Greedy Approximations : Set Cover

Algorithm Design & Analysis

Spring 2018
Outline
NP-Completeness Transcended

BRUTE-FORCE SOLUTION: \(O(n!)\)

DYNAMIC PROGRAMMING ALGORITHMS: \(O(n^22^n)\)

SELLING ON EBAY: \(O(1)\)

STILL WORKING ON YOUR ROUTE?

SHUT THE HELL UP.

(xkcd #399)
A Greedy Set Cover Approximation

Input: Subsets S_1, \ldots, S_m of set $U = \{s_1, \ldots, s_n\}$; weight w_i for each set S_i
A Greedy Set Cover Approximation

Input: Subsets S_1, \ldots, S_m of set $U = \{s_1, \ldots, s_n\}$; weight w_i for each set S_i

Problem: Find minimum weight set cover C: minimize $\sum_{S_i \in C} w_i$, subject to $U = \bigcup_{S_i \in C} S_i$
A Greedy Set Cover Approximation

Input: Subsets S_1, \ldots, S_m of set $U = \{s_1, \ldots, s_n\}$; weight w_i for each set S_i

Problem: Find minimum weight set cover C: minimize $\sum_{S_i \in C} w_i$, subject to $U = \bigcup_{S_i \in C} S_i$

Question: How can we be greedy?

• Idea: Unit Covering Cost: Let $c_i = \frac{w_i}{|S_i|}$
• Now build C by adding the S_i with lowest unit covering cost
• But, covering costs change as C is constructed
• Let R be the set of elements of U not covered by C; then set $c_i = \frac{w_i}{|S_i \cap R|}$
• That is, the unit covering costs change over run of algorithm
A Greedy Set Cover Approximation

Input: Subsets S_1, \ldots, S_m of set $U = \{s_1, \ldots, s_n\}$; weight w_i for each set S_i

Problem: Find minimum weight set cover C: minimize $\sum_{S_i \in C} w_i$, subject to $U = \bigcup_{S_i \in C} S_i$

Question: How can we be greedy?

- **Idea:** Unit Covering Cost: Let $c_i = w_i/|S_i|$
A Greedy Set Cover Approximation

Input: Subsets S_1, \ldots, S_m of set $U = \{s_1, \ldots, s_n\}$; weight w_i for each set S_i

Problem: Find minimum weight set cover C: minimize $\sum_{S_i \in C} w_i$, subject to $U = \bigcup_{S_i \in C} S_i$

Question: How can we be greedy?

- Idea: Unit Covering Cost: Let $c_i = w_i / |S_i|$
- Now build C by adding the S_i with lowest unit covering cost
A Greedy Set Cover Approximation

Input: Subsets S_1, \ldots, S_m of set $U = \{s_1, \ldots, s_n\}$; weight w_i for each set S_i

Problem: Find minimum weight set cover C: minimize $\sum_{S_i \in C} w_i$, subject to $U = \bigcup_{S_i \in C} S_i$

Question: How can we be greedy?

- **Idea:** Unit Covering Cost: Let $c_i = w_i / |S_i|$
- Now build C by adding the S_i with lowest unit covering cost
- But, covering costs change as C is constructed
A Greedy Set Cover Approximation

Input: Subsets S_1, \ldots, S_m of set $U = \{s_1, \ldots, s_n\}$; weight w_i for each set S_i

Problem: Find minimum weight set cover \mathcal{C}: minimize $\sum_{S_i \in \mathcal{C}} w_i$, subject to $U = \bigcup_{S_i \in \mathcal{C}} S_i$

Question: How can we be greedy?

- **Idea:** Unit Covering Cost: Let $c_i = w_i/|S_i|$
- Now build \mathcal{C} by adding the S_i with lowest unit covering cost
- But, covering costs change as \mathcal{C} is constructed
- Let R be the set of elements of U not covered by \mathcal{C}; then set $c_i = w_i/(|S_i \cap R|)$
A Greedy Set Cover Approximation

Input: Subsets S_1, \ldots, S_m of set $U = \{s_1, \ldots, s_n\}$; weight w_i for each set S_i

Problem: Find minimum weight set cover C: minimize $\sum_{S_i \in C} w_i$, subject to $U = \bigcup_{S_i \in C} S_i$

Question: How can we be greedy?

