Greedy Approximations: k-Center

Algorithm Design & Analysis

Spring 2018
Outline
k-Center Problem

Input: $S = \{s_1, \ldots, s_n\} \subset \mathbb{R}^2$ and an integer k

Problem: Compute set C of k points in \mathbb{R}^2 that minimizes $\max_{s \in S}\{\text{dist}(s, C)\}$

- $\text{dist}(s, C) = \min_{c \in C}\{|s - c|\}$
- C is an r-cover of S if $\text{dist}(s, C) \leq r$ for all $s \in S$.
- Given C, $r = \max_{s \in S}\{\text{dist}(s, C)\}$ is called the covering radius of C.
- Given k, we want a C of size k with smallest possible covering radius.
- Infinite search space!
k-Center Problem

Input: \(S = \{s_1, \ldots, s_n\} \subset \mathbb{R}^2 \) and an integer \(k \)

Problem: Compute set \(C \) of \(k \) points in \(\mathbb{R}^2 \) that minimizes \(\max_{s \in S} \{\text{dist}(s, C)\} \)

- \(\text{dist}(s, C) = \min_{c \in C} \{|s - c|\} \)
k-Center Problem

Input: \(S = \{s_1, \ldots, s_n\} \subset \mathbb{R}^2 \) and an integer \(k \)

Problem: Compute set \(C \) of \(k \) points in \(\mathbb{R}^2 \) that minimizes \(\max_{s \in S} \{\text{dist}(s, C)\} \)

- \(\text{dist}(s, C) = \min_{c \in C} \{|s - c|\} \)
- \(C \) is an \(r \)-cover of \(S \) if \(\text{dist}(s, C) \leq r \) for all \(s \in S \).
k-Center Problem

Input: $S = \{s_1, \ldots, s_n\} \subset \mathbb{R}^2$ and an integer k

Problem: Compute set C of k points in \mathbb{R}^2 that minimizes $\max_{s \in S} \{\text{dist}(s, C)\}$

- $\text{dist}(s, C) = \min_{c \in C}\{|s - c|\}$
- C is an r-cover of S if $\text{dist}(s, C) \leq r$ for all $s \in S$.
- Given C, $r = \max_{s \in S}\{\text{dist}(s, C)\}$ is called the covering radius of C
k-Center Problem

Input: \(S = \{ s_1, \ldots, s_n \} \subset \mathbb{R}^2 \) and an integer \(k \)

Problem: Compute set \(C \) of \(k \) points in \(\mathbb{R}^2 \) that minimizes \(\max_{s \in S} \{ \text{dist}(s, C) \} \)

- \(\text{dist}(s, C) = \min_{c \in C} \{ |s - c| \} \)
- \(C \) is an \(r \)-cover of \(S \) if \(\text{dist}(s, C) \leq r \) for all \(s \in S \).
- Given \(C \), \(r = \max_{s \in S} \{ \text{dist}(s, C) \} \) is called the **covering radius** of \(C \)
- Given \(k \), we want a \(C \) of size \(k \) with smallest possible covering radius
k-Center Problem

Input: \(S = \{s_1, \ldots, s_n\} \subset \mathbb{R}^2 \) and an integer \(k \)

Problem: Compute set \(C \) of \(k \) points in \(\mathbb{R}^2 \) that minimizes \(\max_{s \in S}\{\text{dist}(s, C)\} \)

- \(\text{dist}(s, C) = \min_{c \in C}\{|s - c|\} \)
- \(C \) is an \(r \)-cover of \(S \) if \(\text{dist}(s, C) \leq r \) for all \(s \in S \).
- Given \(C \), \(r = \max_{s \in S}\{\text{dist}(s, C)\} \) is called the *covering radius* of \(C \)
- Given \(k \), we want a \(C \) of size \(k \) with smallest possible covering radius
- Infinite search space!
Bootstrapping to a Good Algorithm

Use the covering radius r^* and a cover C^* of size k with $r(C^*) = r^*$ to find a good approximation that uses only sites as centers.

Algorithm 1 Greedy k-Center

1.0 procedure GreedyKCenter1.0 (S, k, C^*, r^*) // C^* covers S with optimal radius r^*

$C ← \emptyset$

for all $c ∈ C^*$ do

if c is within r^* of some $s ∈ S$ then

Select some s within r^* of c

Add s to C; delete s from S

Delete all s' within $2r^*$ of s from S

return C

end procedure
Bootstrapping to a Good Algorithm

Use the covering radius r^* and a cover C^* of size k with $r(C^*) = r^*$ to find a good approximation that uses only sites as centers.

Algorithm 2 Greedy k-Center 1.0

procedure $\text{GREEDYKCENTER1.0}(S, k, C^*, r^*)$ // C^* covers S with optimal radius r^*
\begin{align*}
C &\leftarrow \emptyset \\
\text{for all } c \in C^* \text{ do} \\
&\quad \text{if } c \text{ is within } r^* \text{ of some } s \in S \text{ then} \\
&\quad\quad \text{Select some } s \text{ within } r^* \text{ of } c \\
&\quad\quad \text{Add } s \text{ to } C; \text{ delete } s \text{ from } S \\
&\quad\quad \text{Delete all } s' \text{ within } 2r^* \text{ of } s \text{ from } S \\
&\quad \text{return } C \\
\end{align*}
end procedure
Better Bootstrapping : Dropping C^*

The selected sites form a cover of S of radius $2r^*$
Better Bootstrapping: Dropping C^*

The selected sites form a cover of S of radius $2r^*$

In fact, we don’t need C!

