NP-Completeness Proofs

Algorithm Design & Analysis

Spring 2018
NP-Completeness Recap

A decision problem X is NP-Complete if

- $X \in \text{NP}$
- For every $Y \in \text{NP}$, $Y \leq_p X$

Theorem: Let Y be any NP-Complete problem. Then $Y \in \text{P}$ if and only if $\text{P} = \text{NP}$

There are two ways to show a problem Y is NP-Complete

Definition

- Show that $Y \in \text{NP}$
- Show that for all $X \in \text{NP}$, $X \leq_p Y$

Reduction

- Show that $Y \in \text{NP}$
- Show that $Z \leq_p Y$ for some for some NP-Complete problem Z
NP-Completeness Recap

A decision problem X is *NP-Complete* if

- $X \in NP$
- For every $Y \in NP$, $Y \leq_p X$

Theorem:
Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

There are two ways to show a problem Y is NP-Complete

Definition
- Show that $Y \in NP$
- Show that for all $X \in NP$, $X \leq_p Y$

Reduction
- Show that $Y \in NP$
- Show that $Z \leq_p Y$ for some for some NP-Complete problem Z
A decision problem X is \textit{NP-Complete} if
\begin{itemize}
 \item $X \in NP$
 \item For every $Y \in NP$, $Y \leq_p X$
\end{itemize}

\textbf{Theorem:} Let Y be \textit{any} NP-Complete problem. Then $Y \in P$ if and only if $P = NP$
NP-Completeness Recap

- A decision problem X is NP-Complete if
 - $X \in NP$
 - For every $Y \in NP$, $Y \leq_p X$

- **Theorem:** Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

- There are two ways to show a problem Y is NP-Complete

 Definition
 - Show that $Y \in NP$
 - Show that for all $X \in NP$, $X \leq_p Y$
NP-Completeness Recap

- A decision problem X is \textit{NP-Complete} if
 - $X \in NP$
 - For every $Y \in NP$, $Y \leq_p X$

- \textbf{Theorem:} Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

- There are two ways to show a problem Y is NP-Complete
 - \textit{Definition}:
 - Show that $Y \in NP$
 - Show that for all $X \in NP$, $X \leq_p Y$
NP-Completeness Recap

• A decision problem X is NP-Complete if
 • $X \in NP$
 • For every $Y \in NP$, $Y \leq_p X$

• **Theorem**: Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

• There are two ways to show a problem Y is NP-Complete

 Definition
 • Show that $Y \in NP$
 • Show that for all $X \in NP$, $X \leq_p Y$

 Reduction
 • Show that $Y \in NP$
A decision problem X is \textit{NP-Complete} if
- $X \in \text{NP}$
- For every $Y \in \text{NP}$, $Y \leq_p X$

\textbf{Theorem:} Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = \text{NP}$

There are two ways to show a problem Y is NP-Complete

\textit{Definition}
- Show that $Y \in \text{NP}$
- Show that for all $X \in \text{NP}$, $X \leq_p Y$

\textit{Reduction}
- Show that $Y \in \text{NP}$
- Show that $Z \leq_p Y$ for some NP-Complete problem Z
Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.
Boolean Circuits

A boolean circuit is a DAG in which

Theorem: Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C that can be produced from A in poly-time such that C produces a 1 if and only if A does.

CIRCUITSAT: Given a boolean circuit C with n input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that C returns 1 (true/yes)?

Theorem: CIRCUITSAT is NP-complete
Boolean Circuits

A *boolean circuit* is a DAG in which

- Sources represent input bits

Theorem:
Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C that can be produced from A in poly-time such that C produces a 1 if and only if A does.

CIRCUIT SAT:
Given a boolean circuit C with n input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that C returns 1 (true/yes)?

Theorem:
CIRCUIT SAT is NP-complete
Boolean Circuits

A boolean circuit is a DAG in which
- Sources represent input bits
- Sinks represent output bits
Boolean Circuits

A boolean circuit is a DAG in which

- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\land, \lor, \neg)

Theorem: Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C that can be produced from A in poly-time such that C produces a 1 if and only if A does.

