Greedy Approximations: The Pricing Method

Algorithm Design & Analysis

Spring 2019
Outline
NP-Completeness Transcended

(xkcd #399)
Weighted Vertex Covers via the Pricing Method

The Problem: Given a graph $G = (V, E)$ with vertex weights $\{w_v : v \in V\}$, find a vertex cover S minimizing $w(S) = \sum_{v \in S} w_v$
Weighted Vertex Covers via the Pricing Method

The Problem: Given a graph $G = (V, E)$ with vertex weights \(\{w_v : v \in V\} \), find a vertex cover S minimizing $w(S) = \sum_{v \in S} w_v$

Idea: An edge $e = \{u, v\}$ pays a vertex v some price p_e to cover it.

Claim: For any vertex cover S and fair prices \(\{p_e : e \in E\} \) of prices is fair if, for each $v \in V$, \(\sum_{e = \{u, v\}} p_e \leq w_v \) (v is not overcharging).

Proof: \[\sum_{e \in E} p_e \leq \sum_{v \in S} \sum_{e = \{u, v\}} p_e \leq \sum_{v \in S} w_v = w(S) \]

So any minimum-weight vertex cover S^* satisfies $\sum_{e \in E} p_e \leq w(S^*)$.

That is, the sum of edge prices is a lower bound on the weight of a minimum weight vertex cover.
Weighted Vertex Covers via the Pricing Method

The Problem: Given a graph $G = (V, E)$ with vertex weights \{\(w_v : v \in V\}\), find a vertex cover S minimizing $w(S) = \sum_{v \in S} w_v$

Idea: An edge $e = \{u, v\}$ pays a vertex v some price p_e to cover it.

- The set \{\(p_e : e \in E\)\} of prices is fair if, for each $v \in V$
Weighted Vertex Covers via the Pricing Method

The Problem: Given a graph $G = (V, E)$ with vertex weights \{w_v : v \in V\}, find a vertex cover S minimizing $w(S) = \sum_{v \in S} w_v$

Idea: An edge $e = \{u, v\}$ pays a vertex v some price p_e to cover it.

- The set \{p_e : e \in E\} of prices is fair if, for each $v \in V$
 \[\sum_{e=\{u,v\}} p_e \leq w_v \] (v is not overcharging)
Weighted Vertex Covers via the Pricing Method

The Problem: Given a graph $G = (V, E)$ with vertex weights $\{w_v : v \in V\}$, find a vertex cover S minimizing $w(S) = \sum_{v \in S} w_v$

Idea: An edge $e = \{u, v\}$ pays a vertex v some price p_e to cover it.

- The set $\{p_e : e \in E\}$ of prices is fair if, for each $v \in V$ $\sum_{e=\{u,v\}} p_e \leq w_v$ (v is not overcharging)

Claim: For any vertex cover S and fair prices $\{p_e : e \in E\}$

$$\sum_{e \in E} p_e \leq w(S)$$
Weighted Vertex Covers via the Pricing Method

The Problem: Given a graph $G = (V, E)$ with vertex weights $\{w_v : v \in V\}$, find a vertex cover S minimizing $w(S) = \sum_{v \in S} w_v$

Idea: An edge $e = \{u, v\}$ pays a vertex v some price p_e to cover it.

- The set $\{p_e : e \in E\}$ of prices is *fair* if, for each $v \in V$
 $\sum_{e=\{u,v\}} p_e \leq w_v$ (v is not overcharging)

Claim: For *any* vertex cover S and fair prices $\{p_e : e \in E\}$

$$\sum_{e \in E} p_e \leq w(S)$$

Proof:

$$\sum_{e \in E} p_e \leq \sum_{v \in S} \sum_{e=\{u,v\}} p_e \leq \sum_{v \in S} w_v = w(S)$$
Weighted Vertex Covers via the Pricing Method

The Problem: Given a graph $G = (V, E)$ with vertex weights
$\{w_v : v \in V\}$, find a vertex cover S minimizing $w(S) = \sum_{v \in S} w_v$

Idea: An edge $e = \{u, v\}$ pays a vertex v some price p_e to cover it.

- The set $\{p_e : e \in E\}$ of prices is fair if, for each $v \in V$
 $\sum_{e=\{u,v\}} p_e \leq w_v$ (v is not overcharging)

Claim: For any vertex cover S and fair prices $\{p_e : e \in E\}$

$$\sum_{e \in E} p_e \leq w(S)$$

Proof:

$$\sum_{e \in E} p_e \leq \sum_{v \in S} \sum_{e=\{u,v\}} p_e \leq \sum_{v \in S} w_v = w(S)$$

So any minimum-weight vertex cover S^* satisfies $\sum_{e \in E} p_e \leq w(S^*)$
Weighted Vertex Covers via the Pricing Method

The Problem: Given a graph $G = (V, E)$ with vertex weights \(\{w_v : v \in V\} \), find a vertex cover S minimizing $w(S) = \sum_{v \in S} w_v$

Idea: An edge $e = \{u, v\}$ pays a vertex v some price p_e to cover it.