- **Idea:** Unit Covering Cost: Let $c_i = w_i/|S_i|
- Now build C by adding the S_i with lowest unit covering cost
- But, covering costs change as C is constructed
- Let R be the set of elements of U not covered by C; then set $c_i = w_i/(|S_i \cap R|)$
- That is, the unit covering costs change over run of algorithm
A Greedy Set Cover Algorithm

Algorithm 1

procedure GreedySetCover(S₁, ... , Sₙ)
 R ← U
 C = ∅
 while R ≠ ∅
 Select Sᵢ that minimizes wᵢ / (|Sᵢ ∩ R|)
 R ← R − Sᵢ
 Add Sᵢ to C
 return C

// C is a set cover of U
end procedure

• GreedySetCover can be \(O(\log n)\) times larger than optimal set cover
• We'll show that it's no worse
A Greedy Set Cover Algorithm

Algorithm 2 GreedySetCover

procedure GreedySetCover(S_1, \ldots, S_n)
 $R \leftarrow U$
 $C = \emptyset$
 while $R \neq \emptyset$
 Select S_i that minimizes $w_i / (|S_i \cap R|)$
 $R \leftarrow R - S_i$
 Add S_i to C
 return C // C is a set cover of U
end procedure
A Greedy Set Cover Algorithm

Algorithm 3 GreedySetCover

procedure \textbf{GREEDYSETCOVER}(S_1, \ldots, S_n)

\begin{itemize}
 \item \(R \leftarrow U \)
 \item \(C = \emptyset \)
 \item \textbf{while} \(R \neq \emptyset \) \textbf{do}
 \begin{itemize}
 \item Select \(S_i \) that minimizes \(w_i/(|S_i \cap R|) \)
 \item \(R \leftarrow R - S_i \)
 \item Add \(S_i \) to \(C \)
 \end{itemize}
 \item return \(C \) // \(C \) is a set cover of \(U \)
\end{itemize}

end procedure

\begin{itemize}
 \item GreedySetCover can be \(O(\log n) \) times larger than optimal set cover
\end{itemize}
A Greedy Set Cover Algorithm

Algorithm 4 GreedySetCover

procedure \textsc{GreedySetCover}(S_1, \ldots, S_n)

\hspace{1em} R \leftarrow U \hspace{1em}
\hspace{1em} C = \emptyset \hspace{1em}

\hspace{1em} while R \neq \emptyset do

\hspace{2em} Select \(S_i \) that minimizes \(\frac{w_i}{|S_i \cap R|} \)

\hspace{2em} \begin{align*}
& \hspace{1em} R \leftarrow R - S_i \\
& \hspace{1em} \text{Add} \ S_i \ \text{to} \ C
\end{align*}

\hspace{1em} \text{return} \ C \hspace{1em} // \ C \ is \ a \ set \ cover \ of \ U

end procedure

\begin{itemize}
\item GreedySetCover can be \(O(\log n) \) times larger than optimal set cover
\item We’ll show that it’s no worse
\end{itemize}
Set Cover : An Example

![Diagram of set cover example](image)

Figure 11.6 An instance of the Set Cover Problem where the weights of sets are either 1 or $1 + \varepsilon$ for some small $\varepsilon > 0$. The greedy algorithm chooses sets of total weight 4, rather than the optimal solution of weight $2 + 2\varepsilon$.

