
if a in self._table:
self._table.remove(a)
self._table.add(a)
15

def __getitem__(self,symbol):
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a = KV(symbol,None)
if a in self._table:

a = self._table.get(a)

return a.value 20
else:

return None

def remove(self,symbol):
a = KV(symbol, None) 25
if a in self._table:
a = self._table.get(a)
self._table.remove(a)
return a.value
else:

return None

The entire definition of RedBlackSearchTrees is available in the structure
package, when O(logn) performance is desired. For more details about the
structure, please see the documentation within the code.

12.8 Conclusions

A binary search tree is the product of imposing an order on the nodes of a binary
tree. Each node encountered in the search for a value represents a point where
a decision can be accurately made to go left or right. If the tree is short and
fairly balanced, these decisions have the effect of eliminating a large portion of
the remaining candidate values.

The binary search tree is, however, a product of the history of the insertion
of values. Since every new value is placed at a leaf, the internal nodes are left
untouched and make the structure of the tree fairly static. The result is that
poor distributions of data can cause degenerate tree structures that adversely
impact the performance of the various search tree methods.

To combat the problem of unbalanced trees, various rotation-based opti-
mizations are possible. In splay trees, rotations are used to force a recently
accessed value and its ancestors closer to the root of the tree. The effect is often
to shorten degenerate trees, resulting in an amortized logarithmic behavior. A
remarkable feature of this implementation is that there is no space penalty: no
accounting information needs to be maintained in the nodes.
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Chapter 13
Sets

It is often useful to keep track of an unordered collection of unique values. For
this purpose, a set is the best choice. Python provides several built-in types that
have set-like semantics, and we will investiate those in this chapter and the
next. First, however, we think about the identity of objects.

13.1 The Set Abstract Base Class

The notion of a set in Python is a container that contains unique values that may
be traversed. As an aid to programmers, the Set class found in the collections
package’s abstract base classes (collections.abc.Set) provides rich compar-
ison operations as well as the simplest set operations. What is left abstract
are three methods: __contains__, __iter__, and __len__. Sets that may be
changed, objects that inherit from MutableSet, implement the three methods,
along with basic methods for adding (add) and discarding (discard) values
from a set allow the programmer to produce a rudimentary set.

Let’s investigate the simplest of implementations: keeping a list of unique el-
ements. Since we cannot make assumptions about the ordering of the elements,
themselves, we keep an unordered list. Here is the sketch of a simple mutable
class, ListSet:

from collections.abc import Set

class ListSet(Set):
__slots__ = ["_data"]

def __init__(self,data=None):
"""Create ListSet, possibly populated by an iterable."""
self._data = []
if data:
for x in data: 10
self.add(x)

def add(self,value):
"""Add a value, if not already present."""
if value not in self: 15
self._data.append(value)
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def discard(self,value):

"""Remove a value, if present."""

if value in self: 20

self._data.remove(value)

def clear(self):

nn IlEmpty the set . nnn

if self._data: 25

self._data = []

def __contains__(self,value):

"""Check for value in set."""

return value in self._data 30
def __iter__(self):

"""Return a traversal of the set elements."""

return iter(self._data)

35

def __len__(self):

"""Return number of elements in set."""

return len(self._data)
def __repr__(self):

return "ListSet("+repr(self._data)+")"

To populate the set we incorporate values using add or, in the initializer, the
element-by-element addition through iteration. Removal of values can be ac-
complished by discard, which removes the matching value if present and is
silent otherwise,! and clear, which empties the ListSet. While clear is a
generic method of the MutableSet class, it is often more efficient when overrid-
den for each class.

Here are some interactions of sets that become possible, even with this sim-
ple implementation:

>>> a
>>> b
>>> a
False
>>> b
True

>>> a
False
>>> a
True

>>> a

ListSet(range(10))
ListSet (range(5,7))
b

set(range(9,-1,-1))

range(9,-1,-1)

10

1 This is compared with the operation remove, which typically raises a ValueError if the value is

not found.
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False

>>a - b

ListSet([0, 1, 2, 3, 4, 7, 8, 9])

>>>a | b 15

ListSet([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> a.remove(5)

>>ag&b

ListSet([6])

>>> a.isdisjoint (b) 20

False

>>> b.clear()

>>> len(b)

0
Notice, by the way, that the set-combining operations generate new objects of
the type found on the left side of the operation. Thus, the result of taking a
ListSet and removing values found in a builtin set generate a new ListSet.

Because the __contains__ method takes O(n) time, many operations are
linear. For example, add must first check for the presence of a value before
performing a constant-time append of the value to the list. This means, for ex-
ample, that initialization from an iterable source of n values takes O(n?) time.
The reader is encouraged to consider ways that the performance of basic op-
erations can be improved, though it will be necessary to override the default
methods from the abstract base class to get the best performance.

The reason that __contains__ method is slow is that the value to be located
may be found in any position within the list. If, however, we could predict
where the value would be found if it was there, the contains method might be
a constant time operation. This observation is the basis for our next example of
a set, a BitSet.

13.2 Example: Sets of Integers

Integers are represented in the computer as a binary number stored as a fixed
length string of binary digits or bits. Typically, the width of an integer, or the
number of bits used to encode a value, is 32 or 64. A byte has a width of 8 bits,
allowing the storage of values between 0 and 255. Python supports a mutable
list-like structure that contains only byte-sized integers. A number of Python
operations we have not explored to this point are bitwise operations, like bitwise
and (written &), bitwise or (written |), bitwise complement (written ~), bitwise
shift left (written <), and bitwise shift right (written »). These operations work
directly on the binary representation of integers. We will make use of several
simple observations about the manipulation of bits.

Observation 13.1 The value 2" can be computed as 1«n.

This is a direct result of the fact that bit n (always counting from the right,
starting at zero), has weight 2" in the binary number system.
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The bitwise-or operation simply computes a value whose individual bits are
set if the bit is set in either (or both) of the composed values.

Observation 13.2 To set bit n of integer i, we perform i = i | (1«n).

Often, the shorthand |=is used to update the integer value.

The bitwise-and operation produces a one in the result if there is a one in
both of the composed values. This is a handy mechanism for masking values:
wherever there is a 1 in the mask, the bits of the target of the mask are kept,
otherwise they are cleared. The bit-complement operation (~) computes the
complement of each bit. These two operations give us the power to turn off
bits:

Observation 13.3 To clear bit n of integer i, we performi = i & ~(1«n).

Of course, if a bit is already cleared, this operation has little impact.

We now have the basis for storing a set of compactly storing a mutable set
of integers. The presence of an integer in the set corresponds to a bit in a fixed
position being set to 1. If that bit is not present, or if it is cleared (0), we take
that to mean that the integer is not in the set. Because Python byte values can
store 8 bits, we may store the presence of values between 0 and 7 in the setting
of bits in byte O of the bytearray. The presence of integers 8 through 15 is
represented by settings in byte 1, and so forth. It is useful to convert between
integers and the index and bit offset. The private utility functions _index and
_offset accomplish this task. In addition, it is helpful to be able to construct a
value with a single bit set, which is accomplished with the _bit method.

def _index(n):
"""Compute array index of bit n."""
return n//BitSet.WIDTH

def _offset(n): 5
"""Compute bit index of bit n in array element."""
return n¥%BitSet.WIDTH

def _bit(n):
"""Generate a 1 in bit n, O otherwise."""
return 1<<n
The value of BitSet.WIDTH would be 8 for this implementation, since we’re
using arrays of bytes to store the membership information. The conversion of
index and bit offset back to an integer value is relatively simple: we simply
multiply compute index*BitSet.WIDTH+offset.

The BitSet keeps track of two items: the underlying bytearray, _bytes,
and the number of elements in the set, _count, which is otherwise expensive to
determine (you might think about how this might be accomplished). The ini-
tialization of this structure makes use of the clear method, which is responsible
for resetting the BitSet into an empty state.

class BitSet (MutableSet,Freezable):
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WIDTH = 8
__slots__ = ["_bytes", "_count"]
def __init__(self, data=None, frozen=False): 5

"""Construct a BitSet with elements optionally derived from data."""

self.clear()
if data:
for x in data:
self.add(x) 10

def clear(self):
"""Discard all elements of set."""
self._count = 0
self._bytes = bytearray()

At any time the extent of the BitSet contains only the bytes that have been
necessary to encode the presence of values from 0 to the maximum value en-
countered during the life of the BitSet. For this reason, it is always necessary
to check to see if an operation is valid within the current extent and, on occa-
sion, to expand the extend of the set to allow relatively large, new values to be
added. The hidden method _probe checks the extent while _ensure expands
the range of values that may be stored.

def _probe(self,n):
"""Verify bit n is in the extent of the set."""
index = _index(n)
return index < len(self._bytes)

def _ensure(self,n):

"""Ensure that bit n is within the capacity of the set."""

index = _index(n)

increment = index-(len(self._bytes)-1)

if increment > O:

self._bytes.extend(increment*[0])

The action of the _ensure method is much the same as the extension of a list:
new bytes are only added as they are needed. Because the bytearray extend
operation might involve copying the entire array of bytes, an operation that is
linear in the size of the set, it might be preferred to have the extent expanded
through exponential growth. The reader is encouraged to revisit that discussion
on page ??.

The __contains__ operation is arguably the most important operation. It
probes, possibly being able to eliminate the possibility if the _probe fails. If the
_probe is successful the value may or may not be in the set, so it is important
that we check that the particular bit is set to 1.

def __contains__(self,n):
"""n is in set. Equivalent to __get_item__(un)."""
if not self._probe(n): return False
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index = _index(n)

bitnum = _offset(n)

return O != (self._bytes[index] & _bit(bitnum))
While Python typically considers zero values and empty strings to be treated as
False, that interpretation only occurs when a boolean value is needed. In this
case, however, the result of the and (&) is an integer formed from the bits that
result from the operation. The value returned, then, is an integer, so to convert
it to a boolean value, the comparison with zero is necessary.

Two methods add and discard must set and clear bits. To add a value we

first ensuring that the appropriate is available (if not already present) to be set.

def add(self,n):
||||||Add n to Set.""”

self._ensure(n)

index = _index(n)

bitnum = _offset(n) 5

if not (self._bytes[index] & _bit(bitnum)):
self._bytes[index] |= _bit(bitnum)

self._count += 1
Because bits are being turn on, the important operation, here, is or. Of course,
we only add one to the _count when we actually expand the size of the BitSet.

The discard method removes values if present. It does not shrink the
bytearray, though it could. Here, we use _probe to exit quickly if n could
not possibly be in the BitSet. If the correct bit is present, it is set to 0 only if it
is not currently 1.

def discard(self,n):
"""Remove n from self, if present; remain silent if not there.""
if not self._probe(n): return
index = _index(n)
bitnum = _offset(n) 5
if self._bytes[index] & _bit(bitnum):
self._bytes[index] &= ~(_bit(bitnum))
self._count -=1
Here, because we're trying to turn off the bit, we use an and operation with a
mask that is missing the bit to be cleared.

As we have seen, the bitwise operations | and & are used to force bits to be
1 or 0. If, we know the current setting, it is possible to toggle or complement
an individual bit with the bitwise-exlusive or operator, ~. Since, in both the add
and discard operations, we know the current state and are simply interested
in changing the state, both operations could use the exclusive-or operation in a
symmetric manner.

The __iter__ function for BitSets is particularly interesting. Unlike other
structures to be traversed we must examine, possibly, several locations before
we yield a single value. We use the enumerate iteration to produce individ-
ual bytes and their respective index values. Only if a byte is not zero do we
check the individual bits. If one of these bits is set, we reconstruct the cor-
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responding number, based on its index (i) and bit offset (b). The expression
i*BitSet.WIDTH+b, we note, is the combining operation that is the inverse of
the _index and _offset hidden methods.
def __iter__(self):
""" (lazy) iterator of all elements in set."""
for i,v in enumerate(self._bytes):
if v != 0:
for b in range(BitSet.WIDTH): 5
if v & _bit(b):
yield (i*BitSet.WIDTH)+b

For very sparsely populated sets that cover a wide range of values, the __iter__
method may loop many times between production of values.

The BitSet structure is an efficient implementation of a Set because mem-
bers are stored in locations that are found at easily computed and dedicated
locations. These characteristics allow us to add and discard values from sets
in constant time. There are downsides, of course: sometimes we want to store
values that are not integers, and sparse sets may take up considerable space.
We now consider techniques that allow us to construct sets of objects other than
integers with some bounds on the space utilization.