- The set $\{p_e : e \in E\}$ of prices is fair if, for each $v \in V$
 \[\sum_{e=\{u,v\}} p_e \leq w_v \] (v is not overcharging)

Claim: For any vertex cover S and fair prices $\{p_e : e \in E\}$

\[\sum_{e \in E} p_e \leq w(S) \]

Proof:

\[\sum_{e \in E} p_e \leq \sum_{v \in S} \sum_{e=\{u,v\}} p_e \leq \sum_{v \in S} w_v = w(S) \]

So any minimum-weight vertex cover S^* satisfies $\sum_{e \in E} p_e \leq w(S^*)$

That is, the sum of edge prices is a lower bound on the weight of a minimum weight vertex cover
A Price-Setting Greedy Algorithm

Idea:
Simultaneously build a vertex cover S while greedily setting (fair) prices; show that $\sum_{v \in S} w_v \leq 2 \sum_{e \in E} p_e$

Def'n:
A vertex v is tight if $\sum_{e \in \{u, v\}} p_e = w_v$

Algorithm 1
```
procedure PriceFixing (G = (V, E), w[−])
    Set all prices $p[e]$ to 0
    while Some edge $e$ has neither vertex tight
        do
            Select such an edge $e = \{u, v\}$
            Increase $p[e]$ until first of $u$ or $v$ becomes tight
        end
    end
    Return set $S$ of all tight nodes
end procedure
```

Observe:
The set S returned is a cover and the prices remain fair
A Price-Setting Greedy Algorithm

Idea: Simultaneously build a vertex cover S while greedily setting (fair) prices; show that $\sum_{v \in S} w_v \leq 2 \sum_{e \in E} p_e$
A Price-Setting Greedy Algorithm

Idea: Simultaneously build a vertex cover S while greedily setting (fair) prices; show that $\sum_{v \in S} w_v \leq 2 \sum_{e \in E} p_e$

Def’n: A vertex v is tight if $\sum_{e=\{u,v\}} p_e = w_v$
A Price-Setting Greedy Algorithm

Idea: Simultaneously build a vertex cover S while greedily setting (fair) prices; show that $\sum_{v \in S} w_v \leq 2 \sum_{e \in E} p_e$

Def’n: A vertex v is tight if $\sum_{e = \{u, v\}} p_e = w_v$

Algorithm 4 PriceFixing

procedure PRICEFIXING($G = (V, E), w[-]$)
 Set all prices $p[e]$ to 0
 while Some edge e has neither vertex tight do
 Select such an edge $e = \{u, v\}$
 Increase $p[e]$ until first of u or v becomes tight
 Return set S of all tight nodes
end procedure
A Price-Setting Greedy Algorithm

Idea: Simultaneously build a vertex cover S while greedily setting (fair) prices; show that $\sum_{v \in S} w_v \leq 2 \sum_{e \in E} p_e$

Def’n: A vertex v is tight if $\sum_{e = \{u,v\}} p_e = w_v$

Algorithm 5 PriceFixing

```plaintext
procedure PRICEFIXING(G = (V, E), w[-])
    Set all prices $p[e]$ to 0
    while Some edge $e$ has neither vertex tight do
        Select such an edge $e = \{u, v\}$
        Increase $p[e]$ until first of $u$ or $v$ becomes tight
    Return set $S$ of all tight nodes
end procedure
```

Observe: The set S returned is a cover and the prices remain fair
Claim: The S and $p[____]$ returned by PriceFixing satisfy

$$w(S) \leq 2 \sum_{e \in E} p_e$$
How Good is PriceFixing?

Claim: The S and $p[−]$ returned by PriceFixing satisfy

$$w(S) \leq 2 \sum_{e \in E} p_e$$

Proof:

$$w(S) = \sum_{v \in S} w_v = \sum_{v \in S} \sum_{e = \{u,v\}} p_e \leq 2 \sum_{e \in E} p_e$$

Corollary: The weight of S is within a factor of 2 of optimal:

$$w(S) \leq 2 w(S^\ast)$$
How Good is PriceFixing?