CIRCUITSAT: Given a boolean circuit C with n input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that C returns 1 (true/yes)?

Theorem: CIRCUITSAT is NP-complete
A boolean circuit is a DAG in which

- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\land, \lor, \neg)

Theorem: Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C that can be produced from A in poly-time such that C produces a 1 if and only if A does
Boolean Circuits

A boolean circuit is a DAG in which

- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\land, \lor, \lnot)

Theorem: Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C that can be produced from A in poly-time such that C produces a 1 if and only if A does

CIRCUITSAT: Given a boolean circuit C with n input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that C returns 1 (true/yes)?
A *boolean circuit* is a DAG in which
- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\land, \lor, \neg)

Theorem: Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C that can be produced from A in poly-time such that C produces a 1 if and only if A does

CIRCUITSAT: Given a boolean circuit C with n input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that C returns 1 (true/yes)?

Theorem: CIRCUITSAT is NP-complete
From CIRCUITSAT to ATMOST3SAT

Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.
From CIRCUITSAT to ATMOST3SAT

Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.

Theorem
ATMOST3SAT is NP-complete.
From CIRCUITSAT to ATMOST3SAT

Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.

Theorem
ATMOST3SAT is NP-complete.

Idea
Note that ATMOST3SAT is in NP. We show that CIRCUITSAT \leq_p ATMOST3SAT.
From CIRCUITSAT to ATMOST3SAT

Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.

Theorem
ATMOST3SAT is NP-complete.

Idea
Note that ATMOST3SAT is in NP. We show that CIRCUITSAT \leq_p ATMOST3SAT.

- Let C be a boolean circuit. We’ll build formula Φ_C such that C is satisfiable if and only if Φ_C is satisfiable (or empty).
From CIRCUITSAT to ATMOST3SAT

Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.

Theorem
ATMOST3SAT is NP-complete.

Idea
Note that ATMOST3SAT is in NP. We show that CIRCUITSAT \leq_P ATMOST3SAT.

- Let C be a boolean circuit. We’ll build formula Φ_C such that C is satisfiable if and only if Φ_C is satisfiable (or empty).
- But first we’ll develop some gadgets
Some building blocks
Gadget Design

Some building blocks

- If C is a \neg-gate v with incoming edge uv:

$$\Phi_C = (x_v \lor \neg x_u) \land (\neg x_v \lor x_u \lor x_w)$$

- If C is an \lor-gate v with incoming edges uv and wv:

$$\Phi_C = (x_v \lor \neg x_u) \land (x_v \lor \neg x_w) \land (\neg x_v \lor x_u \lor x_w)$$

- If C is an \land-gate v with incoming edges uv and wv:

$$\Phi_C = (\neg x_v \lor x_u) \land (\neg x_v \lor x_w) \land (x_v \lor \neg x_u \lor \neg x_w)$$

In each case:

- Any set of values for u, v, and w consistent with the function of gate C yields an assignment of values to x_u, x_v, x_w that satisfies Φ_C.

- An assignment of values to x_u, x_v, x_w that satisfies Φ_C yields values to x_u, x_v, x_w that is consistent with the function of gate C.
Gadget Design

Some building blocks

• If C is a \neg-gate with incoming edge uv:
 \[
 \Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)
 \]

In each case

• Any set of values for u, v, and w consistent with the function of gate C,
 yields an assignment of values to x_u, x_v, x_w that satisfies Φ_C

• An assignment of values to x_u, x_v, x_w that satisfies Φ_C
 yields values to x_u, x_v, x_w that is consistent with the function of gate C.
Some building blocks

- If C is a \neg-gate v with incoming edge uv:
 \[
 \Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)
 \]

- If C is an \lor-gate v with incoming edges uv and wv:

In each case,
- Any set of values for u, v, and w consistent with the function of gate C yields an assignment of values to x_u, x_v, x_w that satisfies Φ_C.
- An assignment of values to x_u, x_v, x_w that satisfies Φ_C yields values to x_u, x_v, x_w that is consistent with the function of gate C.