13.3 Hash tables

We will now spend some time developing a MutableSet implementation that
stores values sparsely in a list. Each value is stored in a computable, predeter-
mined location. However, because there may be an arbitrarily wide range of
values stored in a fixed length structure, it becomes clear that locations may be
targeted by more than one value. Our discussion, here, investigates how the
target destination is computed and how we can manage the collisions that will
naturally occur when set elements compete for storage locations.

13.3.1 Fingerprinting Objects: Hash Codes

We have seen many data structures that depend on being able to compare val-
ues. For example, in the list class, the __contains__ method traverses the
structure looking for an equivalent object. Because the comparison of values
is dependent, heavily, on the structure of the values, the performance of op-
erations like __contains__ can be significantly impacted if the equality test is
slow. In structures, like sets, where considerable time is spent comparing values
it would be useful to think about ways that we might manage the cost of this
important operation.

Since every data item in Python is an object, if it is known that every in-
stance of a class—every object—is different than every other, we can quickly
perform equality testing by simply comparing the reference to the object. Unfor-
tunately, we rarely have the luxury of knowing that objects are unique (though,
see problem ?? which discusses interning of strings and other objects).
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Another approach is developing a manageable fingerprint of the object. When
the this condensed representation of the object is a numeric value, it is called
a hash code. Hash codes are not usually in one-to-one correspondence with
object values, but a good method for determining hash codes will cause them
to be shared by relatively few objects. While it is not absolutely necessary, the
computation of a hash code for a value (the hashing of a value) is typically not
more complex than the process of comparing values. Once a good hash code
generated, equality testing can be reduced to the comparison of hash values.
When hash values differ, it is proof that the fingerprinted objects must differ as
well. When hash values are the same, a full equality test can be performed to
eliminate the remote possibility that the two values are different, but hash to
the same code.

If the computation of hash codes is expensive (as it might be to incorporate
the features of a large object), the value can be cached within the object: a
private attribute, initially None, is set to the hash code when it is computed the
first time, and the resulting value is simply returned from that point onward.

Most data structures, however, are allowed to change over time. This means
that two objects that were initially hashed and compared and found to be dif-
ferent can, over time, change to become equal. To avoid this situation, it is
important that either we force the hash code be recomputed as the structure
changes or we freeze the structure making it immutable. Because hash codes
are stable for immutable structures in Python it is common to equate the no-
tions of being immutable and hashable. Strictly speaking, mutable structures
can be hashable as long as that part of the structure that determines equality
is, in fact, immutable. For example, two medical records are the same as long
as the patient identifiers are the same. Updating a medical record with new
tests—features that do not effect record identification—does not impact equal-
ity testing or relevant hash codes. Indeed, a natural hash code for many records
is simply the patient id; one may even change the name of the patient without
impacting record location.

The Hashable Interface

The Hashable abstract base class, found in the container.abc package, promises
the definition of the special method, __hash__. This method is called when the
builtin function hash is called with an object as its sole parameter. Many builtin
primitive types, including numeric types, booleans, and strings all define this
method. Immutable container types, including tuple types cannot be directly
modified and, thus, are hashable. Because the list is a dynamic container
type, a hash code is not available. In those situations where one wishes to
have a hashable list-like container, a tuple is usually first constructed from the
desired list.

Because we think of the comparison of hash values as a first approximation
to a full equality test of immutable objects, it is vital that the hash codes of equal
values be equal.
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Principle 11 Equivalent objects (the same under __eq__) should return equiva-
lent hash codes (as computed by __hash__).

As was hinted at earlier, the development of appropriate hash methods can
be tricky.? Developers look for methods that are fast, reproducible, and good
at reducing collisions among data one might expect to see. For example, for
int types, the hash code is simply the value of the integer, itself.> For boolean
values, hash(False) is zero, while hash(True) is one. Hash of float types
is related to the internal representation of the value, though float types that
correspond to int values use the hash of the int value.

Example: Hashing Strings

Strings—objects of type str—are immutable, hashable objects of variable length.

String comparison, of course, can be expensive, so an appropriate method of
hashing strings is important to think about. Indeed, for many of the container
classes we construct in this book the potential benefits of fast hash code gener-
ation parallel those of the str class.

Most of the approaches for hashing strings involve manipulations of the
characters that make up the string. Fortunately, when a character is cast as
an integer, the internal representation (often the ASCII encoding) is returned,
usually an integer between 0 and 255.* Our first approach, then, might be to
use the first character of the string. This has rather obvious disadvantages: the
first letters of strings are not uniformly distributed, and there isn’t any way of
generating hash codes greater than 255. If we were to use the hash code as an
index into a list or array, we would never expect to find values beyond location
255.

Our next approach would be to sum all the letters of the string. This is
a simple method that generates large-magnitude hash codes if the strings are
long. Even when large hash codes are used to index a small list or array, this
is not a problem: we simply compute the location we would expect to find it if
we counted by going around the array locations many times. This value is the
modulus of dividing the integer by the size of the list. The main disadvantage of
the summing technique is that if letters are transposed, then the strings generate
the same hash values. For example, the string "dab" has 100 + 97 + 98 = 295 as
its sum of ASCII values, as does the string "bad". The string "bad" and "bbc"
are also equivalent under this hashing scheme. Figure 13.1 is a histogram of the
number of words that might be found at or hash to, using this method, to each

2 While it may be tricky to build good hash methods, bad hashing techniques do not generally cause
failure, just bad performance.

3 Actually, in CPython (a common version of Python on most platforms), the int -1 hashes to
-2. This is due to a technical constraint of the implementation of Python in C that is relatively
unimportant to this discussion. Still, do not be surprised if, when you expect a hash value of -1,
Python computes a value of -2.

4 Python also transparently supports Unicode strings. The discussion, here, applied equally well
there, but the range of character values may be considerably larger.
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Figure 13.1 Numbers of words from the UNIX spelling dictionary hashing to each of
the 997 buckets of a default hash table, if sum of characters is used to generate hash
code.

slot of a 997 element list.> The periodic peaks demonstrate the fact that some
slots of the table are heavily preferred over others. The performance of looking
up and modifying values in the hash table will vary considerably, depending
on the slot that is targeted by the hash function. Clearly, it would be useful to
continue our search for a good mechanism.

Another approach might be to weight each character of the string by its
position. To ensure that even very short strings have the potential to generate
large hash values, we can provide exponential weights: the hash code for an |
character string, s, is

where c is usually a small integer value. When c is 2, each character is weighted
by a power of 2, and we get a distribution similar to that of Figure 13.2. While
this is closer to being uniform, it is clear that even with exponential behavior,
the value of ¢ = 2 is too small: not many words hash to table elements with
large indices. When ¢ = 256, the hash code represents the first few characters
of the string exactly (see Figure 13.3).

5 It is desirable to have the size of the list of target locations be a prime number because it spreads
out the keys that might collide because of poor hash definition. For example, if every hash code
were a multiple of 8, every cell in a 997 element array is a potential target. If the table had size
1024, any location that is not a multiple of 8 would not be targeted.
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2**i-weighted Character Sum Hash Distributions for str Objects

0 100 200 300 400 500 600 700 800 900
Hash Bucket (hashtable size=997)

Figure 13.2 Frequency of dictionary words hashing to each of 997 buckets if characters
are weighted by powers of 2 to generate hash code. Some periodicity is observable.
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Figure 13.3 Frequency of words from dictionary hashing to each of 997 buckets if
hash code is generated by weighting characters by powers of 256. Notice that bucket
160 has 2344 words, well above the expected average of 237.
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Hash Distributions for str Objects
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Figure 13.4 Frequency of words from dictionary hashing to each of 997 buckets, using
the Python str hash code generation. The deviation is small and the distribution is
seeded with a random constant determined each Python session.

The hashing mechanism currently used by Python approximately computes

-1

roxp + (Y slilp™ )+l
i=0

where p is a prime® and r, and 7, are random values selected when Python
starts up (see Figure 13.4). Because p is prime, the effect of multiplying by
powers of p is similar to shifting by a fractional number of bits; not only do
the bits move to the left, but they change value, as well. The values ry and r;
introduce an element of randomness that works against collisions of particular
strings. It also means that the hash codes for individual runs of a program will
differ.”

Example: Hash Values for Tuples

As we mentioned earlier, the computation of hash values for immutable con-
tainer classes are computed in a manner that is very similar to that of str
objects. The values combined in the hashing of strings, recall, were the in-
ternal representation of the string’s individual characters. For tuples, the val-
ues combined are the hash codes associated with the elements of the tuple. In

61,000,003 in Python 3.3.
7 This randomness can be turned off by setting the seed of the random number generator to zero.
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Python 3.3, the hash computation for tuples computes a modified sum of hash
codes whose weights are related to the square of the distance the element is
from the end of the string.

Little is important to know about the technique other than to realize that
the hash codes of each element contributes to the hash code for the tuple. Be-
cause of this, tuples that contain mutable values (like lists) do not have hash
codes, because lists, themselves, are not hashable. In addition, in CPython (the
standard for most platforms), hash codes can never be -1; if a hash of -1 is pro-
duced, it is mapped, automatically, to -2. The reason for this is an unimportant
implementation decision, but it means that all tuples whose elements are each
either -1 or -2 hash to exactly the same value!

13.4 Sets of Hashable Values

We now develop two different implementations of sets that allow one to store
elements that are Hashable. The first approach provides a structure with con-
stant time access. The second approach is more space efficient, but, as is usual
with data structure tradeoffs, takes slightly more time.

13.4.1 HashSets

We now implement a HashSet whose values are stored sparsely in a list. All ele-
ments in the table are stored in a fixed-length list whose length is, ideally, prime.
Initialization ensures that each slot within the array is set to None. Eventually,
slots will contain hashable values. We use list for speed, but any container with
constant time access to elements would be a logical alternative.
@checkdoc
class HashSet(MutableSet,Freezable):
RESERVED = "Rent This Space"
SIZES = [3, 7, 17, 37, 67, 127, 257, 509, 997, 1999, 4001, 8011,
16001, 32003, 64007, 125003, 250007, 500009, 1000003]
__slots__ = ["_data", "_capacity", "_maxload", "_dirty", "_counter", "_frozen", "_hash"]

def __init__(self, data=None, capacity=17, maxload=0.6, frozen=False) :
"""Construct a HashSet containing values in an iterable source."""
# create empty main list 10
self._capacity = _goodCapacity(capacity)
self._maxload = maxload
self._frozen = False
self.clear()
# store data, if given 15
if data:
for value in data:
self.add(value)
self._dirty = False
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0 | alexandrite alexandrite | 0
1 1
2 — crystal cobalt? crystal 2
3 dawn dawn 3
4 emerald emerald 4
5| flamingo flamingo |5
6 6
7 | hawthorne hawthorne |7
8 8
9 9
10 10

12 | moongleam 7 marigold marigold? ? moongleam | 12

marigold | 13

14 14
15 15
16 16
17 17
18 18
19 | tangerine tangerine | 19
20 20
21 vaseline vaseline? —| vaseline 21
22 22
. .
(a) (b)

Figure 13.5 Hashing color names of antique glass. (a) Values are hashed into the first
available slot, possibly after rehashing. (b) The lookup process uses a similar approach
to possibly find values.

self._frozen = frozen
self._hash = None

The value management methods depend on a function, _locate, that finds
a good location for a value in the structure. First, we use an index-producing
function that “hashes” a value to a slot or bucket (see Figure 13.5). Since all
Hashable objects have a __hash__ function defined, we can use hash(value)
for precisely this purpose. For simplicity, let’s assume the hash code is the al-
phabet code (a = 0, b = 1, etc.) of the first letter of the word. The hash code
for a particular key (2 for the word “crystal”) is used as an index to the first
slot to be considered for storing or locating the value in the table. If the slot
is empty, the value can be stored there. If the slot is full, it is possible that
another value already occupies that space (consider the insertion of “marigold”
in Figure 13.5). When the keys of the two objects do not match, we have a
collision. A perfect hash function guarantees that (given prior knowledge of the
set of potential keys) no collisions will occur. When collisions do occur, they can
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Figure 13.6 (a) Deletion of a value leaves a shaded reserved cell as a place holder. (b)
A reserved cell is considered empty during insertion and full during lookup.

be circumvented in several ways. With open addressing, a collision is resolved
by generating a new hash value, or rehashing, and reattempting the operation
at a new location.