Claim: The S and $p[−]$ returned by PriceFixing satisfy

$$w(S) \leq 2 \sum_{e \in E} p_e$$

Proof:

$$w(S) = \sum_{v \in S} w_v = \sum_{v \in S} \sum_{e = \{u, v\}} p_e \leq 2 \sum_{e \in E} p_e$$

Corollary: The weight of S is within a factor of 2 of optimal:

$$w(S) \leq 2w(S^*)$$
The Pricing Method

Observations
The Pricing Method

Observations

- View p_e as the price paid by e to be covered by some vertex that covers e
The Pricing Method

Observations

- View p_e as the price paid by e to be covered by some vertex that covers e
- The v used to cover e is selected by greedy algorithm, but...
The Pricing Method

Observations

- View p_e as the price paid by e to be covered by some vertex that covers e
- The v used to cover e is selected by greedy algorithm, but
- Sum of prices paid by all edges incident with v are bounded
The Pricing Method

Observations

- View p_e as the price paid by e to be covered by some vertex that covers e
- The v used to cover e is selected by greedy algorithm, but
- Sum of prices paid by all edges incident with v are bounded
- In other words, the prices paid by edges are not exorbitant; more importantly:
The Pricing Method

Observations

- View p_e as the price paid by e to be covered by some vertex that covers e
- The v used to cover e is selected by greedy algorithm, but
- Sum of prices paid by all edges incident with v are bounded
- In other words, the prices paid by edges are not exorbitant; more importantly:
- The total paid by all edges of G using the cover produced by the greedy algorithm can be used to bound the weight of any other cover!
Observations

- View p_e as the price paid by e to be covered by some vertex that covers e
- The v used to cover e is selected by greedy algorithm, but
- Sum of prices paid by all edges incident with v are bounded
- In other words, the prices paid by edges are not exorbitant; more importantly:
 - The total paid by all edges of G using the cover produced by the greedy algorithm can be used to bound the weight of any other cover!

This idea of using a pricing method to measure goodness of approximation is quite powerful
A Greedy Set Cover Approximation

Input:

Idea:

• Unit Covering Cost: \(c_i = \frac{w_i}{|S_i|} \)

• Now build \(C \) by adding the \(S_i \) with lowest unit covering cost

• But, covering costs change as \(C \) is constructed

• Let \(R \) be the set of elements of \(U \) not covered by \(C \); then set \(c_i = \frac{w_i}{|S_i \cap R|} \)

• That is, the unit covering costs change over run of algorithm

A Greedy Set Cover Approximation

Input:

- Subsets \(S_1, \ldots, S_m \) of set \(U = \bigcup_{i=1}^{m} S_i = \{s_1, \ldots, s_n\} \) (every \(s_i \) is in some \(S_j \))
A Greedy Set Cover Approximation

Input:

- Subsets S_1, \ldots, S_m of set $U = \bigcup_{i=1}^{m} S_i = \{s_1, \ldots, s_n\}$ (every s_i is in some S_j)
- Weight w_i for each set S_i
A Greedy Set Cover Approximation

Input:
- Subsets S_1, \ldots, S_m of set $U = \bigcup_{i=1}^{m} S_i = \{s_1, \ldots, s_n\}$ (every s_i is in some S_j)
- Weight w_i for each set S_i

Problem: Find minimum weight set cover C: minimize $\sum_{S_i \in C} w_i$, subject to $U = \bigcup_{S_i \in C} S_i$
A Greedy Set Cover Approximation

Input:
- Subsets S_1, \ldots, S_m of set $U = \bigcup_{i=1}^{m} S_i = \{s_1, \ldots, s_n\}$ (every s_i is in some S_j)
- Weight w_i for each set S_i

Problem: Find minimum weight set cover C: minimize $\sum_{S_i \in C} w_i$, subject to $U = \bigcup_{S_i \in C} S_i$

Question: How can we be greedy?

Idea:
- Unit covering cost: let $c_i = \frac{w_i}{|S_i|}$
- Now build C by adding the S_i with lowest unit covering cost
- But, covering costs change as C is constructed
- Let R be the set of elements of U not covered by C; then set $c_i = \frac{w_i}{|S_i \cap R|}$
- That is, the unit covering costs change over run of algorithm
A Greedy Set Cover Approximation

Input:
- Subsets S_1, \ldots, S_m of set $U = \bigcup_{i=1}^m S_i = \{s_1, \ldots, s_n\}$ (every s_i is in some S_j)
- Weight w_i for each set S_i

Problem: Find minimum weight set cover C: minimize $\sum_{S_i \in C} w_i$, subject to $U = \bigcup_{S_i \in C} S_i$

Question: How can we be greedy?