Gadget Design

Some building blocks

• If C is a \neg-gate v with incoming edge uv:
 \[\Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u) \]

• If C is an \lor-gate v with incoming edges uv and wv:
 \[\Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor x_w) \]
Some building blocks

- If \(C \) is a \(\neg \)-gate \(v \) with incoming edge \(uv \):
 \[
 \Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)
 \]

- If \(C \) is an \(\lor \)-gate \(v \) with incoming edges \(uv \) and \(wv \):
 \[
 \Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor x_w)
 \]

- If \(C \) is an \(\land \)-gate \(v \) with incoming edges \(uv \) and \(wv \):
Some building blocks

- If C is a \neg-gate v with incoming edge uv:
 \[
 \Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)
 \]

- If C is an \lor-gate v with incoming edges uv and wv:
 \[
 \Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor x_w)
 \]

- If C is an \land-gate v with incoming edges uv and wv:
 \[
 \Phi_C = (\bar{x}_v \lor x_u) \land (\bar{x}_v \lor x_w) \land (x_v \lor \bar{x}_u \lor \bar{x}_w)
 \]
Some building blocks

- If C is a \neg-gate v with incoming edge uv:
 \[\Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u) \]

- If C is an \lor-gate v with incoming edges uv and wv:
 \[\Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor x_w) \]

- If C is an \land-gate v with incoming edges uv and wv:
 \[\Phi_C = (\bar{x}_v \lor x_u) \land (\bar{x}_v \lor x_w) \land (x_v \lor \bar{x}_u \lor \bar{x}_w) \]

In each case...

The formulas above describe the behavior of each type of gate C in terms of the incoming edges and variables x_u, x_v, and x_w. Any set of values for u, v, and w consistent with the function of gate C yields an assignment of values to x_u, x_v, and x_w that satisfies Φ_C. Conversely, any assignment of values to x_u, x_v, and x_w that satisfies Φ_C yields values to u, v, and w that are consistent with the function of gate C. This allows for the construction of complex circuits from these basic building blocks.
Gadget Design

Some building blocks

• If C is a \neg-gate v with incoming edge uv:
 \[\Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u) \]

• If C is an \lor-gate v with incoming edges uv and wv:
 \[\Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor x_w) \]

• If C is an \land-gate v with incoming edges uv and wv:
 \[\Phi_C = (\bar{x}_v \lor x_u) \land (\bar{x}_v \lor x_w) \land (x_v \lor \bar{x}_u \lor \bar{x}_w) \]

In each case

• Any set of values for u, v, and w consistent with the function of gate C, yields an assignment of values to x_u, x_v, x_w that satisfies Φ_C
Gadget Design

Some building blocks

- If C is a \neg-gate v with incoming edge uv:
 \[\Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u) \]
- If C is an \lor-gate v with incoming edges uv and wv:
 \[\Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor x_w) \]
- If C is an \land-gate v with incoming edges uv and wv:
 \[\Phi_C = (\bar{x}_v \lor x_u) \land (\bar{x}_v \lor x_w) \land (x_v \lor \bar{x}_u \lor \bar{x}_w) \]

In each case

- Any set of values for u, v, and w consistent with the function of gate C, yields an assignment of values to x_u, x_v, x_w that satisfies Φ_C
- An assignment of values to x_u, x_v, x_w that satisfies Φ_C yields values to x_u, x_v, x_w that is consistent with the function of gate C.

We need any satisfying assignment for Φ_C to ensure that output bit equals 1 and that fixed input bits of C are set properly:

- For fixed input bit v in C: if v is set to 1, $\Phi_C = (x_v)$, else $\Phi_C = (\overline{x_v})$.

Let's look at an example....

Claim For any boolean circuit C with 1 output bit, satisfying assignments of C yield satisfying assignments of Φ_C (each x_v gets value of v) and vice-versa.
We need any satisfying assignment for Φ_C to ensure that output bit equals 1 and that fixed input bits of C are set properly:

- For fixed input bit v in C: if v is set to 1, $\Phi_C = (x_v)$, else $\Phi_C = (\overline{x}_v)$.