Slots in the hash table logically have two states—empty (None) or full (a
reference to an object)—but there is also a third possibility. When values are
removed, we replace the value with a reserved value that indicates that the
location potentially impacts the lookup process for other cells during insertions.
That association is represented by the empty shaded cell in Figure 13.6a. Each
time we come across the reserved value in the search for a particular value in
the array (see Figure 13.6b), we continue the search as though there had been
a collision. We keep the first reserved location in mind as a possible location for
an insertion, if necessary. In the figure, this slot is used by the inserted value
“custard.”

When large numbers of different-valued keys hash or rehash to the same
locations, the effect is called clustering (see Figure 13.7). Primary clustering is
when several keys hash to the same initial location and rehash to slots with
potential collisions with the same set of keys. Secondary clustering occurs when
keys that initially hash to different locations eventually rehash to the same se-
quence of slots.

In this simple implementation we use linear probing (demonstrated in Fig-
ures 13.5 to 13.7). Any rehashing of values occurs a constant distance from
the last hash location. The linear-probing approach causes us to wrap around
the array and find the next available slot. It does not solve either primary or
secondary clustering, but it is easy to implement and quick to compute. To
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dawn 3 dawn duncan
custard 4 custard
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() (b)
Figure 13.7 (a) Primary clustering occurs when two values that hash to the same slot

continue to compete during rehashing. (b) Rehashing causes keys that initially hash to
different slots to compete.

avoid secondary clustering we use a related technique, called double hashing,
that uses a second hash function to determine the magnitude of the constant
offset (see Figure 13.8). This is not easily accomplished on arbitrary keys since
we are provided only one __hash__ function. In addition, multiples and factors
of the hash table size (including 0) must also be avoided to keep the locate
function from going into an infinite loop. Still, when implemented correctly,
the performance of double hashing can provide significant improvements over
linear-probing.

We now discuss our implementation of hash tables. First, we consider the
_locate function. Its performance is important to the efficiency of each of the
public methods.

def _locate(self, value):
"""Return the list contained within self._data where value would be stored."""
index = hash(value) 7% self._capacity
reserved = None
while True: 5
if self._datal[index] is HashSet.RESERVED:
reserved = index
else:
if self._data[index] is None:
return index if reserved is None else reserved
if self._datalindex] == value:
return index
index = self._rehash(value,index)

def _rehash(self,value,index): 15
"""Find another slot based on value and old hash index."""
return (index+1)Y%self.capacity
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Figure 13.8 The keys of Figure 13.7 are rehashed by an offset determined by the
alphabet code (a = 1, b = 2, etc.) of the second letter. No clustering occurs, but strings
must have two letters!

To measure the difficulty of finding an empty slot by hashing, we use the
load factor, o, computed as the ratio of the number of values stored within the
table to the number of slots used. For open addressing, the load factor cannot
exceed 1. As we shall see, to maintain good performance we should keep the
load factor small as possible. Our maximum allowable load factor is a constant
_maxload. Exceeding this value causes the list to be reallocated and copied over
(using the method _checkLoad).

When a value is added, we simply locate the appropriate slot and insert the
new value. If the ideal slot already has a value (it must have an equal key), we
simply replace the value.

@mutatormethod
def add(self, value):

"""Add value to HashSet, regardless of if it is already present."""
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self._checkLoad(self._counter+1)
index = self._locate(value) 5
if _free(self._datal[index]):
self._counter += 1
self._datalindex] = value
self._dirty = True

The get function works similarly—we simply return the value that matches
in the table, or None, if no equivalent value could be found.
def get(self, value):
"""Return object stored in HashSet that is equal to value."""
if value not in self:
raise KeyError("Value {} not found in HashSet.".format(value))
index = self._locate(value)
return self._data[index]

The __contains__ method is similar.
def __contains__(self, value):
"""yvalue is in this HashSet."""
index = self._locate(value)
return not _free(self._data[index])

To discard a value from the HashSet, we locate the correct slot for the value
and, if found, we leave a reserved mark (HashSet.RESERVED) to maintain con-
sistency in _locate.

Omutatormethod
def discard(self, value):
"""Remove value from HashSet, if present, or silently do nothing"""
index = self._locate(value)
if _free(self._datalindex]): 5
return
self._datal[index] = HashSet.RESERVED
self._dirty = True
self._counter = self._counter - 1

Hash tables are efficiently traversed. Our approach is based on the 1ist iter-
ator, yielding all values that are not “free”; values of None and HashSet . RESERVED
are logically empty slots in the table. When the iterator is queried for a value,
the underlying list is searched from the current point forward to find the next
meaningful reference. The iterator must eventually inspect every element of the
structure, even if very few of the elements are currently used.®

8 The performance of this method could be improved by linking the contained values together. This
would, however, incur an overhead on the add and discard methods that may not be desirable.
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13.4.2 ChainedSets

Open addressing is a satisfactory method for handling hashing of data, if one
can be assured that the hash table will not get too full. When open addressing
is used on nearly full tables, it becomes increasingly difficult to find an empty
slot to store a new value.

One approach to avoiding the complexities of open addressing—reserved
values and table extension—is to handle collisions in a fundamentally different
manner. External chaining solves the collision problem by inserting all elements
that hash to the same bucket into a single collection of values. Typically, this
collection is an unordered list. The success of the hash table depends heavily on
the fact that the average length of the linked lists (the load factor of the table) is
small and the inserted objects are uniformly distributed. When the objects are
uniformly distributed, the deviation in list size is kept small and no list is much
longer than any other.

The process of locating the correct slot in an externally chained table in-
volves simply computing the initial hash for the key and “modding” by the table
size. Once the appropriate bucket is located, we verify that the collection is
constructed and the value in the collection is updated. Because Python’s list
classes do not allow element retrieval by value, we may have to remove and
reinsert the appropriate value.

Gmutatormethod
def add(self, value):

Check this
term

"""Add value to ChainSet, regardless of if it is already present."""

index = self._locate(value)
bucket = self._datal[index] 5
if bucket is None:
self._datalindex] = []
bucket = self._datalindex]
if value in bucket:
bucket.remove (value) 10
else:
self._counter += 1
bucket . append(value)
self._dirty = True

Most of the other methods are implemented in a similar manner: they locate
the appropriate bucket to get a 1ist, then they search for the equivalent value
within the 1list.

One method, __iter__, essentially requires the iteration over two dimen-
sions of the hash table. One loop searches for buckets in the hash table—buckets
that contain values—and an internal loop that explicitly iterates across the 1ist.
This is part of the price we must pay for being able to store arbitrarily large num-
bers of values in each bucket of the hash table.

def __iter__(self):
for 1 in self._data:

-
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if 1 is not None:
for v in 1:
yield v 5

def __len__(self):
"""The number of objects stored in ChainSet."""
return self._counter
10
def __str__(self):
"""String representation of ChainSet."""

return str(list(self))

def __repr__(self): 15
"""Evaluable representation of this ChainSet."""
return "ChainSet({!r})".format(list(self))

At times the implementations appear unnecessarily burdened by the inter-
faces of the underlying data structure. For example, once we have found an
appropriate value to manipulate, it is difficult to modify: instead it must be
completely replaced. This is reasonable, though, since the immutability of the
value is what helped us locate the bucket containing the association. If the value
could be modified it might become inconsistent with its bucket’s location.

Another subtle issue is the selection of the collection class associated with
the bucket. Since linked lists have poor linear behavior for most operations,
it might seem reasonable to use more efficient collection classes—for example,
tree-based structures—for storing data with common hash codes. The graph of
Figure 13.9 demonstrates the performance of various ordered structures when
asked to construct collections of various sizes. It is clear that while SplayTrees
provide better ultimate performance, the simple linear structures are more ef-
ficient when the structure size is in the range of expected use in chained hash
tables (see Figure 13.10). When the average collection size gets much larger
than this, it is better to increase the size of the hash table and re-insert each of
the elements (this is accomplished with the Hashtable method, extend).

13.5 Freezing Structures

Sets constructed using hashing techniques are quite efficient, but they require
that the elements of the sets be hashable. Unfortunately, if the elements are
allowed to change, their hash values are likely to change. If this happens while
a value is stored in a set based on hash value, the value becomes lost and the
logic of the structure becomes inconsistent. What can be done if we wish to
build sets of immutable types?

First, as we had mentioned previously, it is only important that the part
of the structure encoded by the hashing mechanism must be immutable. For
example, in our XV class, which stores key-value associations, the key portion of
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the structure is immutable, but the value is not. Since KV types are considered
equal if their keys are equal, the simplest effective hashing mechanism (and the
one actually used) for a KV pair is to simply use the hash code of the key. For
this reason, we can construct HashSets and ChainSets of KV types.

For other types that are mutable, it is sometimes useful to construct frozen
versions that are immutable. For example, Python provides both sets and
frozensets. The reason for this (and the implementors of sets were undoubt-
edly sensitive to this) is that we often want to construct power sets or sets of sets.
For these purposes, (mutable) set objects are made immutable by constructing
immutable frozenset copies as they are added to the main set structure. Unfor-
tunately, the construction of frozen copies of structures is cumbersome enough
that few of Python’s classes have frozen alternates.

Another approach, and one we use in the structure package, is to provide
each structure with the ability to freeze or become immutable. This process
cannot be directly reversed other than by constructing a fresh, mutable copy.

As an example of the technique, we will now look more closely at the imple-
mentation of the LinkedList class. This class, recall, has all the semantics of
Python’s builtin 1ist class: values can be added, removed, found and modified.
To freeze a such a structure is to disable all methods that have the potential of
modifying the state of the hashable part of the structure.

First, let’s look at the __hash__ method, to see the scope of the problem:

@hashmethod

def __hash__(self):
"""Hash value for LinkedList."""
if self._hash:

return self._hash 5
index = 73
total = 91
for v in self:
try:
x = hash(v) 10

except TypeError as y:
raise y
total = total + (x * index)
index = index + 1
self._hash = total
return total
Notice that the hash code for the structure is affected by the hash code for each
of the elements contained within the list. If we are to freeze the list, we will
have to freeze each of the elements that are contained. Freezing LinkedList
structures is deep or recursive. If we fail to freeze an element of the structure,
the element can be changed, thus affecting the hash code of the entire structure.
To indicate that a structure may be frozen, we have it extend the Freezable
abstract base class. This requires two methods, freeze and frozen:
class Freezable(Hashable):
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An abstract base class for objects that support structured freezing.

@abc.abstractmethod 5
def freeze(self):

Q@abc.abstractproperty
def frozen(self): 10
"""Data structure is frozen."""

One approach to providing this interface is to supply with a hidden _frozen

attribute.

This boolean is True when the structure is immutable. When the

structure is mutable, _frozen is False. During initialization, we carefully ini-
tialize these variables to allow the ability to populate the structure with values
from an iterable source. Typically, we provide the ability to specify the value for
a boolean keyword, frozen, to indicate that the structure is initially frozen.

def

__init__(self, data=None, frozen=False):
"""Initialize a singly linked list."""
self._hash = None
self._head = None
self._len = 0 5
self._frozen = False
if data is not Nome:
self.extend(data)
if frozen:
self.freeze()

The two required methods for any container structure are typically written
as they are for LinkedLists:
def freeze(self):

for v in self:
if isinstance(v,Freezable):
v.freeze()
self._frozen = True 5
self._hash = hash(self)

Q@property
def frozen(self):

return self._frozen

Notice how the structure of freeze parallels that of __hash__. Also, because
freezing the structure will indirectly freeze the hash code, we compute and
cache this value, though it’s not logically necessary. Calling the __hash__ func-
tion before the structure is frozen causes an exception to be raised. This behav-
ior is indicated by the @hashmethod decorator.

@hashmethod

def __hash__(self):
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"""Hash value for LinkedList."""
if self._hash:

return self._hash 5
index = 73
total = 91
for v in self:
try:
x = hash(v) 10

except TypeError as y:
raise y
total = total + (x * index)
index = index + 1
self._hash = total
return total

During the life of a structure, its state is changed by methods that change or
mutate the state. These methods, of course, should not be callable if the object
is frozen. The structure package provides a method decorator, @mutatormethod,
that indicates which methods change the structure’s state.

Gmutatormethod
def append(self, value):
"""Append a value at the end of the list (iterative version).

Args: 5
value: the value to be added to the end of the list.

The effect is to wrap the function with a test to ensure that self.frozen is
False. If, on the other hand, the structure is frozen, an exception is raised.

Once frozen, a structure cannot be unfrozen. It may, however, be used as
a iterable source for initializing mutable structures. More efficient techniques
are possible with the copy package and Python’s serialization methods, called
pickling.
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One of the most important primitive data structures of Python is the dictionary,
dict. The dictionary is, essentially, a set of key-value pairs where the keys
are unique. In abstract terms, a dictionary is an implementation of a function,
where the domain of the function is the collection of keys, and the range is the
collection of values.