- Idea: Unit Covering Cost: Let $c_i = w_i / |S_i|$
A Greedy Set Cover Approximation

Input:

- Subsets S_1, \ldots, S_m of set $U = \bigcup_{i=1}^m S_i = \{s_1, \ldots, s_n\}$ (every s_i is in some S_j)
- Weight w_i for each set S_i

Problem: Find minimum weight set cover C: minimize $\sum_{S_i \in C} w_i$, subject to $U = \bigcup_{S_i \in C} S_i$

Question: How can we be greedy?

- **Idea:** Unit Covering Cost: Let $c_i = w_i / |S_i|$
- Now build C by adding the S_i with lowest unit covering cost
A Greedy Set Cover Approximation

Input:
- Subsets S_1, \ldots, S_m of set $U = \bigcup_{i=1}^{m} S_i = \{s_1, \ldots, s_n\}$ (every s_i is in some S_j)
- Weight w_i for each set S_i

Problem: Find minimum weight set cover C: minimize $\sum_{S_i \in C} w_i$, subject to $U = \bigcup_{S_i \in C} S_i$

Question: How can we be greedy?

Idea: Unit Covering Cost : Let $c_i = w_i/|S_i|$
- Now build C by adding the S_i with lowest unit covering cost
- But, covering costs change as C is constructed
A Greedy Set Cover Approximation

Input:
- Subsets S_1, \ldots, S_m of set $U = \bigcup_{i=1}^m S_i = \{s_1, \ldots, s_n\}$ (every s_i is in some S_j)
- Weight w_i for each set S_i

Problem: Find minimum weight set cover C: minimize $\sum_{S_i \in C} w_i$, subject to $U = \bigcup_{S_i \in C} S_i$

Question: How can we be greedy?

- Idea: Unit Covering Cost: Let $c_i = w_i/|S_i|
- Now build C by adding the S_i with lowest unit covering cost
- But, covering costs change as C is constructed
- Let R be the set of elements of U not covered by C; then set $c_i = w_i/(|S_i \cap R|)$
A Greedy Set Cover Approximation

Input:
- Subsets \(S_1, \ldots, S_m\) of set \(U = \bigcup_{i=1}^{m} S_i = \{s_1, \ldots, s_n\}\) (every \(s_i\) is in some \(S_j\))
- Weight \(w_i\) for each set \(S_i\)

Problem: Find minimum weight set cover \(C\): minimize \(\sum_{S_i \in C} w_i\), subject to \(U = \bigcup_{S_i \in C} S_i\)

Question: How can we be greedy?

- **Idea:** Unit Covering Cost: Let \(c_i = w_i/|S_i|\)
- Now build \(C\) by adding the \(S_i\) with lowest unit covering cost
- But, covering costs change as \(C\) is constructed
- Let \(R\) be the set of elements of \(U\) not covered by \(C\); then set \(c_i = w_i/(|S_i \cap R|)\)
- That is, the unit covering costs change over run of algorithm
A Greedy Set Cover Algorithm

Algorithm 6

GreedySetCover

procedure

GreedySetCover(S_1, \ldots, S_n)

$R \leftarrow \emptyset$

while $R \neq \emptyset$

Select S_i that minimizes $w_i / (|S_i \cap R|)$

$R \leftarrow R - S_i$

Add S_i to C

return C

// C is a set cover of U

end procedure

• GreedySetCover can be $O(\log n)$ times larger than optimal set cover

• We’ll show that it’s no worse

Algorithm 7 GreedySetCover

procedure GreedySetCover(S_1, \ldots, S_n)
 $R \leftarrow U$
 $C = \emptyset$
 while $R \neq \emptyset$ do
 Select S_i that minimizes $w_i/(|S_i \cap R|)$
 $R \leftarrow R - S_i$
 Add S_i to C
 return C // C is a set cover of U
end procedure
Algorithm 8 GreedySetCover

```
procedure GREEDYSETCOVER(S_1, \ldots, S_n)
    R ← \emptyset
    C = \emptyset
    while R ≠ \emptyset do
        Select S_i that minimizes \( w_i / (|S_i \cap R|) \)
        R ← R − S_i
        Add S_i to C
    return C  // C is a set cover of U
end procedure
```

- GreedySetCover can be \(O(\log n) \) times larger than optimal set cover
A Greedy Set Cover Algorithm

Algorithm 9 GreedySetCover

procedure GREEDYSETCOVER(S₁, . . . , Sₙ)
 \(R \leftarrow U \)
 \(C = \emptyset \)
 \(\text{while } R \neq \emptyset \text{ do} \)
 Select \(S_i \) that minimizes \(w_i / (|S_i \cap R|) \)
 \(R \leftarrow R - S_i \)
 Add \(S_i \) to \(C \)
 \(\text{return } C \) // \(C \) is a set cover of \(U \)
end procedure

• GreedySetCover can be \(O(\log n) \) times larger than optimal set cover
• We’ll show that it’s no worse
Set Cover: An Example

Figure 11.6 An instance of the Set Cover Problem where the weights of sets are either 1 or 1 + ε for some small ε > 0. The greedy algorithm chooses sets of total weight 4, rather than the optimal solution of weight 2 + 2ε.