Let's look at an example....
Final Gadgets

We need any satisfying assignment for Φ_C to ensure that output bit equals 1 and that fixed input bits of C are set properly:

- For fixed input bit v in C: if v is set to 1, $\Phi_C = (x_v)$, else $\Phi_C = (\overline{x_v})$.
- For output bit v of C, $\Phi_C = (x_v)$
Final Gadgets

We need any satisfying assignment for Φ_C to ensure that output bit equals 1 and that fixed input bits of C are set properly:

- For fixed input bit v in C: if v is set to 1, $\Phi_C = (x_v)$, else $\Phi_C = (\overline{x_v})$.
- For output bit v of C, $\Phi_C = (x_v)$

Let’s look at an example....
We need any satisfying assignment for Φ_C to ensure that output bit equals 1 and that fixed input bits of C are set properly:

- For fixed input bit v in C: if v is set to 1, $\Phi_C = (x_v)$, else $\Phi_C = (\bar{x}_v)$.
- For output bit v of C, $\Phi_C = (x_v)$

Let’s look at an example....

Claim

For any boolean circuit C with 1 output bit, satisfying assignments of C yield satisfying assignments of Φ_C (each x_v gets value of v) and vice-versa.
Proof that CIRCUITSAT \leq_p ATMOST3SAT

C satisfiable $\Rightarrow \Phi_C$ satisfiable
Proof that \text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}

\[C \text{ satisfiable} \implies \Phi_C \text{ satisfiable} \]

Proof:

\[\text{A satisfying assignment to the inputs of } C \text{ yields values for all other nodes of } C \]
\[\text{The output node gets value } true \]
\[\text{For each internal node of } \Phi_C, \text{ the set of corresponding clauses are all satisfied (by construction)} \]
\[\text{Since the output node has value } true, \text{ the single clause of } \Phi_C \text{ corresponding to it does also} \]
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

C satisfiable $\Rightarrow \Phi_C$ satisfiable

Proof:
- A satisfying assignment to the inputs of C yields values for all other nodes of C
Proof that \(\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT} \)

\(C \) satisfiable \(\Rightarrow \) \(\Phi_C \) satisfiable

Proof:

- A satisfying assignment to the inputs of \(C \) yields values for all other nodes of \(C \)
- The output node gets value true
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

C satisfiable $\Rightarrow \Phi_C$ satisfiable

Proof:
- A satisfying assignment to the inputs of C yields values for all other nodes of C
- The output node gets value true
- For each internal node of Φ_C, the set of corresponding clauses are all satisfied (by construction)
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

C satisfiable $\Rightarrow \Phi_C$ satisfiable

Proof:
- A satisfying assignment to the inputs of C yields values for all other nodes of C
- The output node gets value true
- For each internal node of Φ_C, the set of corresponding clauses are all satisfied (by construction)
- Since the output node has value true, the single clause of Φ_C corresponding to it does also
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Φ_C satisfiable \Rightarrow C satisfiable
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Φ_C satisfiable \Rightarrow C satisfiable

- Assume we have a satisfying assignment S for Φ_C. S makes each clause of Φ_C true
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Φ_C satisfiable \Rightarrow C satisfiable

- Assume we have a satisfying assignment S for Φ_C. S makes each clause of Φ_C true
- Assign to each input bit v of C the value of x_v in S
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Φ_C satisfiable \Rightarrow C satisfiable

- Assume we have a satisfying assignment S for Φ_C. S makes each clause of Φ_C true
- Assign to each input bit v of C the value of x_v in S
- This induces values on every other node of C.
Proof that CIRCUITSAT \leq_p ATMOST3SAT

Φ_C satisfiable \Rightarrow C satisfiable

- Assume we have a satisfying assignment S for Φ_C. S makes each clause of Φ_C true
- Assign to each input bit v of C the value of x_v in S
- This induces values on every other node of C.
- By construction of Φ_C the values induced on any node v is the value of x_v in S
Proof that CIRCUITSAT ≤ₚ ATMOST3SAT