Note: Example can be extended to show $O(\log n)$ factor worse than optimal
A Pricing Model

Idea: Charge each element $s \in U$ the (current) unit cost of the set S_i that first covered it.
A Pricing Model

Idea: Charge each element \(s \in U \) the (current) unit cost of the set \(S_i \) that \textit{first covered it}

- \(s \) gets charged \(c_s = w_i / (|S_i \cap R|) \) for first \(S_i \) in algorithm to cover \(s \)
A Pricing Model

Idea: Charge each element \(s \in U \) the (current) unit cost of the set \(S_i \) that \textit{first covered it}

- \(s \) gets charged \(c_s = w_i / (|S_i \cap R|) \) for first \(S_i \) in algorithm to cover \(s \)
- \textbf{Claim:} \(w(C) = \sum_{S_i \in C} w_i = \sum_{s \in U} c_s \)
A Pricing Model

Idea: Charge each element $s \in U$ the (current) unit cost of the set S_i that first covered it

- s gets charged $c_s = w_i/(|S_i \cap R|)$ for first S_i in algorithm to cover s
- **Claim:** $w(C) = \sum_{S_i \in C} w_i = \sum_{s \in U} c_s$
- **Proof:** When S_i is added to C its weight is evenly divided among some elements of U
A Pricing Model

Idea: Charge each element $s \in U$ the (current) unit cost of the set S_i that first covered it

- s gets charged $c_s = w_i/(|S_i \cap R|)$ for first S_i in algorithm to cover s

- **Claim:** $w(C) = \sum_{S_i \in C} w_i = \sum_{s \in U} c_s$

- **Proof:** When S_i is added to C its weight is evenly divided among some elements of U

Goal: Show that for some value H and for every S_k:

$$w_k \geq (1/H) \sum_{s \in S_k} c_s \quad \text{[Greedy charges are not too large]}$$
A Pricing Model

Idea: Charge each element \(s \in U \) the (current) unit cost of the set \(S_i \) that first covered it

- \(s \) gets charged \(c_s = w_i / (|S_i \cap R|) \) for first \(S_i \) in algorithm to cover \(s \)
- **Claim:** \(w(C) = \sum_{S_i \in C} w_i = \sum_{s \in U} c_s \)
- **Proof:** When \(S_i \) is added to \(C \) its weight is evenly divided among some elements of \(U \)

Goal: Show that for some value \(H \) and for every \(S_k \):
\[w_k \geq (1/H) \sum_{s \in S_k} c_s \] [Greedy charges are not too large]
- Then for any set cover \(C^* \), we get

(3)
A Pricing Model

Idea: Charge each element $s \in U$ the (current) unit cost of the set S_i that first covered it

- s gets charged $c_s = w_i / |S_i \cap R|$ for first S_i in algorithm to cover s
- **Claim:** $w(C) = \sum_{S_i \in C} w_i = \sum_{s \in U} c_s$
- **Proof:** When S_i is added to C its weight is evenly divided among some elements of U

Goal: Show that for some value H and for every S_k:

- $w_k \geq (1/H) \sum_{s \in S_k} c_s$ [Greedy charges are not too large]

 - Then for any set cover C^*, we get

 $$w(C^*) = \sum_{S_i \in C^*} w_i \geq \sum_{S_i \in C^*} (1/H) \sum_{s \in S_i} c_s$$

 (1)
A Pricing Model

Idea: Charge each element \(s \in U \) the (current) unit cost of the set \(S_i \) that *first covered it*

- \(s \) gets charged \(c_s = w_i / (|S_i \cap R|) \) for first \(S_i \) in algorithm to cover \(s \)
- **Claim:** \(w(C) = \sum_{S_i \in C} w_i = \sum_{s \in U} c_s \)
- **Proof:** When \(S_i \) is added to \(C \) its weight is evenly divided among some elements of \(U \)

Goal: Show that for *some* value \(H \) and for *every* \(S_k \):
\[
w_k \geq \left(\frac{1}{H} \right) \sum_{s \in S_k} c_s \quad \text{[Greedy charges are not too large]} \]

- Then for *any* set cover \(C^* \), we get
\[
w(C^*) = \sum_{S_i \in C^*} w_i \geq \sum_{S_i \in C^*} \left(\frac{1}{H} \right) \sum_{s \in S_i} c_s \quad (1)
\]
\[
\geq \left(\frac{1}{H} \right) \sum_{s \in U} c_s = \left(\frac{1}{H} \right) \sum_{S_i \in C} w_i \quad (2)
\]
A Pricing Model