Note: Example can be extended to show $O(\log n)$ factor worse than optimal.
A Pricing Model

Idea: Charge each element \(s \in U \) the (current) unit cost of the set \(S_i \) that first covered it.
A Pricing Model

Idea: Charge each element $s \in U$ the (current) unit cost of the set S_i that *first covered it*: Pricing!!

\[s \text{ gets charged } c_s = \frac{w_i}{|S_i \cap R|} \text{ for first } S_i \text{ in algorithm to cover } s \]

Claim:

\[w(C) = \sum_{S_i \in C} w_i = \sum_{s \in U} c_s \]

Proof:

When S_i is added to C its weight is evenly divided among the as-yet uncovered elements of S_i

Goal:

Show that for some value H and for every S_k:

\[w_k \geq \frac{1}{H} \sum_{s \in S_k} c_s \]

[Greedy charges are not too large]

Then for any set cover C^*, we get

\[w(C^*) = \sum_{S_i \in C^*} w_i \geq \sum_{S_i \in C^*} \left(\frac{1}{H} \sum_{s \in S_i} c_s \right) \geq \left(\frac{1}{H} \right) \sum_{s \in U} c_s = \left(\frac{1}{H} \right) w(C) \tag{3} \]
A Pricing Model

Idea: Charge each element \(s \in U \) the (current) unit cost of the set \(S_i \) that *first covered it*:

- \(s \) gets charged \(c_s = w_i / (|S_i \cap R|) \) for first \(S_i \) in algorithm to cover \(s \)
A Pricing Model

Idea: Charge each element $s \in U$ the (current) unit cost of the set S_i that first covered it: Pricing!!

- s gets charged $c_s = w_i/(|S_i \cap R|)$ for first S_i in algorithm to cover s
- **Claim:** $w(C) = \sum_{S_i \in C} w_i = \sum_{s \in U} c_s$
A Pricing Model

Idea: Charge each element $s \in U$ the (current) unit cost of the set S_i that first covered it: Pricing!!

- s gets charged $c_s = w_i/(|S_i \cap R|)$ for first S_i in algorithm to cover s
- **Claim:** $w(C) = \sum_{S_i \in C} w_i = \sum_{s \in U} c_s$
- **Proof:** When S_i is added to C its weight is evenly divided among the as-yet uncovered elements of S_i
A Pricing Model

Idea: Charge each element \(s \in U \) the (current) unit cost of the set \(S_i \) that first covered it: \textbf{Pricing!!}

- \(s \) gets charged \(c_s = \frac{w_i}{|S_i \cap R|} \) for first \(S_i \) in algorithm to cover \(s \)
- **Claim:** \(w(C) = \sum_{S_i \in C} w_i = \sum_{s \in U} c_s \)
- **Proof:** When \(S_i \) is added to \(C \) its weight is evenly divided among the as-yet uncovered elements of \(S_i \)

Goal: Show that for some value \(H \) and for every \(S_k \):
\(w_k \geq (1/H) \sum_{s \in S_k} c_s \) [Greedy charges are not too large]
A Pricing Model

Idea: Charge each element \(s \in U \) the (current) unit cost of the set \(S_i \) that first covered it: Pricing!!

- \(s \) gets charged \(c_s = \frac{w_i}{|S_i \cap R|} \) for first \(S_i \) in algorithm to cover \(s \)
- **Claim**: \(w(C) = \sum_{S_i \in C} w_i = \sum_{s \in U} c_s \)
- **Proof**: When \(S_i \) is added to \(C \) its weight is evenly divided among the as-yet uncovered elements of \(S_i \)

Goal: Show that for some value \(H \) and for every \(S_k \):
\[
w_k \geq (1/H) \sum_{s \in S_k} c_s \quad \text{[Greedy charges are not too large]}
\]

Then for any set cover \(C^* \), we get
A Pricing Model

Idea: Charge each element \(s \in U \) the (current) unit cost of the set \(S_i \) that *first covered it*: Pricing!!