\(\Phi_C \) satisfiable \(\Rightarrow \) \(C \) satisfiable

- Assume we have a satisfying assignment \(S \) for \(\Phi_C \). \(S \) makes each clause of \(\Phi_C \) true
- Assign to each input bit \(v \) of \(C \) the value of \(x_v \) in \(S \)
- This induces values on every other node of \(C \).
- By construction of \(\Phi_C \) the values induced on any node \(v \) is the value of \(x_v \) in \(S \)
- In particular, the output bit \(t \) of \(C \) gets value 1, since \((x_t)\) is a clause of \(\Phi_C \)
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Φ_C satisfiable \Rightarrow C satisfiable

- Assume we have a satisfying assignment S for Φ_C. S makes each clause of Φ_C true
- Assign to each input bit v of C the value of x_v in S
- This induces values on every other node of C
- By construction of Φ_C the values induced on any node v is the value of x_v in S
- In particular, the output bit t of C gets value 1, since (x_t) is a clause of Φ_C
- Thus C is satisfiable
3SAT is NP-Complete

$3SAT \in NP$. Let’s show that $\text{ATMOST3SAT} \leq_p 3SAT$.

The Gadget:

Let z_1, z_2, z_3, z_4 be boolean variables. Let

$\Phi_1 = (\overline{z}_1 \lor z_3 \lor z_4) \land (\overline{z}_1 \lor \overline{z}_3 \lor z_4) \land (\overline{z}_1 \lor z_3 \lor \overline{z}_4) \land (\overline{z}_1 \lor \overline{z}_3 \lor \overline{z}_4)$

$\Phi_2 = (\overline{z}_2 \lor z_3 \lor z_4) \land (\overline{z}_2 \lor \overline{z}_3 \lor z_4) \land (\overline{z}_2 \lor z_3 \lor \overline{z}_4) \land (\overline{z}_2 \lor \overline{z}_3 \lor \overline{z}_4)$

Claim: $\Phi_1 \land \Phi_2$ is satisfiable exactly when $z_1 = z_2 = 0$.

Let $\Phi \in \text{ATMOST3SAT}$, and let z_1, \ldots, z_4 be 4 variables NOT occurring in Φ, and let C be a clause of Φ with at most 2 literals.

- If $C = (l_1 \lor l_2)$, replace C with $C' = (l_1 \lor l_2 \lor z_1)$
- If $C = (l_1)$, replace C with $C' = (l_1 \lor z_1 \lor z_2)$

Now add $\Phi_1 \land \Phi_2$ and call the modified expression Φ'. Claim: Φ' is satisfiable if and only if Φ' is satisfiable.
3SAT is NP-Complete

3SAT ∈ NP. Let’s show that ATMOST3SAT ≤_p 3SAT.

The Gadget: Let z_1, z_2, z_3, z_4 be boolean variables. Let
3SAT is NP-Complete

3SAT ∈ NP. Let’s show that ATMOST3SAT ≤p 3SAT.

The Gadget: Let z_1, z_2, z_3, z_4 be boolean variables. Let

$$
\Phi_1 = (\bar{z}_1 \lor z_3 \lor z_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_1 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor \bar{z}_4)
$$

$$
\Phi_2 = (\bar{z}_2 \lor z_3 \lor z_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_2 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor \bar{z}_4)
$$
3SAT is NP-Complete

3SAT ∈ \textit{NP}. Let’s show that \textit{ATMOST3SAT} \leq_p 3SAT.

\textbf{The Gadget:} Let \(z_1, z_2, z_3, z_4\) be boolean variables. Let

\[
\Phi_1 = (\bar{z}_1 \lor z_3 \lor z_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_1 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor \bar{z}_4)
\]

\[
\Phi_2 = (\bar{z}_2 \lor z_3 \lor z_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_2 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor \bar{z}_4)
\]

\textbf{Claim:} \(\Phi_1 \land \Phi_2\) is satisfiable exactly when \(z_1 = z_2 = 0\)
3SAT is NP-Complete

3SAT ∈ NP. Let’s show that ATMOST3SAT \leq_p 3SAT.