Idea: Charge each element \(s \in U \) the (current) unit cost of the set \(S_i \) that first covered it

- \(s \) gets charged \(c_s = w_i / (|S_i \cap R|) \) for first \(S_i \) in algorithm to cover \(s \)

- **Claim:** \(w(C) = \sum_{S_i \in C} w_i = \sum_{s \in U} c_s \)

- **Proof:** When \(S_i \) is added to \(C \) its weight is evenly divided among some elements of \(U \)

Goal: Show that for some value \(H \) and for every \(S_k \):
\[
w_k \geq (1/H) \sum_{s \in S_k} c_s \quad [\text{Greedy charges are not too large}]\]

- Then for any set cover \(C^* \), we get
\[
w(C^*) = \sum_{S_i \in C^*} w_i \geq \sum_{S_i \in C^*} (1/H) \sum_{s \in S_i} c_s \quad (1)
\]
\[
\geq (1/H) \sum_{s \in U} c_s = (1/H) \sum_{S_i \in C} w_i \quad (2)
\]
\[
= (1/H)w(C) \quad (3)
\]
An Accounting Scheme

Goal: Show that for some value H and for every S_k:

$$\sum_{s \in S_k} c_s \leq Hw_k$$
An Accounting Scheme

Goal: Show that for some value H and for every S_k:

$$\sum_{s \in S_k} c_s \leq Hw_k$$

Idea: Consider GreedySetCover from the point of view of S_k.
An Accounting Scheme

Goal: Show that for *some* value H and for *every* S_k:

$$\sum_{s \in S_k} c_s \leq Hw_k$$

Idea: Consider GreedySetCover from the point of view of S_k
- Run GreedySetCover to find the order in which sets were added
An Accounting Scheme

Goal: Show that for *some* value H and for *every* S_k:

$$\sum_{s \in S_k} c_s \leq Hw_k$$

Idea: Consider GreedySetCover from the point of view of S_k

- Run GreedySetCover to find the order in which sets were added
- Relabel U so that s_1, \ldots, s_d are the elements of S_k *in the order they were covered by* GreedySetCover ($d = |S_k|$)
An Accounting Scheme

Goal: Show that for some value H and for every S_k:

$$
\sum_{s \in S_k} c_s \leq Hw_k
$$

Idea: Consider GreedySetCover from the point of view of S_k

- Run GreedySetCover to find the order in which sets were added
- Relabel U so that s_1, \ldots, s_d are the elements of S_k in the order they were covered by GreedySetCover ($d = |S_k|$)
- Rerun GreedySetCover : relabeling has no impact!
An Accounting Scheme

Goal: Show that for some value H and for every S_k:

$$\sum_{s \in S_k} c_s \leq H w_k$$

Idea: Consider GreedySetCover from the point of view of S_k
- Run GreedySetCover to find the order in which sets were added
- Relabel U so that s_1, \ldots, s_d are the elements of S_k *in the order they were covered by GreedySetCover* ($d = |S_k|$)
- Rerun GreedySetCover: relabeling has no impact!
- Now try to bound the costs $\{c_j = c_{s_j} : s_j \in S_k\}$
Bounding the Costs

Observations
Bounding the Costs

Observations

- When \(s_j \in S_k \) first covered by some \(S_i \) in GSC, none of \(s_j, \ldots, s_d \) are yet covered
Bounding the Costs

Observations

• When $s_j \in S_k$ first covered by some S_i in GSC, none of s_j, \ldots, s_d are yet covered
• So $|S_k \cap R| \geq (d - j + 1)$, thus $w_k/|S_k \cap R| \leq w_k/(d - j + 1)$
Bounding the Costs

Observations

• When $s_j \in S_k$ first covered by some S_i in GSC, none of s_j, \ldots, s_d are yet covered
• So $|S_k \cap R| \geq (d - j + 1)$, thus $w_k/|S_k \cap R| \leq w_k/(d - j + 1)$
• So $c_j = w_i/|S_i \cap R| \leq w_k/|S_k \cap R| \leq w_k/(d - j + 1)$
Bounding the Costs