In this chapter we look at a simple reimplementation of the builtin dict
class, as well as a number of extensions of the notion of a map. First, we revisit
the symbol table application to make use of a dict.

14.1 Mappings

A mapping is a data structure that captures the correspondence between values
found in a domain of keys to members of a range values. For most implemen-
tations, the size of the range is finite, but it is not required. In Python, the ab-
stract base class for immutable mappings is collection.abc.Mapping, which
requires the implementation of a number of methods, the most important of
which is __getitem__. Recall that this method provides support for “indexing”
the structure. Mutable mappings require the implementation of methods that
can modify the mapping including __setitem__ and __delitem__.
The builtin class, dict, implements the methods required by MutableMapping.

As an example of the use of these mappings, we revisit the symbol table example
from the previous chapter.

14.1.1 Example: The Symbol Table, Revisited

Previously, we saw that we could use sets to maintain a list of key-value pairs.
Here, we revisit that example, but we make use of the dict, a structure that
manages the key-value association directly.
table = dict()
reading = True
for line in stdin:
words = line.split()
if len(words) == 0: 5
continue
if reading:
if words[0] == ’END’:
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reading = False
print("Table contains aliases: {}".format(table.keys()))
else:
table[words[0]] = words[1]
else:
name = words[0]
while name in table: 15
name = table[name]
print (name)
Here, we see that Python’s native dict object can be used directly to maintain
the symbol map structure. The semantics of indexing are extended to us to
access value by an arbitrary hashable key. The Mapping interface demands, as
well, the construction of three different types of views, or collections of data:
keys returns a view of the valid keys in the dictionary, items returns a view of
the valid (key,value) 2-tuples, and values returns a view of a collection of the
values that correspond to keys. The values in this last view are not necessarily
unique or hashable. The keys view is used in our symbol table application to
identify those words that would be rewritten.

14.1.2 Unordered Mappings

The most direct implementation of dictionaries is based on an unordered set of
key-value pairs. Recall that the keys of KV types are immutable. When they are
hashable then the KV objects are hashable, as well. A dictionary, then, can be
implemented as a HashSet of KV pairs. Let’s walk through the details of this
implementation which is most similar to Pythons builtin dict class.

In our implementation, a Dictionary, the we construct an empty set of
key-value mappings. As with many of the structures we have seen, we can
initialize the structure from another iterable object. Here, we have two differ-
ent approaches to interpreting the data source. If it is an implementation of a
Mapping, we can ask it for an item view: each element of this view is a 2-tuple
that holds a key and a value. Otherwise, we consider the iterable to be an ex-
plicit source of 2-tuples interpreted in the same way. Each results in the setting
of a key-value correspondence, the details of which we see later.

@checkdoc
class Dictionary(MutableMapping,Freezable):

__slots__ = ["_kvset", "_frozen", "_dirty"]

def __init__(self,data=None,capacity=10,frozen=False):
"""Construct a Dictionary from a mapping or an iterable source of key-value pairs.'
self._frozen = False
self._dirty = False
self._kvset = HashSet(capacity=capacity) 10
if data:

if isinstance(data,Mapping):
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for (key,value) in data.items():
self [key] = value
else: 15
try:
for (key,value) in data:
self [key] = value
except:
raise TypeError("If data is an iterable, it must be able to generate key-value pai
if frozen:
self.freeze()
self.dirty = False
Here, again, we handle freezing the data structure in the standard way.

Methods like __len__ are directly inherited from the underlying _set vari-
able.

The workhorse for adding new key-value pairs to the dictionary is the __setitem__
mutator method. Recall this method is called whenever and expression like
d[keyl=value is encountered; the parameters to the method call are the key
and value. The action of this method is to search for the unique KV object with
a matching key and, if one is found, update its value. Otherwise a the key-value
mapping is placed in a KV object.

Gmutatormethod
def __setitem__(self,key,value):
"""Set the value associated with key to value."""
kv = KV(key,value)
if kv in self._kvset: 5
self._kvset.get(kv).value = value
else:
self._kvset.add(kv)
The previous value associated with the key is no longer referenced by the dic-
tionary and may be collected as garbage if it is not otherwise referenced. Note
that the method is marked with the @mutatormethod decorator to cause the
assignment to raise an exception if the Dictionary is frozen. The setdefault
method works acts similarly, but the value provided is a value to be added to
the dictionary only if the key does not already have a value. The final value as-
sociated with the key—either the existing value or the new “default value”—is
returned.

To get the value associated with a key, the __getitem__ is called with the
search key. If a mapping from the key is found, the appropriate value is re-
turned, otherwise nothing (None) is returned.

def __getitem__(self,key):
"""The value associated with key."""
kv = KV(key,None)
entry = self._kvset.get (kv)
return entry.value if entry is not None else None
Notice that the appropriate KV pair is found by constructing a KV pair with a
value of None. Since equality of KV items is determined by keys only, the value



276 Maps

is unimportant (and cannot be predicted; that’s what we’re looking for!). The
result is the actual mapping we need. The get method performs a similar op-
eration, but has an optional second parameter which is the value to return is
there was no matching key-value pair in the set.

Deletion of the an association is determined by the appropriate key. The
__delitem__ method removes the pair from the underlying set.

@mutatormethod
def __delitem__(self,key):
"""Remove key-value pair associated with key from Dictionary."""
self._kvset.remove (KV(key,None))
Notice that we use remove that, unlike set’s discard method, will raise an ex-
ception if the item is not found. This is the behavior we desire in the MutableMapping
method. The pop method works similarly, but returns the value associated with
the key removed.

A number of other straightforward methods are required to meet the spec-
ification of a MutableMapping. The clear method removes all the key-value
associations. The easiest approach is to clear the underlying set.

def clear(self):
"""Remove all contents of Dictionary."""
self._kvset.clear()

As with the set and list implementations, a popitem method is provided that
allows us to pick an arbitrary mapping element to remove and return. In most
implementations, the pair returned by popitem is simply the first one that would
be encountered in a traversal of the mapping.

Gmutatormethod
def popitem(self):
"""Remove and return some key-value pair as a tuple.
If Dictionary is empty, raise a KeyError."""
if len(self) == O: 5
raise KeyError("popitem(): dictionary is empty")
item = next(iter(self.items()))
(key,value) = item
self._kvset.remove (KV(key,None))
return item
Because MutableMappings store key-value pairs, the value returned is an arbi-
trary pair formed into a (key,value) 2-tuple.

Views are objects that allow one to iterate (often multiple times) across a
subordinate target structure. When changes are made to the target, they are
immediately reflected in the view. Every view supports __len__ (it’s Sized),
__contains__ (it'’s a Container), and __iter__ (it's Iterable). All Mapping
types provide three methods that construct views of the underlying structure:
items, which returns a view of key-value tuples, keys, which returns a view of
the keys in the structure, and values, which returns a view of all the values
that appear in the structure. In the symbol map example, we saw how the keys
method could be used to generate a list of valid keys to the map. The Mapping
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class provides generic implementations of each of the methods items, keys, and
values similar to the following:
def items(self):
"""View over all tuples of key-value pairs in Dictiomary."""
return ItemsView(self)

def keys(self): 5
"""View over all keys in Dictionary."""
return KeysView(self)

def values(self):

"""View over all values in Dictionary."""

return ValuesView(self)
Each type of view has a corresponding abstract base class that provides generic
implementation of the appropriate functionality. These classes—ItemsView,
KeysView, and ValuesView—are found in the collections package. Views
don’t typically have internal state (other than a reference to the target struc-
ture), but the right circumstance (for example, when the target structure is
frozen) they provide an opportunity for efficiently caching read-only views of
structures when on-the-fly traversals with iterators are computationally costly.

An important benefit of the use of the HashSet class is the ability of this
set implementation to gracefully grow as the number of entries in the mapping
increases. Since most uses of mapping will actually use a surprisingly small
number of key-value pairs, we initially set the capacity (the number of buckets
in the HashSet) to be relatively small. As the number of mapping entries in-
creases, this capacity increases as well. It is, then, relatively unimportant that
we estimate the capacity of the Mapping very accurately.

However, if we were to depend on a ChainSet, whose capacity determines
the fixed number of buckets to be used during the life of the structure, the
performance will degrade quickly if the capacity was underestimated. This is
because the performance of the structures is largely determined by the structure
that manages the multiple entries found in each bucket.

14.2 Tables: Sorted Mappings

One of the costs of having near-constant time access to key-value pairs using
hashing is the loss of order. If the keys can be ordered, it is natural to want to
have the key-value pairs stored in sorted order. In the structure package we call
sorted mappings, tables. The implementation of table structures is not logically
much different than the implementation of dictionaries, we simply keep our KV
pairs in a Sorted structure. Because of its (expected) speed, the SplayTree is a
natural target for such an implementation, thought any Sorted structure would
work.

Internally, the Table collect the KV pairs in the _sorted attribute. Since the
table is a container, it is necessary to implement the __container__ method,

Add figure
with
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which simply passes on a request for a KV with an unspecified value:
def __contains__(self,key):
"""key is in table."""
kv = KV(key,None)
return kv in self._sorted
This method has expected logarithmic behavior since the SplayTree has that
characteristic.

Most of the other methods, like __getitem__ parallel their Dictionary
counterparts. The downside, of course, is that the performance of Table meth-
ods is driven, primarily, by the performance of SplayTree equivalents. For ex-
ample, to check to see if a key is in a table, we must perform a logarithmic
(expected) search. To update a value in the table, a search is first performed,
taking logarithmic time. Whether or not this is successful, the update takes
constant time: the splay tree has reoririented itself to be particularly fast for
operations related to the last search. So, while there are many operations that
are logarithmic, the price is usually paid once, no matter the complexity of the
type of access performed.

14.3 Combined Mappings

We often think of mappings as static implementations of deterministic functions.
Seen in this light, there are a number of useful ways we can combine mappings.

First is an idea that naturally appears in the support of scoping for variables
in languages like Python: ChainMaps in the collections package. A ChainMap
is a container and a mapping whose elements are, themselves, mappings. When
you look up a key, each subordinate mapping is searched, in turn, until an
associated value is found and returned. When new associations are established,
they are always written to the first mapping in the container. This structure is
motivated by the need to construct a combined dictionary of visible variables
from within Python.

The next idea is function composition.

14.4 Conclusions
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RELATIONS ARE OFTEN AS USEFUL AS DATA. The process of building and ac-
cessing a data structure can be thought of as a means of effectively focusing the
computation. Linear structures record the history of their accesses, sorted struc-
tures perform incremental ordering, and binary trees encode decisions about the
partitioning of collections of data.

The most general mechanism for encoding relations between data is the
graph. Simple structures, like arrays, provide implicit connections, such as ad-
jacency, between stored values. Graphs are more demanding to construct but,
as a result, they can encode more detailed information. Indeed, the versatility of
graphs allows them to represent many of the most difficult theoretical problems
of computer science.

This chapter investigates two traditional implementations of graphs, as well
as several standard algorithms for analyzing their structure. We first agree on
some basic terminology.

15.1 Terminology

A graph G consists of a collection of vertices v € Vg and relations or edges
(u,v) € Eg between them (see Figure 15.1). An edge is incident to (or mentions)
each of its two component vertices. A graph is undirected if each of its edges
is considered a set of two unordered vertices, and directed if the mentioned
vertices are ordered (e.g., referred to as the source and destination). A graph S
is a subgraph of G if and only if Vg C Vi and Es C Eg. Simple examples of
graphs include the list and the tree.

In an undirected graph, the number of edges (u,v) incident to a vertex u
is its degree. In a directed graph, the outgoing edges determine its out-degree
(or just degree) and incoming edges its in-degree. A source is a vertex with no
incoming edges, while a sink is a vertex with no outgoing edges.

Two edges (u,v) and (v, w) are said to be adjacent. A path is a sequence
of n distinct, adjacent edges (vg,v1), (v1,v2),..., (Vn—1,v,). In a simple path
the vertices are distinct, except for, perhaps, the end points vy and v,,. When
Vg = vy, the simple path is a cycle.

Two vertices u and v are connected (written u ~» v) if and only if a simple
path of the graph mentions u and v as its end points. A subgraph S is a connected
component (ot, often, just a component) if and only if S is a largest subgraph of
G such that for every pair of vertices u,v € Vg either u ~ v or v ~» u. A

Components are
always
connected.
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N

Figure 15.1 Some graphs. Each node a is adjacent to node b, but never to d. Graph
G has two components, one of which is S. The directed tree-shaped graph is a directed,
acyclic graph. Only the top left graph is complete.

connected component of a directed graph G is strongly connected if u ~» v and
v ~» u for all pairs of vertices u,v € V.