- \(s \) gets charged \(c_s = \frac{w_i}{|S_i \cap R|} \) for first \(S_i \) in algorithm to cover \(s \)
- **Claim:** \(w(C) = \sum_{S_i \in C} w_i = \sum_{s \in U} c_s \)
- **Proof:** When \(S_i \) is added to \(C \) its weight is evenly divided among the as-yet uncovered elements of \(S_i \)

Goal: Show that for *some* value \(H \) and for every \(S_k \):
\[
 w_k \geq \frac{1}{H} \sum_{s \in S_k} c_s \quad [\text{Greedy charges are not too large}]
\]

Then for *any* set cover \(C^* \), we get
\[
 w(C^*) = \sum_{S_i \in C^*} w_i \geq \sum_{S_i \in C^*} \left(\frac{1}{H} \right) \sum_{s \in S_i} c_s \quad (1)
\]
\[
 \geq \left(\frac{1}{H} \right) \sum_{s \in U} c_s = \left(\frac{1}{H} \right) \sum_{S_i \in C} w_i \quad (2)
\]
\[
 = \left(\frac{1}{H} \right) w(C) \quad (3)
\]
Goal: Show that for some value H and for every S_k:

\[\sum_{s \in S_k} c_s \leq H \]
An Accounting Scheme

Goal: Show that for some value H and for every S_k:

$$\sum_{s \in S_k} c_s \leq Hw_k$$
An Accounting Scheme

Goal: Show that for *some* value H and for *every* S_k:

$$\sum_{s \in S_k} c_s \leq Hw_k$$

Idea: Consider GreedySetCover from the point of view of S_k
An Accounting Scheme

Goal: Show that for *some* value H and for every S_k:

$$\sum_{s \in S_k} c_s \leq Hw_k$$

Idea: Consider GreedySetCover from the point of view of S_k
- Run GreedySetCover to find the order in which sets were added
An Accounting Scheme

Goal: Show that for *some* value H and for every S_k:

$$\sum_{s \in S_k} c_s \leq Hw_k$$

Idea: Consider GreedySetCover from the point of view of S_k

- Run GreedySetCover to find the order in which sets were added
- Relabel U so that s_1, \ldots, s_d are the elements of S_k *in the order they were covered by GreedySetCover* ($d = |S_k|$)
An Accounting Scheme

Goal: Show that for some value H and for every S_k:

$$\sum_{s \in S_k} c_s \leq Hw_k$$

Idea: Consider GreedySetCover from the point of view of S_k

- Run GreedySetCover to find the order in which sets were added
- Relabel U so that s_1, \ldots, s_d are the elements of S_k *in the order they were covered by GreedySetCover* ($d = |S_k|$)
- Rerun GreedySetCover: relabeling has no impact!
An Accounting Scheme

Goal: Show that for some value H and for every S_k:

$$\sum_{s \in S_k} c_s \leq H w_k$$

Idea: Consider GreedySetCover from the point of view of S_k

- Run GreedySetCover to find the order in which sets were added
- Relabel U so that s_1, \ldots, s_d are the elements of S_k in the order they were covered by GreedySetCover ($d = |S_k|$)
- Rerun GreedySetCover: relabeling has no impact!
- Now try to bound the costs $\{c_j = c_{s_j} : s_j \in S_k\}$
Bounding the Costs

Observations
Bounding the Costs

Observations

- When $s_j \in S_k$ first covered by some S_i in GSC, none of s_j, \ldots, s_d are yet covered
Observations

- When $s_j \in S_k$ first covered by some S_i in GSC, none of s_j, \ldots, s_d are yet covered
- So $|S_k \cap R| \geq (d - j + 1)$, thus $w_k/|S_k \cap R| \leq w_k/(d - j + 1)$
Bounding the Costs

Observations

- When \(s_j \in S_k \) first covered by some \(S_i \) in GSC, none of \(s_j, \ldots, s_d \) are yet covered
- So \(|S_k \cap R| \geq (d - j + 1)\), thus \(w_k/|S_k \cap R| \leq w_k/(d - j + 1)\)
- So \(c_j = w_i/|S_i \cap R| \leq w_k/|S_k \cap R| \leq w_k/(d - j + 1)\)
Bounding the Costs

Observations

• When $s_j \in S_k$ first covered by some S_i in GSC, none of s_j, \ldots, s_d are yet covered
• So $|S_k \cap R| \geq (d - j + 1)$, thus $w_k/|S_k \cap R| \leq w_k/(d - j + 1)$
• So $c_j = w_i/|S_i \cap R| \leq w_k/|S_k \cap R| \leq w_k/(d - j + 1)$
• Thus
Bounding the Costs

