Recursion

	Trivial	Good	
	ArrayList	ArrayList	LinkedList
Insert beginning			
Insert end			
Get length			
Get <i>i</i> th element			

Asymptotic Time¹ of Operations for Collections of *n* Elements

- 1. Funny Greek symbols:
 - a. O: Upper bound: the running time is no *slower* than this. To be useful, make this as small as possible. We can eat breakfast before lecture because breakfast couldn't possibly take more than half an hour.
 - b. Ω : Lower bound: the running time is no *faster* than this. To be useful, make this as large as possible. We can have a party because mom won't be home for at least 3 days.
 - c. Θ : Exact bound. $f = \Theta(g)$ means that f = O(g) and $f = \Omega(g)$.
- 2. More funny symbols:
 - a. a * b = a added to itself b times"
 - b. a^b = "a **multiplied** by itself b times"
 - c. a / c = "how many times you have to **add** *a* to itself to produce *c*"
 - d. $\log_a c =$ "how many times you have to **multiply** *a* by itself to produce *c*"
- 3. Analyze:
 - a. $\inf f(\inf x) \{ \inf (x \le 0) \{ \text{ return } 1; \} \text{ else } \{ \text{ return } x * f(x 1); \}$
 - b. int $g(\text{int } x) \{ \text{ if } (x \le 0) \{ \text{ return } 1; \} \text{ else } \{ \text{ return } x * g(x / 2); \}$

¹ Expected, amortized time