A graph containing no cycles is acyclic. A directed, acyclic graph (DAG) plays
an important role in solving many problems. A complete graph G contains an
edge (u,v) for all vertices u,v € Vg.

15.2 The Graph Interface

Vertices of a graph are usually labeled with application-specific information. As
a result, our implementations of a graph structure depend on the user specifying
unique labels for vertices. In addition, edges may be labeled, but not necessarily
uniquely. It is common, for example, to specify weights or lengths for edges. All
the graph implementations allow addition and removal of vertices and edges:

@checkdoc

class Graph(Sized,Freezable,Iterable):

slots = ["_frozen", "_hash", "_directed"]

def __init__(self, directed): 5
"""Create unfrozen graph."""

Q@property
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def frozen(self):
"""Graph is frozen.""" 10

def freeze(self):
"""Freeze graph to prevent adding and removing vertices and edges and
to allow hashing."""

15
Q@abc.abstractmethod
def add(self, label):
"""Add vertex with label label to graph."""
@abc.abstractmethod 20

def add_edge(self, here, there, edge_label):

"""Add edge from here to there with its own label edge_label to graph."""
@abc.abstractmethod
def remove(self, label):

"""Remove vertex with label label from graph.""" 25

@abc.abstractmethod
def remove_edge(self, here, there):
"""Remove edge from here to there."""
Q@abc.abstractmethod 30
def get(self, label):
"""Return actual label of indicated vertex.
Return None if no vertex with label label is in graph."""

@abc.abstractmethod 35
def get_edge(self, here, there):
"""Return actual edge from here to there."""

@abc.abstractmethod
def __contains__(self, label): 40
"""Graph contains vertex with label label."""

Q@abc.abstractmethod

def contains_edge(self, here, there):
"""Graph contains edge from vertex with label here to vertex with
label there."""

Q@abc.abstractmethod

def visit(self, label):
"""Set visited flag on vertex with label label and return previous
Value . nun

@abc.abstractmethod
def visit_edge(self, edge):
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"""Set visited flag on edge and return previous value."""

Q@abc.abstractmethod
def visited(self, label):
"""Vertex with label label has been visited."""

60
Q@abc.abstractmethod
def visited_edge(self, edge):
"""edge has been visited."""
Qabc.abstractmethod 65

def reset(self):
"""Set all visited flags to false."""

Q@abc.abstractmethod
def __len__(self): 70

"""The number of vertices in graph."""

Q@abc.abstractmethod
def degree(self, label):
"""The number of vertices adjacent to vertex with label label."""

Q@abc.abstractproperty
def edge_count(self):
"""The number of edges in graph."""

80
@abc.abstractmethod
def __iter__(self):
"""Iterator across all vertices of graph."""
@abc.abstractmethod 85

def vertices(self):
"""View of all vertices in graph."""

Q@abc.abstractmethod

def neighbors(self, label): 90
"""View of all vertices adjacent to vertex with label label.
Must be edge from label to other vertex."""

Q@abc.abstractmethod
def edges(self): 95
"""View across all edges of graph."""
@abc.abstractmethod
def clear(self):
"""Remove all vertices from graph."""
100
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@property

def empty(self):
"""Graph contains no vertices."""

O@property

def directed(self): 105
"""Graph is directed."""

Q@abc.abstractmethod
def __hash__(self):

"""Hash value for graph.""" 110
def __eq__(self, other):

"""self has same number of vertices and edges as other and all
vertices and edges of self are equivalent to those of other."""

Because edges can be fully identified by their constituent vertices, edge opera-
tions sometimes require pairs of vertex labels. Since it is useful to implement
both directed and undirected graphs, we can determine the type of a specific
graph using the directed method. In undirected graphs, the addition of an
edge effectively adds a directed edge in both directions. Many algorithms keep
track of their progress by visiting vertices and edges. This is so common that it
seems useful to provide direct support for adding (visit), checking (visited),
and removing (reset) marks on vertices and edges.

Two iterators—generated by __iter__ and edges—traverse the vertices and
edges of a graph, respectively. A special iterator—generated by neighbors—
traverses the vertices adjacent to a given vertex. From this information, out-
bound edges can be determined.

Before we discuss particular implementations of graphs, we consider the
abstraction of vertices and edges. From the user’s point of view a vertex is a
label. Abstractly, an edge is an association of two vertices and an edge label. In
addition, we must keep track of objects that have been visited. These features
of vertices and edges are independent of the implementation of graphs; thus we
commit to an interface for these objects early. Let’s consider the _Vertex class.

@checkdoc
class _Vertex(object):

"""An abstract base class for _MatrixVertex and _ListVertex."""
5
__slots__ = ["_label", "_visited", "_hash"]

def __init__(self, label):
"""Create unvisited _Vertex."""
self._label = label 10
self._visited = False
self._hash = None

Q@property
def label(self): 15



284 Graphs

"""The label of this _Vertex."""
return self._label

def visit(self):
"""Set visited flag true and return its previous value."""
old_visited = self.visited
self._visited = True
return old_visited

def reset(self): 25
"""Set visited flag false."""
self._visited = False

Q@property

def visited(self): 30
"""This _Vertex has been visited."""
return self._visited

def __eq__(self, other):
"""Label is equivalent to label of other.""" 35
if not isinstance(other, _Vertex):
return False
return self.label == other.label

def __str__(self): 40
"""String representation of the _Vertex."""
return repr(self)

def __hash__(self):
"""Hash value for _Vertex.""" 45
if self._hash is None:
try:
self._hash = hash(self.label)
except TypeError as y:
raise y
return self._hash
This class is similar to a KV pair: the label portion of the _Vertex cannot be
modified, but the visited flag can be freely set and reset. Two _Vertex objects
are considered equal if their labels are equal. It is a bare-bones interface. It
should also be noted that the _Vertex is a nonpublic class (thus the leading
underscore). Since a _Vertex is not visible through the Graph interface, there
is no reason for the user to have access to the _Vertex class.
Because the Edge class is a visible feature of a Graph interface (you might
ask why—see Problem ??), the Edge class is a visible declaration:
@checkdoc
class Edge(object):



15.2 The Graph Interface 285

"""An edge used by Graph classes to join two vertices."""
5
slots = ["_here", "_there", "_label", "_directed", "_visited", "_frozen", "_hash"]

def __init__(self, here, there, label=None, directed=False):
"""Create unvisited, unfrozen Edge."""
self._here = here 10
self._there = there
self._label = label
self._directed = directed
self._visited = False
self._frozen = False 15
self._hash = None

Q@property
def frozen(self):
"""Edge is frozen.""" 20

return self._frozen

def freeze(self):
nn |lFreeze Edge . nnn
self._frozen = True 25

Q@property
def here(self):
"""Starting vertex."""
return self._here 30

O@property
def there(self):
nn IlEnding VerteX . nnn
return self._there 35

Q@property
def label(self):
"""The label of this Edge."""
return self._label 40

Q@label.setter

Omutatormethod
def label(self, value):
"""Set label to value.""" 45

self._label = value

def visit(self):
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"""Set visited flag true and return its previous value."""
old_visited = self.visited 50
self._visited = True

return old_visited

@property
def visited(self): 55
"""This Edge has been visited."""

return self._visited

Q@property
def directed(self): 60
"""This Edge is directed."""

return self._directed

def reset(self):
"""Set visited flag false.""" 65
self._visited = False

def __eq__(self, other):
"""Other is an Edge and self starts and finishes at the same two
vertices as other (in the same order, if self is directed)."""
if not isinstance(other, Edge):
return False
# for any edge, if here and there match, edges are equal
if (self.here == other.here) and (self.there == other.there):
return True 75
# undirected edges could have here and there in opposite order
if not self.directed:
if (self.here == other.there) and (self.there == other.here):
return True
# no other way for edges to be equal 80
return False

@hashmethod
def __hash__(self):
"""Hash value for Edge.""" 85

if self._hash is None:
try:
self._hash = hash(self.here) + hash(self.there) + hash(self.label)
except TypeError as y:
return y 90
return self._hash

def __repr__(self):
"""Parsable string representation for Edge."""
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string = "Edge(" + repr(self.here) 95
string = string + "," + repr(self.there)
if self.label:
string = string + "," + repr(self.label)
if self.directed:
string = string + ",directed=True" 100

string = string + ")"

return string
As with the _Vertex class, the Edge can be constructed, visited, and reset. Un-
like its _Vertex counterparts, an Edge’s label may be changed. The methods
here and there provide access to labels of the vertices mentioned by the edge.
These method names are sufficiently ambiguous to be easily used with undi-
rected edges and convey a slight impression of direction for directed edges.
Naming of these methods is important because they are used by those who wish
to get vertex information while traversing a (potentially directed) graph.

15.3 Implementations

Now that we have a good feeling for the graph interface, we consider traditional
implementations. Nearly every implementation of a graph has characteristics
of one of these two approaches. Our approach to specifying these implemen-
tations, however, will be dramatically impacted by the availability of object-
oriented features. We first remind ourselves of the importance of abstract base
classes in Python and as a feature of our design philosophy.

15.3.1 Abstract Classes Reemphasized

Normally, when a class is declared, code for each of the methods must be pro-
vided. Then, when an instance of the class is constructed, each of the methods
can be applied to the resulting object. As is common with our design approach,
however, it is useful to partially implement a class and later finish the imple-
mentation by extending the class in a particular direction. The partial base class
is abstract; it cannot be directly constructed because some of the methods are
not completely defined. The extension to the class inherits the methods that
have been defined and specifies any incomplete code to make the class concrete.

Again, we use an abstract base class to enforce a common interface in our
various graph implementations. Our approach will be to provide all the code
that can be written without considering the particular graph implementation.
For example, whether or not a graph is directed is a property that is native to
all implementations, and is directly supported by concrete code:

slots = ["_frozen", "_hash", "_directed"]

def __init__(self, directed):
"""Create unfrozen graph."""
self._hash = None 5

As “traditional”
as this science

gets, anyway!
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self._frozen = False
self._directed = directed
@property
def directed(self):
"""Graph is directed."""
return self._directed
When we must write code that is dependent on particular design decisions, we
delay it by decorating an abstract header for the particular method. For exam-
ple, we will need to add edges to our graph, but the implementation depends
on whether or not the graph is directed. Looking ahead, here is what the decla-
ration for add_edge looks like in the abstract Graph class:
@abc.abstractmethod
def add_edge(self, here, there, edge_label):
"""Add edge from here to there with its own label edge_label to graph."""

That’s it! It is simply a promise that code will eventually be written.

Once the abstract class is described as fully as possible, we implement (and
possibly extend) it, in various ways, committing in each case, to a particular ap-
proach of storing vertices and edges. Because we declare the class GraphMatrix
to be an extension of the Graph class, all the code written for the abstract Graph
class is inherited; it is as though it had been written for the GraphMatrix class.
By providing the missing pieces of code (tailored for our matrix implementa-
tion graphs), the extension class becomes concrete. We can actually construct
instances of the GraphMatrix class.

A related concept, subtyping, allows us to use any extension of a class wher-
ever the extended class could be used. We call the class that was extended the
base type or superclass, and the extension the subtype or subclass. Use of subtyp-
ing allows us to write code thinking of an object as a Graph and not necessarily
a GraphList. Because GraphMatrix is an extension of Graph, it is a Graph.
Even though we cannot construct a Graph, we can correctly manipulate con-
crete subtypes using the methods described in the abstract class. In particular,
a call to the method add_edge calls the method of GraphMatrix because each
object carries information that will allow it to call the correct implementation.

In parallel, we develop an abstract base class for private _Vertex implemen-
tations which, in each graph implementation, is made concrete by a dedicated
extension to a hidden, specific vertex class.

We now return to our normally scheduled implementations!

15.3.2 Adjacency Matrices

An n x n matrix of booleans is sufficient to represent an arbitrary graph of
relations among n vertices. We simply store True in the boolean at matrix lo-
cation [u][v] to represent the fact that there is an edge between u and v (see
Figure 15.2), and False otherwise. Since entries [u][v] and [v][u] are indepen-
Beware: Edges dent, the representation is sufficient to describe directed graphs as well. Our

on the diagonal convention is that the first index (the row) specifies the source and the second
appear exactly
once.
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(a) (b)

Figure 15.2 (a) An undirected graph and (b) its adjacency matrix representation. Each
nontrivial edge is represented twice across the diagonal—once in the gray and once in
the white—making the matrix symmetric.

