Greedy Approximations : k-Center

Algorithm Design & Analysis

Fall 2018
Outline
k-Center Problem

Input: $S = \{s_1, \ldots, s_n\} \subset \mathbb{R}^2$ and an integer k

Problem: Compute set C of k points in \mathbb{R}^2 that minimizes $\max_{s \in S} \{\text{dist}(s, C)\}$

$\text{dist}(s, C) = \min_{c \in C} \{|s - c|\}$

- C is an r-cover of S if $\text{dist}(s, C) \leq r$ for all $s \in S$.
- Given C, $r = \max_{s \in S} \{\text{dist}(s, C)\}$ is called the covering radius of C.
- Given k, we want a C of size k with smallest possible covering radius.

Infinite search space!
k-Center Problem

Input: \(S = \{s_1, \ldots, s_n\} \subseteq \mathbb{R}^2 \) and an integer \(k \)

Problem: Compute set \(C \) of \(k \) points in \(\mathbb{R}^2 \) that minimizes \(\max_{s \in S} \{dist(s, C)\} \)

- \(dist(s, C) = \min_{c \in C} \{|s - c|\} \)
k-Center Problem

Input: $S = \{s_1, \ldots, s_n\} \subset \mathbb{R}^2$ and an integer k

Problem: Compute set C of k points in \mathbb{R}^2 that minimizes $\max_{s \in S} \{\text{dist}(s, C)\}$

- $\text{dist}(s, C) = \min_{c \in C}\{|s - c|\}$
- C is an r-cover of S if $\text{dist}(s, C) \leq r$ for all $s \in S$.

Given C, $r = \max_{s \in S}\{\text{dist}(s, C)\}$ is called the covering radius of C.

Given k, we want a C of size k with smallest possible covering radius.

Infinite search space!
k-Center Problem

Input: $S = \{s_1, \ldots, s_n\} \subset \mathbb{R}^2$ and an integer k

Problem: Compute set C of k points in \mathbb{R}^2 that minimizes $\max_{s \in S}\{\text{dist}(s, C)\}$

- $\text{dist}(s, C) = \min_{c \in C}\{|s - c|\}$
- C is an r-cover of S if $\text{dist}(s, C) \leq r$ for all $s \in S$.
- Given C, $r = \max_{s \in S}\{\text{dist}(s, C)\}$ is called the covering radius of C
k-Center Problem

Input: $S = \{s_1, \ldots, s_n\} \subset \mathbb{R}^2$ and an integer k

Problem: Compute set C of k points in \mathbb{R}^2 that minimizes $\max_{s \in S}\{\text{dist}(s, C)\}$

- $\text{dist}(s, C) = \min_{c \in C}\{|s - c|\}$
- C is an r-cover of S if $\text{dist}(s, C) \leq r$ for all $s \in S$.
- Given C, $r = \max_{s \in S}\{\text{dist}(s, C)\}$ is called the covering radius of C.
- Given k, we want a C of size k with smallest possible covering radius.
k-Center Problem

Input: $S = \{s_1, \ldots, s_n\} \subset \mathbb{R}^2$ and an integer k

Problem: Compute set C of k points in \mathbb{R}^2 that minimizes $\max_{s \in S}\{\text{dist}(s, C)\}$

- $\text{dist}(s, C) = \min_{c \in C}\{|s - c|\}$
- C is an r-cover of S if $\text{dist}(s, C) \leq r$ for all $s \in S$.
- Given C, $r = \max_{s \in S}\{\text{dist}(s, C)\}$ is called the *covering radius* of C
- Given k, we want a C of size k with smallest possible covering radius
- Infinite search space!
Bootstrapping to a Good Algorithm

Use the covering radius \(r^* \) and a cover \(C^* \) of size \(k \) with \(r(C^*) = r^* \) to find a good approximation that uses only sites as centers.

Algorithm 1

```plaintext
procedure GreedyKCenter1.0 (S, k, C*, r*) // C* covers S with optimal radius r*
C ← ∅
for all c ∈ C* do
    if c is within r* of some s ∈ S then
        Select some s within r* of c
        Add s to C; delete s from S
    Delete all s′ within 2r* of s from S
return C
end procedure
```
Bootstrapping to a Good Algorithm

Use the covering radius r^* and a cover C^* of size k with $r(C^*) = r^*$ to find a good approximation that uses only sites as centers.

Algorithm 2 Greedy k-Center 1.0

```plaintext
procedure GREEDYKCENTER1.0($S$, $k$, $C^*$, $r^*$) // $C^*$ covers $S$ with optimal radius $r^*$
    $C ← \emptyset$
    for all $c ∈ C^*$ do
        if $c$ is within $r^*$ of some $s ∈ S$ then
            Select some $s$ within $r^*$ of $c$
            Add $s$ to $C$; delete $s$ from $S$
            Delete all $s'$ within $2r^*$ of $s$ from $S$
        return $C$
    end procedure
```
Better Bootstrapping: Dropping \(C^* \)

The selected sites form a cover of \(S \) of radius \(2r^* \)
Better Bootstrapping : Dropping C

The selected sites form a cover of S of radius $2r^*$.

In fact, we don’t need C!

Algorithm 4

Greedy k-Center

1.5

```plaintext
procedure GreedyKCenter1.5(S, k, r*)
    // The optimal radius for $k$ centers is $r$
    C ← ∅
    while $S$ ≠ ∅
        Select some $s$ ∈ $S$
        Add $s$ to $C$; delete $s$ from $S$
        Delete all $s'$ within $2r^*$ of $s$ from $S$
    return $C$
end procedure
```

Knowing only r^* can yield a 2-approximation.
Better Bootstrapping : Dropping C*

The selected sites form a cover of S of radius $2r^*$

In fact, we don’t need C!