The Gadget: Let \(z_1, z_2, z_3, z_4 \) be boolean variables. Let

\[
\Phi_1 = (\bar{z}_1 \lor z_3 \lor z_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_1 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor \bar{z}_4)
\]

\[
\Phi_2 = (\bar{z}_2 \lor z_3 \lor z_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_2 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor \bar{z}_4)
\]

Claim: \(\Phi_1 \land \Phi_2 \) is satisfiable exactly when \(z_1 = z_2 = 0 \)

Let \(\Phi \in ATMOST3SAT \), and let \(z_1, \ldots z_4 \) be 4 variables NOT occurring in \(\Phi \), and let \(C \) be a clause of \(\Phi \) with at most 2 literals.
3SAT is NP-Complete

3SAT ∈ NP. Let’s show that ATMOST3SAT ≤ₚ 3SAT.

The Gadget: Let \(z_1, z_2, z_3, z_4\) be boolean variables. Let

\[
\Phi_1 = (\bar{z}_1 \lor z_3 \lor z_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_1 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor \bar{z}_4)
\]

\[
\Phi_2 = (\bar{z}_2 \lor z_3 \lor z_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_2 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor \bar{z}_4)
\]

Claim: \(\Phi_1 \land \Phi_2\) is satisfiable exactly when \(z_1 = z_2 = 0\)

Let \(\Phi \in ATMOST3SAT\), and let \(z_1, \ldots, z_4\) be 4 variables NOT occurring in \(\Phi\), and let \(C\) be a clause of \(\Phi\) with at most 2 literals.

- If \(C = (l_1 \lor l_2)\), replace \(C\) with \(C' = (l_1 \lor l_2 \lor z_1)\)
3SAT is NP-Complete

3SAT ∈ NP. Let’s show that ATMOST3SAT ≤p 3SAT.

The Gadget: Let z_1, z_2, z_3, z_4 be boolean variables. Let

$\Phi_1 = (\bar{z}_1 \lor z_3 \lor z_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_1 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor \bar{z}_4)$

$\Phi_2 = (\bar{z}_2 \lor z_3 \lor z_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_2 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor \bar{z}_4)$

Claim: $\Phi_1 \land \Phi_2$ is satisfiable exactly when $z_1 = z_2 = 0$

Let $\Phi \in ATMOST3SAT$, and let z_1, \ldots, z_4 be 4 variables NOT occurring in Φ, and let C be a clause of Φ with at most 2 literals.

- If $C = (l_1 \lor l_2)$, replace C with $C' = (l_1 \lor l_2 \lor z_1)$
- If $C = (l_1)$, replace C with $C' = (l_1 \lor z_1 \lor z_2)$
3SAT is NP-Complete

3SAT \in NP. Let’s show that ATMOST3SAT \leq_p 3SAT.

The Gadget: Let \(z_1, z_2, z_3, z_4 \) be boolean variables. Let

\[
\Phi_1 = (\bar{z}_1 \lor z_3 \lor z_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_1 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor \bar{z}_4)
\]

\[
\Phi_2 = (\bar{z}_2 \lor z_3 \lor z_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_2 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor \bar{z}_4)
\]

Claim: \(\Phi_1 \land \Phi_2 \) is satisfiable exactly when \(z_1 = z_2 = 0 \)

Let \(\Phi \in ATMOST3SAT \), and let \(z_1, \ldots z_4 \) be 4 variables NOT occurring in \(\Phi \), and let \(C \) be a clause of \(\Phi \) with at most 2 literals.