Observations

- When $s_j \in S_k$ first covered by some S_i in GSC, none of s_j, \ldots, s_d are yet covered
- So $|S_k \cap R| \geq (d - j + 1)$, thus $w_k/|S_k \cap R| \leq w_k/(d - j + 1)$
- So $c_j = w_i/|S_i \cap R| \leq w_k/|S_k \cap R| \leq w_k/(d - j + 1)$
- Thus
Bounding the Costs

Observations

• When \(s_j \in S_k \) first covered by some \(S_i \) in GSC, none of \(s_j, \ldots, s_d \) are yet covered.

• So \(|S_k \cap R| \geq (d - j + 1) \), thus \(w_k/|S_k \cap R| \leq w_k/(d - j + 1) \).

• So \(c_j = w_i/|S_i \cap R| \leq w_k/|S_k \cap R| \leq w_k/(d - j + 1) \).

• Thus

\[
\sum_{s \in S_k} c_s = \sum_{j=1}^{d} c_j \leq \sum_{j=1}^{d} w_k/(d-j+1) = w_k \sum_{i=1}^{d} 1/i \quad \text{note: } i = d-j+1
\]
Bounding the Costs

Observations

• When \(s_j \in S_k \) first covered by some \(S_i \) in GSC, none of \(s_j, \ldots, s_d \) are yet covered

• So \(|S_k \cap R| \geq (d - j + 1) \), thus \(w_k/|S_k \cap R| \leq w_k/(d - j + 1) \)

• So \(c_j = w_i/|S_i \cap R| \leq w_k/|S_k \cap R| \leq w_k/(d - j + 1) \)

• Thus

\[
\sum_{s \in S_k} c_s = \sum_{j=1}^{d} c_j \leq \sum_{j=1}^{d} w_k/(d-j+1) = w_k \sum_{i=1}^{d} 1/i \quad \text{(note: } i = d-j+1)\]

• So, letting \(H(d) = \sum_{i=1}^{d} 1/d \) gives \(\sum_{s \in S_k} c_s \leq H(d)w_k \)
Bounding the Costs

Observations

• When \(s_j \in S_k \) first covered by some \(S_i \) in GSC, none of \(s_j, \ldots, s_d \) are yet covered

• So \(|S_k \cap R| \geq (d - j + 1) \), thus \(w_k/|S_k \cap R| \leq w_k/(d - j + 1) \)

• So \(c_j = w_i/|S_i \cap R| \leq w_k/|S_k \cap R| \leq w_k/(d - j + 1) \)

• Thus

\[
\sum_{s \in S_k} c_s = \sum_{j=1}^{d} c_j \leq \sum_{j=1}^{d} \frac{w_k}{d-j+1} = w_k \sum_{i=1}^{d} \frac{1}{i} \quad \text{(note: } i = d-j+1)\]

• So, letting \(H(d) = \sum_{i=1}^{d} 1/d \) gives \(\sum_{s \in S_k} c_s \leq H(d)w_k \)

• Now let \(d^* = \max_{k=1}^{m} |S_k| \), and \(H = H(d^*) \)
Putting It All Together

Theorem: GreedySetCover produces a set cover having weight within a factor of $H = H(d^*)$ of the optimum.
Putting It All Together

Theorem: GreedySetCover produces a set cover having weight within a factor of $H = H(d^*)$ of the optimum.

How big is $H(d^*)$?
Putting It All Together

Theorem: GreedySetCover produces a set cover having weight within a factor of \(H = H(d^*) \) of the optimum.

How big is \(H(d^*) \)?

Fact: \(\ln(n + 1) \leq H(n) \leq 1 + \ln n \), so \(H(d^*) \leq H(n) \in \Theta(\log n) \).
Putting It All Together

Theorem: GreedySetCover produces a set cover having weight within a factor of $H = H(d^*)$ of the optimum

How big is $H(d^*)$?

Fact: $\ln(n + 1) \leq H(n) \leq 1 + \ln n$, so $H(d^*) \leq H(n) \in \Theta(\log n)$.