Algorithm 4

Greedy k-Center

1.5

procedure GreedyKCenter1.5 (S, k, r^*) // The optimal radius for k centers is r^*

$C \leftarrow \emptyset$

while $S \neq \emptyset$

do

Select some $s \in S$

Add s to C; delete s from S

Delete all s' within $2r^*$ of s from S

return C

end procedure

Knowing only r^* can yield a 2-approximation
Better Bootstrapping : Dropping C

The selected sites form a cover of S of radius $2r^*$

In fact, we don’t need C!

Just pick next s_i to be more than distance $2r^*$ from any site already in C.

Algorithm 5

```
procedure GreedyKCenter1.5 (S, k, r*)
    // The optimal radius for $k$ centers is $r^*$
    C ← ∅
    while S ≠ ∅
        Select some $s_t$ ∈ S
        Add $s_t$ to $C$; delete $s_t$ from S
        Delete all $s_t'$ within $2r^*$ of $s_t$ from S
    return $C$
end procedure
```

Knowing only r^* can yield a 2-approximation
Better Bootstrapping : Dropping C^*

The selected sites form a cover of S of radius $2r^*$
In fact, we don’t need C!
Just pick next s_i to be more than distance $2r^*$ from any site already in C.

Algorithm 6 Greedy k-Center 1.5

```plaintext
procedure GreedyKCenter1.5($S$, $k$, $r^*$) // The optimal radius for $k$ centers is $r^*$
    $C ← ∅$
    while $S ≠ ∅$ do
        Select some $s ∈ S$
        Add $s$ to $C$; delete $s$ from $S$
        Delete all $s'$ within $2r^*$ of $s$ from $S$
    return $C$
end procedure
```

Knowing only r^* can yield a 2-approximation
Better Bootstrapping : Dropping C^*

The selected sites form a cover of S of radius $2r^*$
In fact, we don’t need C!
Just pick next s_i to be more than distance $2r^*$ from any site already in C.

Algorithm 7 Greedy k-Center 1.5

```plaintext
procedure GREEDYKCENTER1.5($S$, $k$, $r^*$) // The optimal radius for $k$ centers is $r^*$
    $C ← ∅$
    while $S ≠ ∅$ do
        Select some $s ∈ S$
        Add $s$ to $C$; delete $s$ from $S$
        Delete all $s'$ within $2r^*$ of $s$ from $S$
    return $C$
end procedure
```

Knowing only r^* can yield a 2-approximation
Even Better Bootstrapping: Dropping \(r^* \)

Idea: Replace "Select some \(s \in S \)" with "Select \(s \in S \) furthest from \(C \)" (initialize \(C \) to any \(s \in S \))
Even Better Bootstrapping: Dropping r^*

Idea: Replace "Select some $s \in S$" with "Select $s \in S$ furthest from C" (initialize C to any $s \in S$)

Algorithm 9 Greedy k-Center 2.0

\begin{verbatim}
procedure GREEDYKCENTER2.0(S, k)
 if $k \geq |S|$ then
 return S
 $C \leftarrow$ some element $s \in S$; delete s from S
 while $|C| < k$ do
 Select some $s \in S$ of maximum distance from C
 Add s to C; delete s from S
 return C // Claim: C is a $2r^*$ cover of S
end procedure
\end{verbatim}
Why 2.0 Works

Theorem
If there is a set \(C' \) of \(k \) centers with covering radius \(r \), then GreedyKCenter2.0 yields a covering \(C \) of \(S \) of size \(k \) with \(r(C) \leq 2r \). Otherwise there is no set \(C' \) of \(k \) centers with \(r(C') = r \).
Why 2.0 Works

Theorem
If there is a set C' of k centers with covering radius r, then GreedyKCenter2.0 yields a covering C of S of size k with $r(C) \leq 2r$. Otherwise there is no set C' of k centers with $r(C') = r$.

Proof: It suffices to establish the following (obvious) property
Why 2.0 Works

Theorem

If there is a set C' of k centers with covering radius r, then GreedyKCenter2.0 yields a covering C of S of size k with $r(C) \leq 2r$. Otherwise there is no set C' of k centers with $r(C') = r$.

Proof: It suffices to establish the following (obvious) property

Property

If there is a set C' of k centers with $r(C') = r$, then at the end of any iteration of the while loop, either C is a cover of S of radius $2r$ or there is an $s \in S$ of distance greater than $2r$ from C.
Why 2.0 Works

Theorem
If there is a set C' of k centers with covering radius r, then GreedyKCenter2.0 yields a covering C of S of size k with $r(C) \leq 2r$. Otherwise there is no set C' of k centers with $r(C') = r$.

Proof: It suffices to establish the following (obvious) property

Property
If there is a set C' of k centers with $r(C') = r$, then at the end of any iteration of the while loop, either C is a cover of S of radius $2r$ or there is an $s \in S$ of distance greater than $2r$ from C.

Thus, after k iterations, either C is a cover of radius $2r$, or $C \cup \{s\}$ is a set of $k + 1$ elements, all of which are pairwise more than distance $2r$ apart, contradicting existence of C'
Why 2.0 Works

Theorem
If there is a set C' of k centers with covering radius r, then GreedyKCenter2.0 yields a covering C of S of size k with $r(C) \leq 2r$. Otherwise there is no set C' of k centers with $r(C') = r$.

Proof: It suffices to establish the following (obvious) property

Property
If there is a set C' of k centers with $r(C') = r$, then at the end of any iteration of the while loop, either C is a cover of S of radius $2r$ or there is an $s \in S$ of distance greater than $2r$ from C.

Thus, after k iterations, either C is a cover of radius $2r$, or $C \cup \{s\}$ is a set of $k + 1$ elements, all of which are pairwise more than distance $2r$ apart, contradicting existence of C'

Corollary
GreedyKCenter2.0 produces a set C of k centers with $r(C) \leq 2r^*$