Observations

- When $s_j \in S_k$ first covered by some S_i in GSC, none of s_j, \ldots, s_d are yet covered

- So $|S_k \cap R| \geq (d - j + 1)$, thus $w_k / |S_k \cap R| \leq w_k / (d - j + 1)$

- So $c_j = w_i / |S_i \cap R| \leq w_k / |S_k \cap R| \leq w_k / (d - j + 1)$

- Thus

$$\sum_{s \in S_k} c_s = \sum_{j=1}^{d} c_j \leq \sum_{j=1}^{d} w_k / (d-j+1) = w_k \sum_{i=1}^{d} 1/i \text{ (note: } i = d-j+1)$$
Bounding the Costs

Observations

• When \(s_j \in S_k \) first covered by some \(S_i \) in GSC, none of \(s_j, \ldots, s_d \) are yet covered

• So \(|S_k \cap R| \geq (d - j + 1) \), thus \(w_k/|S_k \cap R| \leq w_k/(d - j + 1) \)

• So \(c_j = w_i/|S_i \cap R| \leq w_k/|S_k \cap R| \leq w_k/(d - j + 1) \)

• Thus

\[
\sum_{s \in S_k} c_s = \sum_{j=1}^{d} c_j \leq \sum_{j=1}^{d} w_k/(d-j+1) = w_k \sum_{i=1}^{d} 1/i \quad \text{(note: } i = d-j+1)\]

• So, letting \(H(d) = \sum_{i=1}^{d} 1/d \) gives \(\sum_{s \in S_k} c_s \leq H(d)w_k \)
Bounding the Costs

Observations

• When \(s_j \in S_k \) first covered by some \(S_i \) in GSC, none of \(s_j, \ldots, s_d \) are yet covered

• So \(|S_k \cap R| \geq (d - j + 1) \), thus \(w_k/|S_k \cap R| \leq w_k/(d - j + 1) \)

• So \(c_j = w_i/|S_i \cap R| \leq w_k/|S_k \cap R| \leq w_k/(d - j + 1) \)

• Thus

\[
\sum_{s \in S_k} c_s = \sum_{j=1}^{d} c_j \leq \sum_{j=1}^{d} w_k/(d-j+1) = w_k \sum_{i=1}^{d} 1/i \quad \text{(note: } i = d-j+1)\]

• So, letting \(H(d) = \sum_{i=1}^{d} 1/d \) gives \(\sum_{s \in S_k} c_s \leq H(d)w_k \)

• Now let \(d^* = \max_{k=1}^{k=m} |S_k| \), and \(H = H(d^*) \)
Putting It All Together

Theorem: GreedySetCover produces a set cover having weight within a factor of $H = H(d^*)$ of the optimum
Putting It All Together

Theorem: GreedySetCover produces a set cover having weight within a factor of $H = H(d^*)$ of the optimum

How big is $H(d^*)$?
Putting It All Together

Theorem: GreedySetCover produces a set cover having weight within a factor of $H = H(d^*)$ of the optimum

How big is $H(d^*)$?

Fact: $\ln(n + 1) \leq H(n) \leq 1 + \ln n$, so $H(d^*) \leq H(n) \in \Theta(\log n)$.
Putting It All Together

Theorem: GreedySetCover produces a set cover having weight within a factor of $H = H(d^*)$ of the optimum.

How big is $H(d^*)$?

Fact: $\ln(n + 1) \leq H(n) \leq 1 + \ln n$, so $H(d^*) \leq H(n) \in \Theta(\log n)$.

![Graph](image-url)

Figure 11.7 Upper and lower bounds for the Harmonic Function $H(n)$.
Observations
The Pricing Method

Observations

- View c_s as the price paid by s to be covered by S_i
The Pricing Method

Observations

- View c_s as the price paid by s to be covered by S_i
- S_i used to cover s is selected by greedy algorithm, but
The Pricing Method

Observations

- View c_s as the price paid by s to be covered by S_i
- S_i used to cover s is selected by greedy algorithm, but
- Sum of prices paid by elements of each S_k are bounded by a constant multiple of w_k
The Pricing Method

Observations

- View c_s as the price paid by s to be covered by S_i
- S_i used to cover s is selected by greedy algorithm, but
- Sum of prices paid by elements of each S_k are bounded by a constant multiple of w_k
- In other words, the prices paid by elements are not exorbitant; more importantly:
Observations

- View c_s as the price paid by s to be covered by S_i
- S_i used to cover s is selected by greedy algorithm, but
- Sum of prices paid by elements of each S_k are bounded by a constant multiple of w_k
- In other words, the prices paid by elements are not exorbitant; more importantly:
- The total paid by all elements in U using the cover produced by the greedy algorithm can be used to bound the value of any other cover!
The Pricing Method

Observations

- View c_s as the price paid by s to be covered by S_i
- S_i used to cover s is selected by greedy algorithm, but
- Sum of prices paid by elements of each S_k are bounded by a constant multiple of w_k
- In other words, the prices paid by elements are not exorbitant; more importantly:
 - The total paid by all elements in U using the cover produced by the greedy algorithm can be used to bound the value of any other cover!