Just pick next s_i to be more than distance $2r^*$ from any site already in C.

Algorithm 5

Greedy k-Center

1.5

```
procedure GreedyKCenter1.5(S, k, r*) // The optimal radius for k centers is r*
    C ← ∅
    while S ̸= ∅
        Select some $s$ ∈ S
        Add $s$ to $C$; delete $s$ from $S$
        Delete all $s'$ within $2r^*$ of $s$ from $S$
    return $C$
end procedure
```

Knowing only r^* can yield a 2-approximation.
Better Bootstrapping: Dropping C^*

The selected sites form a cover of S of radius $2r^*$

In fact, we don’t need C!

Just pick next s_i to be more than distance $2r^*$ from any site already in C.

Algorithm 6 Greedy k-Center 1.5

```plaintext
procedure GREEDYKCENTER1.5($S, k, r^*$) // The optimal radius for $k$ centers is $r^$

$C ← ∅$

while $S ≠ ∅$ do

Select some $s ∈ S$

Add $s$ to $C$; delete $s$ from $S$

Delete all $s'$ within $2r^*$ of $s$ from $S$

return $C$

end procedure
```
Better Bootstrapping: Dropping C^*

The selected sites form a cover of S of radius $2r^*$

In fact, we don’t need C!

Just pick next s_i to be more than distance $2r^*$ from any site already in C.

Algorithm 7 Greedy k-Center 1.5

```plaintext
procedure GREEDYKCENTER1.5($S, k, r^*$) // The optimal radius for $k$ centers is $r^*$
    $C \leftarrow \emptyset$
    while $S \neq \emptyset$ do
        Select some $s \in S$
        Add $s$ to $C$; delete $s$ from $S$
        Delete all $s'$ within $2r^*$ of $s$ from $S$
    return $C$
end procedure
```

Knowing only r^* can yield a 2-approximation
Even Better Bootstrapping : Dropping r^*

Idea: Replace "Select some $s \in S" with "Select $s \in S$ furthest from $C" (initialize C to any $s \in S$)
Even Better Bootstrapping : Dropping \(r^*\)

Idea: Replace "Select some \(s \in S\)" with "Select \(s \in S\) furthest from \(C\)" (initialize \(C\) to \(any s \in S\))

Algorithm 9 Greedy \(k\)-Center 2.0

\[
\begin{align*}
\text{procedure} & \quad \text{GREEDYKCENTER2.0}(S, k) \\
\text{if} & \quad k \geq |S| \text{ then} \\
& \quad \text{return } S \\
C & \leftarrow \text{some element } s \in S; \text{ delete } s \text{ from } S \\
\text{while} & \quad |C| < k \text{ do} \\
& \quad \text{Select some } s \in S \text{ of maximum distance from } C \\
& \quad \text{Add } s \text{ to } C; \text{ delete } s \text{ from } S \\
& \quad \text{return } C \quad \text{// Claim: } C \text{ is a } 2r^* \text{ cover of } S
\end{align*}
\]

end procedure
Why 2.0 Works

Theorem

If there is a set C' of k centers with covering radius r, then GreedyKCenter2.0 yields a covering C of S of size k with $r(C) \leq 2r$. Otherwise there is no set C' of k centers with $r(C') = r$.
Why 2.0 Works

Theorem
If there is a set \(C' \) of \(k \) centers with covering radius \(r \), then GreedyKCenter2.0 yields a covering \(C \) of \(S \) of size \(k \) with \(r(C) \leq 2r \). Otherwise there is no set \(C' \) of \(k \) centers with \(r(C') = r \).

Proof: It suffices to establish the following (obvious) property
Why 2.0 Works

Theorem
If there is a set C' of k centers with covering radius r, then GreedyKCenter2.0 yields a covering C of S of size k with $r(C) \leq 2r$. Otherwise there is no set C' of k centers with $r(C') = r$.

Proof: It suffices to establish the following (obvious) property

Property
If there is a set C' of k centers with $r(C') = r$, then at the end of any iteration of the while loop, either C is a cover of S of radius $2r$ or there is an $s \in S$ of distance greater than $2r$ from C.
Why 2.0 Works

Theorem
If there is a set C' of k centers with covering radius r, then GreedyKCenter2.0 yields a covering C of S of size k with $r(C) \leq 2r$. Otherwise there is no set C' of k centers with $r(C') = r$.

Proof: It suffices to establish the following (obvious) property

Property
If there is a set C' of k centers with $r(C') = r$, then at the end of any iteration of the while loop, either C is a cover of S of radius $2r$ or there is an $s \in S$ of distance greater than $2r$ from C.

Thus, after k iterations, either C is a cover of radius $2r$, or $C \cup \{s\}$ is a set of $k + 1$ elements, all of which are pairwise more than distance $2r$ apart, contradicting existence of C'
Why 2.0 Works

Theorem
If there is a set C' of k centers with covering radius r, then GreedyKCenter2.0 yields a covering C of S of size k with $r(C) \leq 2r$. Otherwise there is no set C' of k centers with $r(C') = r$.

Proof: It suffices to establish the following (obvious) property

Property
If there is a set C' of k centers with $r(C') = r$, then at the end of any iteration of the while loop, either C is a cover of S of radius $2r$ or there is an $s \in S$ of distance greater than $2r$ from C.
Thus, after k iterations, either C is a cover of radius $2r$, or $C \cup \{s\}$ is a set of $k + 1$ elements, all of which are pairwise more than distance $2r$ apart, contradicting existence of C'

Corollary
GreedyKCenter2.0 produces a set C of k centers with $r(C) \leq 2r^*$