Destination

0 0 2 3 4

4 O o/T|T|EF|F|T

g U|F|F|T|[F|F

3 2 2|F|F|F|T|F

? 3lr|F|F|F|F
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(a) (b

Figure 15.3 (a) A directed graph and (b) its adjacency matrix representation. Each
edge appears exactly once in the matrix.

index (the column) indicates the destination. To represent undirected graphs,
we simply duplicate the entry [u][v] at entry [v][u].! This is called an adja-
cency matrix representation of a graph. The undirected and directed graphs of
Figures 15.2a and 15.3a, respectively, are represented by the matrices of Fig-
ures 15.2b and 15.3b.

One difficult feature of our implementation is the arbitrary labeling of ver-
tices and edges. To facilitate this, we maintain a mapping that translates a
vertex label to a _Vertex object. To help each vertex keep track of its associated
index we extend the _Vertex class to a _ListVertex that includes methods that

L If the vertices are totally ordered—say we can determine that v < v—then we can reduce the
cost of representing edges by a factor of two by storing information about equivalent edges (u, v)
and (v, u) with a boolean at [u][v].
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manipulate an _index field. Each index is a small integer that identifies the
dedicated matrix row and column that maintains adjacency information about
each vertex. To help allocate the indices, we keep a free list (a set) of available
indices.

One feature of our implementation has the potential to catch the unwary
programmer by surprise. Because we use a mapping to organize vertex labels, it
is important that the vertex label class implement the __hash__ function in such
a way as to guarantee that if two labels are equal (using the __eq__ method),
they have the same hash code.

We can now consider the protected data and initializer for the GraphMatrix
class:

@checkdoc
class GraphMatrix(Graph) :

__slots__ = ["_size", "_capacity", "_edge_count", "_matrix",

GraphMatrix " vertex dict" " free"] 5

def __init__(self, vertices=None, edges=None, directed=False):
"""Construct a GraphMatrix from an iterable source. Specify if the graph is direct
super () .__init__(directed)
# current number of vertices in graph 10
self._size = 0
# maximum number of vertices ever in graph
self._capacity = 0
# current number of edges in graph
self._edge_count = 0 15
# _matrix is list of lists indicating which vertices are adjacent to which others
self._matrix = []
# _vertex_dict maps vertex label:vertex object
self._vertex_dict = {}
# _free lists free indices 20
self._free = set()
if vertices:
for vertex in vertices:
self.add(vertex)
if edges: 25
for edge in edges:
if len(edge) ==
self.add_edge(edge[0], edgel1])
elif len(edge) ==
self.add_edge(edge[0], edgel1l], edgel2]) 30
else:
raise KeyError("Incorrect parameters for initializing edge.")
The initializer first calls the initializer from the Graph class to initialize that part
of the Graph class that is concrete (for example, the _directed property). This
is important; failing to perform this initialization at the start will leave the graph
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in an inconsistent state.

By default, these Graph instances are undirected. By specifying the directed
keyword, one can change this behavior for the life of the graph. The graph can
also be seeded with an initial set of vertices and/or edges.

The add method adds a vertex. If the vertex already exists, the operation
does nothing. If it is new to the graph, an index is allocated from the free list,
a new _MatrixVertex object is constructed, and the label-vertex association is
recorded in the _matrix map. The newly added vertex mentions no edges,
initially.

Gmutatormethod
def add(self, label):
"""Add vertex with label label to graph."""
if label not in self:
# index is last available space in _free 5
# if _free is empty, index is len(self)
if len(self._free) != 0:
index = self._free.pop()
else:
index = len(self) 10
# grow matrix: add row, column
self._capacity = self._capacity + 1
for there in self._matrix:
there. append (None)
self._matrix.append([None] * self._capacity) 15
# increasing current size
self._size = self._size + 1
# create _Vertex object
vertex = _MatrixVertex(label, index)
# add vertex to _vertex_dict
self._vertex_dict[label] = vertex
An important part of making the matrix space efficient is to keep a list of matrix
indices (_free) that are not currently in use. When all indices are in use and a
new vertex is added, the matrix is extended by adding a new row and column.
The new index immediately used to support the vertex entry.

Removing a vertex reverses the add process. We must, however, be sure to
set each element of the vertex’s matrix row and column to None, removing any
mentioned edges (we may wish to add a new, isolated vertex with this index in
the future). When we remove the vertex from the _matrix map and we “recy-
cle” its index by adding it to the list of free indices. As with all of our remove
methods, we return the previous value of the label. (Even though the labels
match using __eq__, it is likely that they are not precisely the same. Once re-
turned, the user can extract any unknown information from the previous label
before the value is collected as garbage.)

@mutatormethod
def remove(self, label):
"""Remove vertex with label label from graph."""

GraphMatrix
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if label in self:
# get the vertex object and ask for its index 5
index = self._vertex_dict[label].index
# set all entries in row index of _matrix to None
# can’t travel from here to any other vertex
# count number of edges being removed and adjust current_edges accordingly
count = 0 10
for i in range(len(self._matrix[index])):
if self._matrix[index] [i]:
count = count + 1
self. _matrix[index] [i] = None
self._edge_count = self._edge_count - count 15
# set all entries in column index of each _matrix row to None
# can’t travel from any other vertex to here
count = 0
for there in self._matrix:
if there[index]: 20
count = count + 1
there[index] = None
# in directed graph, these edges were counted separately
# so need to subtract them from current_edges
if self.directed: 25
self._edge_count = self._edge_count - count
# current size is decreasing
self._size = self._size - 1
# add index to _free
self._free.add(index) 30
# remove vertex from _vertex_dict
del self._vertex_dict[label]

Within the graph we store references to Edge objects. Each Edge records all
of the information necessary to position it within the graph, including whether it
is directed or not. This allows the equals method to work on undirected edges,
even if the vertices were provided in the opposite order (see Problem ??). To
add an edge to the graph, we require two vertex labels and an edge label. The
vertex labels uniquely identify the vertices within the graph, and the edge label
(which may be None). This Edge reference (which is, effectively, True) is the
value inserted within the matrix at the appropriate row and column. To add the
edge, we construct a new Edge with the appropriate information. This object
is written to appropriate matrix entries: undirected graphs update one or two
locations; directed graphs update just one. Here is the add_edge method:

@mutatormethod
def add_edge(self, here, there, edge_label=None):
"""Add edge from here to there with its own label edge_label to graph."""
if not here in self:
self.add (here) 5
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if not there in self:
self.add(there)
# get vertices from _vertex_dict to have access to their exact labels
here_vertex = self._vertex_dict[here]
there_vertex = self._vertex_dict[there] 10
# create edge
new = Edge(here_vertex.label, there_vertex.label, edge_label, directed=self.directed)
# increment edge count if this is a new edge
if not self.contains_edge (here, there):
self._edge_count = self._edge_count + 1 15
# put new into _matrix[here_vertex.index] [there_vertex.index]
self._matrix[here_vertex.index] [there_vertex.index] = new
# if undirected, also put new into _matrix[there_vertex.index][here_vertex.index]
if not self._directed:
self._matrix[there_vertex.index] [here_vertex.index] = new
One might wonder if the performance of the implementation might be improved
by extending a single GraphMatrix class in two directions: one for directed
graphs and another for undirected graphs. The differences are quite minor.
While the two different subtypes allow us to write specialized code without
performing explicit run-time tests, these tests are replaced by less obvious de-
creases in performance due to subtyping. Still, the logical complexity of code
sometimes can be dramatically reduced through class extension.
The remove_edge method removes and returns the label associated with the
Edge found between two vertices.
Gmutatormethod
def remove_edge(self, here, there):
"""Remove edge from here to there."""
if self.contains_edge(here, there):
here_vertex = self._vertex_dict[here] 5
there_vertex = self._vertex_dict[there]
old_edge = self._matrix[here_vertex.index] [there_vertex.index]
self._matrix[here_vertex.index] [there_vertex.index] = None
if not self._directed:
self._matrix[there_vertex.index] [here_vertex.index] = None
self._edge_count = self._edge_count - 1
return old_edge.label

The get, get_edge, __contains__, and contains_edge methods return in-
formation about the graph in an obvious way. Modifying the objects returned
by these methods can be dangerous: they have the potential of invalidating the
state of the underlying graph implementation.

def get(self, label):
"""Return actual label of indicated vertex.

P —

Return None if no vertex with label label is in graph."""
if label in self:

return self._vertex_dict[label] 5
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return None

def get_edge(self, here, there):
"""Return actual edge from here to there."""
if self.contains_edge(here, there): 10
here_vertex = self._vertex_dict[here]
there_vertex = self._vertex_dict[there]
return self._matrix[here_vertex.index] [there_vertex.index]

def __contains__(self, label): 15
"""Graph contains vertex with label label."""
return label in self._vertex_dict

def contains_edge(self, here, there):
"""Graph contains edge from vertex with label here to vertex with label there."""
if here in self and there in self:
here_vertex = self._vertex_dict[here]
there_vertex = self._vertex_dict[there]
return self._matrix[here_vertex.index] [there_vertex.index] is not None
# if here and there aren’t valid vertices, no edge between them
return False

Each of the visit-type methods passes on requests to the underlying ob-
ject. For example, the visit method simply refers the request to the associated
Vertex:
def visit(self, label):
"""Set visited flag on vertex with label label and return previous value."""
if label in self:
vertex = self._vertex_dict[label]

GraphMatrix return vertex.visit()

The process of resetting the visitation marks on a graph traverses each of the
vertices and edges, resetting them along the way.
But I reiterate Let’s now consider the implementation of each of the three traversals. Each
myself.  of these, as with the mapping classes, returns a view on the graph. The first,
generated by vertices, allows one to traverse the vertex labels. To do that,
we implement VerticesView, a view that traverses the labels returned by the
graph iterator. For the GraphMatrix, this __iter__ simply returns values en-
countered in the underlying vertex dictionary:
def __iter__(self):
"""Tterator across all vertices of graph."""
for vertex in self._vertex_dict.keys():
yield vertex

The neighbors method returns a NeighborsViewMatrix, which traverses
the edges adjacent to a single vertex, considers only the outgoing edges. We
look up the index associated with the specified vertex label and scan across the
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matrix row yielding all vertices that appear opposite the queried vertex:
class NeighborsViewMatrix(Iterable):

"""A view of the neighbors of a specific vertex.
Returned by the neighbors method of a GraphMatrix."""

5
__slots__ = ["_target", "_label"]
def __init__(self, target, label):
self._target = target
self._label = label 10

def __iter__(self):
g = self._target
if self._label in g:
# the _Vertex object with label label 15
vertex = g._vertex_dict[self._label]
row = g._matrix[vertex.index]
for edge in [e for e in row if e is not Nome]:
if edge.here != self._label:
yield edge.here 20
else:
yield edge.there

def __len__(self):

return self._target.degree(self._label)

All that remains is to construct an iterator over the edges of the graph. In
this code we see a good example of the use of views: a single view is con-
structed of all the values found in the vertex dictionary. This view is traversed
by two iterators in a nested loop, so it is important that these iterators act in-
dependently. This approach ensures that we only consider those parts of the
matrix that are actively used to support the connectivity of the graph. From
these entries, we return those that are not None; these are edges of the graph.
For directed graphs, we return every Edge encountered. For undirected graphs,
we return only those edges that are found in the upper triangle of the matrix
(where the column index is at least as large as the row index).

@checkdoc

class EdgesViewMatrix(Iterable):
"""A view of all the edges of a GraphMatrix.
Returned by the edges method of a GraphMatrix."""

__slots__ = ["_target"]

def __init__(self, target):
self._target = target
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10
def __iter__(self):
verts = self._target._vertex_dict.values()
for here in verts:
row = self._target._matrix[here.index]
for there in verts: 15

if self._target.directed or (there.index >= here.index):
this_edge = row[there.index]
if this_edge:
yield this_edge
20
def __len__(self):

return self._target.edge_count

The great advantage of the adjacency matrix representation is its simplicity.
The access to a particular edge in a graph of size n can be accomplished in con-
stant time. Other operations, like remove, appear to be more complex, taking
O(n) time. The disadvantage is that the implementation may vastly overesti-
mate the storage required for edges. While we have room for storing O(n?)
directed edges, some graphs may only need to make use of O(n) edges. Graphs
with superlinear numbers of edges are called dense; all other graphs are sparse.
When graphs are sparse, most of the elements of the adjacency matrix are not
used, leading to a significant waste of space (and, for some traversals, time).
Our next implementation is particularly suited for representing sparse graphs.