Figure 11.7 Upper and lower bounds for the Harmonic Function $H(n)$.
The Pricing Method

Observations
The Pricing Method

Observations

- View c_s as the price paid by s to be covered by S_i
The Pricing Method

Observations

- View c_s as the price paid by s to be covered by S_i
- S_i used to cover s is selected by greedy algorithm, but
The Pricing Method

Observations

• View c_s as the price paid by s to be covered by S_i
• S_i used to cover s is selected by greedy algorithm, but
• Sum of prices paid by elements of each S_k are bounded by a constant multiple of w_k
The Pricing Method

Observations

- View c_s as the price paid by s to be covered by S_i
- S_i used to cover s is selected by greedy algorithm, but
- Sum of prices paid by elements of each S_k are bounded by a constant multiple of w_k
- In other words, the prices paid by elements are not exorbitant; more importantly:
The Pricing Method

Observations

- View c_s as the price paid by s to be covered by S_i
- S_i used to cover s is selected by greedy algorithm, but
- Sum of prices paid by elements of each S_k are bounded by a constant multiple of w_k
- In other words, the prices paid by elements are not exorbitant; more importantly:
- The total paid by all elements in U using the cover produced by the greedy algorithm can be used to bound the value of any other cover!
The Pricing Method

Observations

- View c_s as the price paid by s to be covered by S_i
- S_i used to cover s is selected by greedy algorithm, but
- Sum of prices paid by elements of each S_k are bounded by a constant multiple of w_k
- In other words, the prices paid by elements are not exorbitant; more importantly:
 - The total paid by all elements in U using the cover produced by the greedy algorithm can be used to bound the value of any other cover!

This idea of using a pricing method to measure goodness of approximation is quite powerful
Approximation Via Reduction: Weighted Vertex Cover

The Problem: Given a graph $G = (V, E)$ with vertex weights w_v, find a vertex cover of low weight.
The Problem: Given a graph $G = (V, E)$ with vertex weights w_v, find a vertex cover of low weight

Recall that SETCOVER can be used to solve VERTEXCOVER (even with weights)

Perhaps we can do better?
The Problem: Given a graph $G = (V, E)$ with vertex weights w_v, find a vertex cover of low weight.

Recall that SETCOVER can be used to solve VERTEXCOVER (even with weights).

- For $G = (V, E)$, $U = E$ and the sets are $S_v = \{e \in E : e = \{u, v\}\}$
Approximation Via Reduction: Weighted Vertex Cover

The Problem: Given a graph $G = (V, E)$ with vertex weights w_v, find a vertex cover of low weight

Recall that SETCOVER can be used to solve VERTEXCOVER (even with weights)

- For $G = (V, E)$, $U = E$ and the sets are $S_v = \{e \in E : e = \{u, v\}\}$
- A set cover of U by $S_{v_1}, \ldots S_{v_k}$ corresponds to a vertex cover of E by v_1, \ldots, v_k
The Problem: Given a graph \(G = (V, E) \) with vertex weights \(w_v \), find a vertex cover of low weight.

Recall that SETCOVER can be used to solve VERTEXCOVER (even with weights).

- For \(G = (V, E) \), \(U = E \) and the sets are \(S_v = \{ e \in E : e = \{u, v\} \} \).
- A set cover of \(U \) by \(S_{v_1}, \ldots, S_{v_k} \) corresponds to a vertex cover of \(E \) by \(v_1, \ldots, v_k \).
- Thus a minimum weight vertex cover of \(G \) corresponds to a minimum weight set cover of \(U \).
The Problem: Given a graph $G = (V, E)$ with vertex weights w_v, find a vertex cover of low weight. Recall that SETCOVER can be used to solve VERTEXCOVER (even with weights).