This idea of using a pricing method to measure goodness of approximation is quite powerful
Approximation Via Reduction: Weighted Vertex Cover

The Problem: Given a graph $G = (V, E)$ with vertex weights w_v, find a vertex cover of low weight.
The Problem: Given a graph \(G = (V, E) \) with vertex weights \(w_v \), find a vertex cover of low weight.

Recall that SETCOVER can be used to solve VERTEXCOVER (even with weights).

Thus a minimum weight vertex cover of \(G \) corresponds to a minimum weight set cover of \(U \).

So GREEDYSETCOVER can be used to get a \(O(\log n) \) approximation for VERTEXCOVER.

But we did much better with a more finely-tuned pricing method!
Approximation Via Reduction: Weighted Vertex Cover

The Problem: Given a graph $G = (V, E)$ with vertex weights w_v, find a vertex cover of low weight. Recall that SETCOVER can be used to solve VERTEXCOVER (even with weights).

- For $G = (V, E)$, $U = E$ and the sets are $S_v = \{ e \in E : e = \{u, v\} \}$

- Thus a minimum weight vertex cover of G corresponds to a minimum weight set cover of U.

- So GREEDYSETCOVER can be used to get an $O(\log n)$ approximation for VERTEXCOVER.

- But we did much better with a more finely-tuned pricing method!
Approximation Via Reduction: Weighted Vertex Cover

The Problem: Given a graph \(G = (V, E) \) with vertex weights \(w_v \), find a vertex cover of low weight.
Recall that SETCOVER can be used to solve VERTEXCOVER (even with weights).

- For \(G = (V, E) \), \(U = E \) and the sets are
 \(S_v = \{ e \in E : e = \{u, v\} \} \)
- A set cover of \(U \) by \(S_{v_1}, \ldots S_{v_k} \) corresponds to a vertex cover of \(E \) by \(v_1, \ldots, v_k \)
Approximation Via Reduction: Weighted Vertex Cover

The Problem: Given a graph $G = (V, E)$ with vertex weights w_v, find a vertex cover of low weight
Recall that SETCOVER can be used to solve VERTEXCOVER (even with weights)

- For $G = (V, E)$, $U = E$ and the sets are $S_v = \{ e \in E : e = \{u, v\}\}$
- A set cover of U by S_{v_1}, \ldots, S_{v_k} corresponds to a vertex cover of E by v_1, \ldots, v_k
- Thus a minimum weight vertex cover of G corresponds to a minimum weight set cover of U
Approximation Via Reduction: Weighted Vertex Cover

The Problem: Given a graph $G = (V, E)$ with vertex weights w_v, find a vertex cover of low weight.

Recall that SETCOVER can be used to solve VERTEXCOVER (even with weights)

- For $G = (V, E)$, $U = E$ and the sets are $S_v = \{e \in E : e = \{u, v\}\}$
- A set cover of U by S_{v_1}, \ldots, S_{v_k} corresponds to a vertex cover of E by v_1, \ldots, v_k
- Thus a minimum weight vertex cover of G corresponds to a minimum weight set cover of U
- So GREEDYSETCOVER can be used to get a $O(\log n)$ approximation for VERTEXCOVER
Approximation Via Reduction: Weighted Vertex Cover

The Problem: Given a graph $G = (V, E)$ with vertex weights w_v, find a vertex cover of low weight.
Recall that SETCOVER can be used to solve VERTEXCOVER (even with weights).

- For $G = (V, E)$, $U = E$ and the sets are $S_v = \{e \in E : e = \{u, v\}\}$
- A set cover of U by $S_{v_1}, \ldots S_{v_k}$ corresponds to a vertex cover of E by v_1, \ldots, v_k
- Thus a minimum weight vertex cover of G corresponds to a minimum weight set cover of U
- So GREEDYSETCOVER can be used to get a $O(\log n)$ approximation for VERTEXCOVER.
- But we did much better with a more finely-tuned pricing method!