15.3.3 Adjacency Lists

Recalling the many positive features of a linked list over a fixed-size array, we
now consider the use of an adjacency list. As with the adjacency matrix repre-
sentation, we maintain a Map for identifying the relationship between a vertex
label and the associated Vertex object. Within the vertex, however, we store a
collection (usually a linked list) of edges that mention this vertex. Figures 15.4
and 15.5 demonstrate the adjacency list representations of undirected and di-
rected graphs. The great advantage of using a collection is that it stores only
edges that appear as part of the graph.

As with the adjacency matrix implementation, we construct a privately used
extension to the _Vertex class, _ListVertex. In this extension we reference a
collection of edges that are incident to this vertex. In directed graphs, we collect
edges that mention the associated vertex as the source. In undirected graphs
any edge incident to the vertex is collected. Because the edges are stored within
the vertices, most of the actual implementation of graphs appears within the
implementation of the extended vertex class. We see most of the implementa-
tion here:

@checkdoc
class _ListVertex(_Vertex):

"""Private vertex class used in GraphList."""

GraphListVertex
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__slots__ = ["_adjacencies"]

def __init__(self, label):
"""Create a vertex with no adjacencies."""
super () .__init__(label)
# store edges adjacent to this vertex
# in directed graphs, store edges with this vertex as here (edges from this vertex)

self._adjacencies = 1

def add_edge(self, edge):
"""Add edge object to adjacencies list."""
if not self.contains_edge(edge): 15
self._adjacencies.append (edge)

def remove_edge(self, edge):
"""Remove and return edge from adjacencies equal to edge."""
# graph knows if it is directed or undirected and passes information to edge
# then edge __eq__() method handles equals accordingly
return_val = None
for adj_edge in self._adjacencies:
if adj_edge == edge:
return_val = adj_edge 25
break
if return_val:
self._adjacencies.remove(return_val)
return return_val
30
def contains_edge(self, edge):
"""edge is adjacent to this vertex."""

return edge in self._adjacencies

def get_edge(self, edge): 35
"""Return edge from adjacencies equal to edge."""
for adj_edge in self._adjacencies:
if adj_edge == edge:
return adj_edge
40
Q@property
def degree(self):
"""Number of edges adjacent to this vertex."""
return len(self._adjacencies)
45
def adjacent_vertices(self):
"""Iterator over adjacent vertices."""
# each edge in adjacencies either has this vertex as here or there
# and a unique adjacent vertex as the other
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Figure 15.4 (a) An undirected graph and (b) its adjacency list representation. Each
edge is represented twice in the structure. (Compare with Figure 15.2.)
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Figure 15.5 (a) A directed graph and (b) its adjacency list representation. Each edge
appears once in the source list. (Compare with Figure 15.3.)

for edge in self._adjacencies: 50
if edge.here != self.label:
yield edge.here
else:
yield edge.there
The constructor initializes the concrete attributes of _Vertex, and then con-
structs an empty adjacency list. Elements of this list will be Edge objects. Most
of the other methods have obvious behavior.

The only difficult method is get_edge. This method returns an edge from
the adjacency list that is logically equivalent (i.e., is determined to be equal
through a call to Edge’s __eq__ method) the edge provided. In an undirected
graph the order of the vertex labels may not correspond to the order found
in edges in the edge list. As a result, get_edge returns a canonical edge that
represents the edge specified as the parameter. This ensures that there are not
multiple instances of edges that keep track of shared information.

We are now ready to implement most of the methods required by the Graph
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interface. First, we consider the protected GraphList initializer:
Qcheckdoc
class GraphList(Graph):

__slots__ = ["_vertex_dict"]
5
def __init__(self, vertices=None, edges=None, directed=False):
"""Construct a GraphList from an iterable source. Specify if the graph is directed."""
super () .__init__(directed)
self._vertex_dict = {}
if vertices: 10
for vertex in vertices:
self.add(vertex)
if edges:
for edge in edges:
if len(edge) == 2: 15
self.add_edge(edge[0], edgel[1])
elif len(edge) ==
self.add_edge(edge[0], edgel[1], edgel[2])
else:
raise KeyError("Incorrect parameters for initializing edge.")

Our approach to extending the abstract GraphList type to support directed and
undirected graphs is similar to that described in the adjacency matrix imple-
mentation.
Adding a vertex (if it is not already there) involves simply adding it to the
underlying mapping.
@mutatormethod
def add(self, label):
"""Add vertex with label label to graph."""
if label not in self:
vertex = _ListVertex(label)
self._vertex_dict[label] = vertex

To remove a vertex, we have to work a little harder. Because the node
may be mentioned by edges, it is important that we identify and remove those
edges before the vertex is removed from the vertex dictionary. This is a two
step process. First, we know that all edges that appear in the adjacency list
associated with the node, itself, must be removed. This is easily accomplished
by simply clearing the list. The second step involves a traversal of all of the
other adjacency lists to find edge where either the source (here) or destination
(there) is the label of the node we are removing. A subtle aspect of this process
is the capturing of the adjacency list before edges are removed; remember that
modifying a structure while it is being traversed can lead to unpredicatable
results.

To add an edge to the graph we insert a reference to the Edge object in the
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appropriate adjacency lists. For a directed graph, we insert the edge in the list
associated with the source vertex. For an undirected graph, a reference to the
edge must be inserted into both lists. It is important, of course, that a reference
to a single edge be inserted in both lists so that changes to the edge are main-
tained consistently.
@mutatormethod
def add_edge(self, here, there, edge_label=None):
"""Add edge from here to there with its own label edge_label to graph."""
self.add (here)
self.add(there) 5
# get vertices from _vertex_dict
here_vertex = self._vertex_dict [here]
there_vertex = self._vertex_dict[there]
# create edge
new = Edge(here_vertex.label, there_vertex.label, edge_label, directed=self.directed)
# tell here vertex that this edge is adjacent
here_vertex.add_edge (new)
# in undirected graph, this edge is also adjacent to there
if not self.directed:
there_vertex.add_edge (new)

Removing an edge is simply a matter of removing it from the source and (if
the graph is undirected) the destination vertex adjacency lists.
@mutatormethod
def remove_edge(self, here, there):
"""Remove edge from here to there."""
if self.contains_edge(here, there):
here_vertex = self._vertex_dict [here] 5
there_vertex = self._vertex_dict[there]
# create edge object that will be equal to the edge we want to remove from each ver
edge = Edge(here_vertex.label, there_vertex.label, directed=self.directed)
old_edge = here_vertex.remove_edge(edge)
# in directed graph, this step will do nothing: 10
if not self.directed:
there_vertex.remove_edge (edge)
return old_edge.label
else:
return None
Notice that to remove an edge a “pattern” edge must be constructed to identify
(through __eq__) the target of the remove.

Many of the remaining edge and vertex methods have been greatly simpli-
fied by our having extended the Vertex class. Here, for example, is the degree
method:

def degree(self, label):
"""The number of vertices adjacent to vertex with label label."""
if label in self:
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return self._vertex_dict[label].degree

This code calls the _ListVertex degree method. That, in turn, returns the
length of the underlying adjacency list. Most of the remaining methods are
simply implemented.

At this point, it is useful to discuss the implementation of iterators for the
adjacency list representation. Like the adjacency matrix implementation, the
__iter__ method simply returns the iterator for the underlying mapping (recall
that an iterator across a mapping returns the list of valid keys). Each of the
values returned by the iterator is a vertex label, which is exactly what we desire.

The neighbors iterator should return a view of the collection of neighbors of
the provided vertex as seen by outgoing edges. This is, simply, the set of edges
that appear in the vertex’s adjacency list (that is, by definition, the meaning of
the adjacency list). Our implementation is a bit paranoid: it generates an empty
traversal if the vertex is not in currently in the graph. The reason for this is that
because this is a view, the underlying graph may change in a way that may no
longer contain the vertex.

The view constructed by the edges is made complex by the fact that a single
edge will be seen twice in an undirected graph. To account for this we only
report edges in the list of adjacencies for vertex where vertex is the source of
the edge.

@checkdoc
class EdgesViewList(Iterable):
"""A view of all the edges of a GraphList.
Returned by the edges method of a GraphList."""
__slots__ = ["_target"] 5
def __init__(self, target):
self._target = target

def __iter__(self): 10
for vertex in self._target._vertex_dict.values():
for edge in vertex._adjacencies:

if self._target.directed or (edge.here is vertex.label):

yield edge
15
def __len__(self):

return self._target.edge_count

With two implementations of graphs in mind, we now focus on a number of
examples of their use.
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15.4 Examples: Common Graph Algorithms

Because the graph structure is so flexible there are many good examples of
graph applications. In this section, we investigate a number of beautiful algo-
rithms involving graphs. These algorithms provide a cursory overview of the
problems that may be cast as graph problems, as well as techniques that are
commonly used to solve them.

15.4.1 Reachability

Once data are stored within a graph, it is often desirable to identify vertices
that are reachable from a common source (see Figure 15.6). One approach is
to treat the graph as you would a maze and, using search techniques, find the
reachable vertices. For example, we may use depth-first search: each time we
visit an unvisited vertex we seek to further deepen the traversal. The following
code demonstrates how we might use recursion to search for unvisited vertices:

def reachable_from(graph, vertex, clear=True):

"""Return a list of all vertices in graph reachable from vertex."""

if clear:
Reachability graph.reset ()
graph.visit(vertex) 5
for n in graph.neighbors(vertex):
if not graph.visited(n):
reachable_from(graph, n, clear=False)
When clear is True, we clear each Vertex’s visited flag with a call to reset,
and then call reachable_from with the graph and the source vertex for the
reachability test. Before the call to reachable_from, vertex has not been vis-
ited. After the call, every vertex reachable from the vertex has been visited.
Some vertices may be left unvisited and are not reachable from the source. So,
to determine whether you may reach one vertex from another, the following
code can be used:
reachable_from(g,u)
if g.visited(v):

In Section ?? we discussed the use of a Linear structure to maintain the state
of a search of a maze. The use of a Stack led to a depth-first search. This
implementation might be more resilient, especially with large graphs, if a Stack
had been used.

How long does it take to execute the procedure? Suppose that, ultimately,
we visit the reachable vertices V,.. Let E, be the edges of the graph found
among the vertices of V,.. Clearly, each vertex of V, is visited, so there is one
call to reachable_from from each vertex v € V,.. For each call, we ask each
destination vertex if it has been visited or not. There is one such test for every
edge within FE,.. Thus, the total time is O(|V;.|+|E..|). Since |E,| > |V,.—1| (every
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Compiler design

Languages Operating systems
Vision
\ Organization
AL Data structures
Modeling
Graphics Networks Java
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/ Algorithms

Linear algebra / \ Theory
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Parallel systems
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Compiler design

Languages Operating systems
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AL Data structures
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Graphics Networks Java
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Discrete math \
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(b)

Figure 15.6 Courses you might be expected to have taken if you're in a compiler de-
sign class. (a) A typical prerequisite graph (classes point to prerequisites). Note the

central nature of data structures! (b) Bold courses can be reached as requisite courses
for compiler design.
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new vertex is visited by traversing a new edge), the algorithm is dominated by
the number of edges actually investigated. Of course, if the graph is dense, this
is bounded above by the square of the number of vertices.

In an undirected graph the reachable vertices form a component of the
graph. To count the components of a graph (the undirected version of the
graph of Figure 15.6 has three components), we iterate across the vertices of
the graph, calling the reachable_from procedure on any vertex that has not
yet been visited. Since each unvisited vertex is not reachable from those that
have been encountered before, the number of searches determines the number
of components.

15.4.2 Topological Sorting

Occasionally it is useful to list the vertices of a graph in such a way as to make
the edges point in one direction, for example, toward the front of the list. Such
graphs have to be directed and acyclic (see Problem ??). A listing of vertices
with this property is called a topological sort.

One technique for developing a topological sort involves keeping track of a
counter or virtual timer. The timer is incremented every time it is read. We now
visit each of the nodes using a depth-first search, labeling each node with two
time stamps. These time stamps determine the span of time that the algorithm
spends processing the descendants of a node. When a node is first encountered
during the search, we record the start time. When the recursive depth-first
search returns from processing a node, the timer is again read and the finish
time is recorded. Figure 15.7 depicts the intervals associated with each vertex
of the graph of Figure 15.6. (As arbitrary convention, we assume that a vertex
iterator would encounter nodes in the diagram in “reading” order.)