- For $G = (V, E)$, $U = E$ and the sets are $S_v = \{ e \in E : e = \{u, v\} \}$
- A set cover of U by $S_{v_1}, \ldots S_{v_k}$ corresponds to a vertex cover of E by v_1, \ldots, v_k
- Thus a minimum weight vertex cover of G corresponds to a minimum weight set cover of U
- So GREEDYSETCOVER can be used to get a $O(\log n)$ approximation for VERTEXCOVER
Approximation Via Reduction: Weighted Vertex Cover

The Problem: Given a graph $G = (V, E)$ with vertex weights w_v, find a vertex cover of low weight.

Recall that SETCOVER can be used to solve VERTEXCOVER (even with weights)

- For $G = (V, E)$, $U = E$ and the sets are $S_v = \{e \in E : e = \{u, v\}\}$
- A set cover of U by $S_{v_1}, \ldots S_{v_k}$ corresponds to a vertex cover of E by v_1, \ldots, v_k
- Thus a minimum weight vertex cover of G corresponds to a minimum weight set cover of U
- So GREEDYSETCOVER can be used to get a $O(\log n)$ approximation for VERTEXCOVER
- Perhaps we can do better?
Weighted Vertex Covers via the Pricing Method

Idea: An edge e pays a vertex v some price p_e to cover it.

\[\sum_{e \in E} p_e \leq \sum_{v \in S} \sum_{e \in \{u, v\}} p_e \leq \sum_{v \in S} w_v = w(S) \]

So, in particular, if S^* is a minimum weight vertex cover, we have

\[\sum_{e \in E} p_e \leq w(S^*) \]

That is, the sum of edge prices is a lower bound on the weight of a minimum weight vertex cover.
Weighted Vertex Covers via the Pricing Method

Idea: An edge e pays a vertex v some price p_e to cover it.

- The set $\{p_e : e \in E\}$ of prices is *fair* if, for each $v \in V$
 $$\sum_{e=\{u,v\}} p_e \leq w_v \; (v \text{ is not overcharging})$$

Claim: For any vertex cover S and fair prices $\{p_e : e \in E\}$:
$$\sum_{e \in E} p_e \leq w(S)$$

Proof:
$$\sum_{e \in E} p_e \leq \sum_{v \in S} \sum_{e=\{u,v\}} p_e \leq \sum_{v \in S} w_v = w(S)$$

So, in particular, if S^* is a minimum weight vertex cover, we have
$$\sum_{e \in E} p_e \leq w(S^*)$$

That is, the sum of edge prices is a lower bound on the weight of a minimum weight vertex cover.
Weighted Vertex Covers via the Pricing Method

Idea: An edge e pays a vertex v some price p_e to cover it.

- The set $\{p_e : e \in E\}$ of prices is *fair* if, for each $v \in V$
 \[\sum_{e=\{u,v\}} p_e \leq w_v \] (v is not *overcharging*)

Claim: For any vertex cover S and fair prices $\{p_e : e \in E\}$:
\[\sum_{e \in E} p_e \leq w(S) \]
Weighted Vertex Covers via the Pricing Method

Idea: An edge e pays a vertex v some price p_e to cover it.

- The set $\{p_e : e \in E\}$ of prices is fair if, for each $v \in V$
 \[\sum_{e=\{u,v\}} p_e \leq w_v \] (v is not overcharging)

Claim: For any vertex cover S and fair prices $\{p_e : e \in E\}$:
\[\sum_{e \in E} p_e \leq w(S) \]

Proof:
\[\sum_{e \in E} p_e \leq \sum_{v \in S} \sum_{e=\{u,v\}} p_e \leq \sum_{v \in S} w_v = w(S) \]
Weighted Vertex Covers via the Pricing Method

Idea: An edge \(e \) pays a vertex \(v \) some price \(p_e \) to cover it.

- The set \(\{p_e : e \in E\} \) of prices is fair if, for each \(v \in V \)

\[\sum_{e=\{u,v\}} p_e \leq w_v \] (\(v \) is not overcharging)

Claim: For any vertex cover \(S \) and fair prices \(\{p_e : e \in E\} \):

\[\sum_{e \in E} p_e \leq w(S) \]

Proof:

\[\sum_{e \in E} p_e \leq \sum_{v \in S} \sum_{e=\{u,v\}} p_e \leq \sum_{v \in S} w_v = w(S) \]

So, in particular, if \(S^* \) is a minimum weight vertex cover, we have

\[\sum_{e \in E} p_e \leq w(S^*) \]
Weighted Vertex Covers via the Pricing Method

Idea: An edge \(e \) pays a vertex \(v \) some price \(p_e \) to cover it.