One need only observe that the finish time of a node is greater than the
finish time of any node it can reach. (This depth-first search may have to be
started at several nodes if there are several independent components, or if the
graph is not strongly connected.) The algorithm, then, simply lists the vertices
in the order in which they are finished. For our course graph we generate one
of many course schedules that allow students to take courses without violating
course requirements:

Vertices Ordered by Finish Time
1-2. Discrete Math 12-15. Theory 23-26. Graphics
4-5. Python 7-16. Compiler Design | 27-28. Modeling
3-6. Organization 17-18. Vision 29-30. Surfing
9-10. Data Structures | 19-20. Networks 31-32. AL
8-11. Languages 21-22. Parallel systems | 33-34. Operating Systems
13-14.  Algorithms 24-25. Linear algebra

Actually, the time stamps are useful only for purposes of illustration. In fact,
we can simply append vertices to the end of a list at the time that they would
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Compiler design: 1-16

Languages: 2-7 Operating systems: 17—-18

Vision: 19-20

Organization: 14-15

\

Java: 4-5

Al:21-22 Data structures: 3-6
Modeling: 23-24

Graphics: 25-28
Networks: 29-30

Surfing: 31-32
. Algorithms: 9-12
Linear algebra: 26-27

Discrete math: 10-11 \

Parallel systems: 33—-34

Theory: 8-13

Figure 15.7 The progress of a topological sort of the course graph. The time inter-
val following a node label indicates the time interval spent processing that node or its
descendants. Dark nodes reachable from compiler design are all processed during the

interval [1-16]—the interval associated with compiler design.
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normally be finished. Here is a sample code:
def topo_sort(graph):

results = []

graph.reset ()

for v in graph:

if not graph.visited(v): 5
DFS(graph, v, results)
return results

def DFS(graph, vertex, visited_list):
graph.visit(vertex) 10
for n in graph.neighbors(vertex):
if not graph.visited(n):
DFS(graph, n, visited_list)
visited_list.append(vertex)

These functions are declared as global procedures of a program that might
make use of a topological sort. Alternatively, they could be written as methods
of a graph, reducing the complexity of method calls.

15.4.3 Transitive Closure

Previously we discussed a reachability algorithm that determines if it is possi-
ble to reach any particular vertex from a particular source. It is also useful to
compute the transitive closure of a graph: for each pair of vertices u,v € V, is
v reachable from u? These questions can be answered by O(|V]) calls to the
depth-first search algorithm (leading to an algorithm that is O(|V'|(|]V| + | E|))),
or we can look for a more direct algorithm that has similar behavior.

One algorithm, Warshall’s algorithm, computes reachability for each pair of
vertices by modifying the graph. When the algorithm is applied to a graph,
edges are added until there is an edge for every pair of connected vertices (u, v).
The concept behind Warshall’s algorithm is relatively simple. Two connected
vertices v and v are either directly connected, or the path from u to v passes
through an intermediate node w. The algorithm simply considers each node
and connects all pairs of nodes v and v that can be shown to use w as an inter-
mediate node. Here is a Java implementation:

def warshall(graph):
for w in graph:
for u in graph:
for v in graph:

if graph.contains_edge(u, w) and graph.contains_edge(w, v):

graph.add_edge(u, v)
return graph

This algorithm is clearly O(|V|?): each iterator visits |V| vertices and (for adja-
cency matrices) the check for existence of an edge can be performed in constant
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time.

To see how the algorithm works, we number the vertices in the order they
are encountered by the vertex iterator. After k iterations of the outer loop,
all “reachability edges” of the subgraph containing just the first k vertices are
completely determined. The next iteration extends this result to a subgraph of
k + 1 vertices. An inductive approach to proving this algorithm correct (which
we avoid) certainly has merit.

15.4.4 All Pairs Minimum Distance

A slight modification of Warshall’s algorithm gives us a method for computing
the minimum distance between all pairs of points. The method is due to Floyd.
Again, we use three loops to compute the new edges representing reachability,
but these edges are now labeled, or weighted, with integer distances that indi-
cate the current minimum distance between each pair of nodes. As we consider
intermediate nodes, we merge minimum distance approximations by computing
and updating the distance if the sum of path lengths through an intermediate
node w is less than our previous approximation. Object orientation makes this
code somewhat cumbersome:
def floyd(graph):
for w in graph:
for u in graph:
for v in graph:

if graph.contains_edge(u, w) and graph.contains_edge(w?l9yq

legl = graph.get_edge(u,w)
leg2 = graph.get_edge(w, v)
new_dist = legl.label + leg2.label
if graph.contains_edge(u, v):
across = graph.get_edge(u, v) 10
across_dist = across.label
if new_dist < across_dist:
across.label = new_dist
else:
graph.add_edge(u, v, new_dist)
return graph

Clearly, edge labels could contain more information than just the path length.
For example, the path itself could be constructed, stored, and produced on re-
quest, if necessary. Again, the complexity of the algorithm is O(|V|3). This is
satisfactory for dense graphs, especially if they’re stored in adjacency matrices,
but for sparse graphs the checking of all possible edges seems excessive. Indeed,
other approaches can improve these bounds. We leave some of these for your
next course in algorithms!
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15.4.5 Greedy Algorithms

We now consider two examples of greedy algorithms—algorithms that compute
optimal solutions to problems by acting in the optimal or “most greedy” manner
at each stage in the algorithm. Because both algorithms seek to find the best
choice for the next step in the solution process, both make use of a priority
queue.

Minimum Spanning Tree

The solution to many network problems involves identifying a minimum span-
ning tree of a graph. A minimum spanning tree of an edge-weighted graph is
a tree that connects every vertex of a component whose edges have minimum
total edge weight. Such a tree might represent the most inexpensive way to con-
nect several cities with telephone trunk lines. For this reason, we will interpret
the weights as edge lengths. For the purposes of our discussion, we will assume
that the graph under consideration is composed of a single component. (If the
graph contains multiple components, we can compute a minimum spanning
forest with multiple applications of the minimum spanning tree algorithm.)

It is useful to note that if the vertices of a connected graph are partitioned
into any two sets, any minimum spanning tree contains a shortest edge that
connects nodes between the two sets. We will make use of this fact by segre-
gating visited nodes from unvisited nodes. The tree (which spans the visited
nodes and does so minimally) is grown by iteratively incorporating a shortest
edge that incorporates an unvisited node to the tree. The process stops when
|V| — 1 edges have been added to the tree.

def mcst(graph):
q = SkewHeap(key=label_order)
graph.reset ()
if len(graph) == 0:
return 5
vi = iter(graph)
v = next(vi)
searching = False
while not searching:
graph.visit(v) 10
# add all outgoing edges to priority queue
for v2 in graph.neighbors(v):
e = graph.get_edge(v,v2)
q.add(e)
searching = True 15
while searching and not q.empty:
e = q.remove()
v = e.here
if graph.visited(v):
v = e.there 20
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Figure 15.8 The progress of a minimum spanning tree computation. Bold vertices
and edges are part of the tree. Harrisburg and Trenton, made adjacent by the graph’s
shortest edge, are visited first. At each stage, a shortest external edge adjacent to the
tree is incorporated.

if not graph.visited(v):
searching = False
graph.visit_edge(e)

First, we use a priority queue to rank edges based on length. As we re-
move the edges from the queue, the smallest edges are considered first (see
Figure 15.8). When an edge is considered that includes an unvisited vertex,
we visit it, logically adding it to the minimum spanning tree. We then add any
edges that are outward-bound from the newly visited node. At any time, the
priority queue contains only edges that mention at least one node of the tree.
If, of course, an edge is considered that mentions two previously visited nodes,
the edge is superfluous, as the nodes are already connected by a path in the tree
(albeit a potentially long one). When the priority queue “runs dry,” the tree is
fully computed. The result of the algorithm will be visited marks on all nodes
and edges that participate in the tree. (If the graph has multiple components,
some vertices will not have been visited.)

Our implementation begins by finding a source vertex (v) to “prime” the
greedy algorithm. The main loop of the algorithm then runs until no new ver-
tices can be added to the tree. Each new vertex is marked as visited and its
outbound edges? are then added to the priority queue (q) of those to be con-

2 We use a key function that targets the label of the edge here, which would be typical for this
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sidered. Short edges are removed from the queue until an unvisited vertex is
mentioned by a new tree edge (e), or the queue is emptied.

Over the course of the algorithm, consideration of each edge and vertex
results in a priority queue operation. The running time, then is O((|V] +
|EJ) log (IV])).

Notice that the first edge added may not be the graph’s shortest.

Single-Source Shortest Paths

The minimum spanning tree algorithm is related to a fast, single-source, shortest-
path algorithm attributed to Dijkstra. In this algorithm, we desire the minimum-
length paths from a single source to all other nodes. We expect the algorithm,
of course, to run considerably faster than the all-pairs version. This algorithm
also runs in time proportional to O((|V| + |E|)log (|V])) due to the fact that it
uses much the same control as the minimum spanning tree. Here is the code:
def dijsktra(g,start):
"""Given graph g (edges labeled (distance name)) determine shortest path

to each reachable vertex from start."""

Dijkstra # priority queue for ranking closest unvisited next city 5

q = SkewHeap (key=highwaydistance)

# table of results: key is city, value is

# (distance-from-start prior-city new-city highway)

result = Table()

v = start 10
possible = (0,start,start,"<start>")

while v:
if v not in result:
# a new city is considered; record result 15
result[v] = possible
vdist = possible[0]
# add all outgoing roads to priority queue
for w in g.neighbors(v):
(distance, highway) = g.get_edge(v,w).label 20
q.add((distance+vdist,v,w,highway))
# find next closest city to start
if len(q) == 0: break
possible = q.remove()
(distance, somewhere, v, highwayname) = possible 25
# break out of this loop
return result

algorithm. Another possibility would be to extend the Edge class to totally order edges based on
their label.
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Figure 15.9 The progress of a single-source, shortest-path computation from source a.
As nodes are incorporated, a minimum distance is associated with the vertex. Compare
with Figure 15.8.

Unlike the minimum cost spanning tree algorithm, we return a Table of
results. Each entry in the Table has a vertex label as a key. The value is an
association between the total distance from the source to the vertex, and (in the
nontrivial case) a reference to the last edge that supports the minimum-length
path.

We initially record trivial results for the source vertex (setting its distance
to zero) and place every outgoing edge in the priority queue (see Figure 15.9).
Unlike the minimum spanning tree algorithm, we rank the edges based on total
distance from the source. These edges describe how to extend, in a nearest-
first, greedy manner, the paths that pass from the source through visited nodes.
If, of course, an edge is dequeued that takes us to a vertex with previously
recorded results, it may be ignored: some other path from the source to the
vertex is shorter. If the vertex has not been visited, it is placed in the Table
with the distance from the source (as associated with the removed edge). New
outbound edges are then enqueued.

The tricky part is to rank the edges by the distance of the destination vertex
from the source. We can think of the algorithm as considering edges that fall
within a neighborhood of increasing radius from the source vertex. When the
boundary of the neighborhood includes a new vertex, its minimum distance
from the source has been determined.

Since every vertex is considered once and each edge possibly twice, the
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worst-case performance is O(|V| + |E|), an improvement over the O(|V|3) per-
formance for sparse graphs.

15.5 Conclusions

In this chapter we have investigated two traditional implementations of graphs.
The adjacency matrix stores information about each edge in a square matrix
while the adjacency list implementation keeps track of edges that leave each
vertex. The matrix implementation is ideal for dense graphs, where the number
of actual edges is high, while the list implementation is best for representing
sparse graphs.

Our approach to implementing graph structures is to use partial implemen-
tations, called abstract classes, and extend them until they are concrete, or com-
plete. Other methods are commonly used, but this has the merit that common
code can be shared among similar classes. Indeed, this inheritance is one of the
features commonly found in object-oriented languages.

This last section is, in effect, a stepping stone to an investigation of algo-
rithms. There are many approaches to answering graph-related questions, and
because of the dramatic differences in complexities in different implementa-
tions, the solutions are often affected by the underlying graph structure.

Finally, we note that many of the seemingly simple graph-related problems
cannot be efficiently solved with any reasonable representation of graphs. Those
problems are, themselves, a suitable topic for many future courses of study.



Appendix A

Answers

This section contains answers to many problems presented to the reader in the
text. In the first section, we provide answers to self check problems. In the
second section, we provide answers to many of the problems from the text.

A.1 Solutions to Self Check Problems

Chapter 4

Problems begin on page 92.
4.1 Self-check answer.

A.2 Solutions to Select Problems

Chapter 4

Problems begin on page 92.
4.1  Regular answer.
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