- The set \(\{ p_e : e \in E \} \) of prices is fair if, for each \(v \in V \)
 \[\sum_{e=\{u,v\}} p_e \leq w_v \text{ (} v \text{ is not overcharging)} \]

Claim: For any vertex cover \(S \) and fair prices \(\{ p_e : e \in E \} \):
 \[\sum_{e \in E} p_e \leq w(S) \]

Proof:

\[
\sum_{e \in E} p_e \leq \sum_{v \in S} \sum_{e=\{u,v\}} p_e \leq \sum_{v \in S} w_v = w(S)
\]

So, in particular, if \(S^* \) is a minimum weight vertex cover, we have
\[\sum_{e \in E} p_e \leq w(S^*) \]

That is, the sum of edge prices is a lower bound on the weight of a minimum weight vertex cover
Idea: Simultaneously build a vertex cover while greedily setting prices; show that small multiple of price sum bounds cover weight
A Price-Setting Greedy Algorithm

Idea: Simultaneously build a vertex cover while greedily setting prices; show that small multiple of price sum bounds cover weight

Def’n: A vertex v is tight if $\sum_{e=\{u,v\}} p_e = w_v$
A Price-Setting Greedy Algorithm

Idea: Simultaneously build a vertex cover while greedily setting prices; show that small multiple of price sum bounds cover weight

Def’n: A vertex v is tight if $\sum_{e=\{u,v\}} p_e = w_v$

Algorithm 7 PriceFixing

```
procedure PRICEFIXING($G = (V, E), w[-]$)
    Set all prices $p[e]$ to 0
    while Some edge $e$ has neither vertex tight do
        Select such an edge $e = \{u, v\}$
        Increase $p[e]$ until first of $u$ or $v$ becomes tight
    Return set $S$ of all tight nodes
end procedure
```
A Price-Setting Greedy Algorithm

Idea: Simultaneously build a vertex cover while greedily setting prices; show that small multiple of price sum bounds cover weight

Def’n: A vertex \(v \) is tight if \(\sum_{e=\{u,v\}} p_e = w_v \)

Algorithm 8 PriceFixing

\begin{verbatim}
procedure PRICEFIXING(G = (V, E), w[−])
 Set all prices \(p[e] \) to 0
 while Some edge \(e \) has neither vertex tight do
 Select such an edge \(e = \{u, v\} \)
 Increase \(p[e] \) until first of \(u \) or \(v \) becomes tight
 Return set \(S \) of all tight nodes
end procedure
\end{verbatim}

Observe: Tight vertices form a cover: every edge has at least one tight vertex; also, the prices are fair
How Good is PriceFixing?

Claim: The S and $p[-]$ returned by PriceFixing satisfy $w(S) \leq 2 \sum_{e \in E} p_e$ and the prices are fair.
How Good is PriceFixing?

Claim: The S and $p[\rightarrow]$ returned by PriceFixing satisfy $w(S) \leq 2 \sum_{e \in E} p_e$ and the prices are fair.

Proof:

$$w(S) = \sum_{v \in S} w_v = \sum_{v \in S} \sum_{e = \{u, v\}} p_e \leq 2 \sum_{e \in E} p_e$$
How Good is PriceFixing?

Claim: The S and $p[___]$ returned by PriceFixing satisfy $w(S) \leq 2 \sum_{e \in E} p_e$ and the prices are fair.

Proof:

$$w(S) = \sum_{v \in S} w_v = \sum_{v \in S} \sum_{e=\{u,v\}} p_e \leq 2 \sum_{e \in E} p_e$$

Corollary: The weight of S is within a factor of 2 of optimal: $w(S) \leq 2w(S^*)$