- If \(C = (l_1 \lor l_2) \), replace \(C \) with \(C' = (l_1 \lor l_2 \lor z_1) \)
- If \(C = (l_1) \), replace \(C \) with \(C' = (l_1 \lor z_1 \lor z_2) \)
- Now add \(\Phi_1 \land \Phi_2 \) and call the modified expression \(\Phi' \).
3SAT is NP-Complete

3SAT \in NP. Let’s show that ATMOST3SAT \leq_p 3SAT.

The Gadget: Let z_1, z_2, z_3, z_4 be boolean variables. Let

$\Phi_1 = (\bar{z}_1 \lor z_3 \lor z_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_1 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor \bar{z}_4)$

$\Phi_2 = (\bar{z}_2 \lor z_3 \lor z_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_2 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor \bar{z}_4)$

Claim: $\Phi_1 \land \Phi_2$ is satisfiable exactly when $z_1 = z_2 = 0$

Let $\Phi \in$ ATMOST3SAT, and let z_1, \ldots, z_4 be 4 variables NOT occurring in Φ, and let C be a clause of Φ with at most 2 literals.

- If $C = (l_1 \lor l_2)$, replace C with $C' = (l_1 \lor l_2 \lor z_1)$
- If $C = (l_1)$, replace C with $C' = (l_1 \lor z_1 \lor z_2)$
- Now add $\Phi_1 \land \Phi_2$ and call the modified expression Φ'.

Claim: Φ' is satisfiable if and only if Φ' is satisfiable.
We’ve established that all of the following problems are NP-Complete
NP-Complete Problems So Far

We’ve established that all of the following problems are NP-Complete

- CIRCUITSAT : direct proof from definition of NP-Complete
NP-Complete Problems So Far

We’ve established that all of the following problems are NP-Complete

- CIRCUITSAT: direct proof from definition of NP-Complete
- ATMOST3SAT: reduction from CIRCUITSAT
- 3SAT: reduction from ATMOST3SAT
- SAT: (obvious) reduction from 3SAT
- INDSET, VERTEXCOVER, SETCOVER: previous reductions, starting with 3SAT

Let’s continue to expand the list.

To show a new problem X is NP-complete, we can reduce to it from any of our known NP-complete problems.
We’ve established that all of the following problems are NP-Complete:

- CIRCUI TSAT: direct proof from definition of NP-Complete
- AT MOST3SAT: reduction from CIRCUI TSAT
- 3SAT: reduction from AT MOST3SAT
- SAT: (obvious) reduction from 3SAT
- INDSET, VERTEXCOVER, SETCOVER: previous reductions, starting with 3SAT

Let’s continue to expand the list. To show a new problem \(X \) is NP-complete, we can reduce \(X \) to any of our known NP-complete problems.
NP-Complete Problems So Far

We’ve established that all of the following problems are NP-Complete

- CIRCUITSAT: direct proof from definition of NP-Complete
- ATMOST3SAT: reduction from CIRCUITSAT
- 3SAT: reduction from ATMOST3SAT
- SAT: (obvious) reduction from 3SAT

Let’s continue to expand the list.

To show a new problem X is NP-complete, we can reduce to it from any of our known NP-complete problems.
NP-Complete Problems So Far

We’ve established that all of the following problems are NP-Complete

- CIRCUITSAT : direct proof from definition of NP-Complete
- ATMOST3SAT : reduction from CIRCUITSAT
- 3SAT : reduction from ATMOST3SAT
- SAT : (obvious) reduction from 3SAT
- INDSET, VERTEXCOVER, SETCOVER : previous reductions, starting with 3SAT
We’ve established that all of the following problems are NP-Complete

- CIRCUITSAT: direct proof from definition of NP-Complete
- ATMOST3SAT: reduction from CIRCUITSAT
- 3SAT: reduction from ATMOST3SAT
- SAT: (obvious) reduction from 3SAT
- INDSET, VERTEXCOVER, SETCOVER: previous reductions, starting with 3SAT

Let’s continue to expand the list.
NP-Complete Problems So Far

We’ve established that all of the following problems are NP-Complete

- CIRCUITSAT : direct proof from definition of NP-Complete
- ATMOST3SAT : reduction from CIRCUITSAT
- 3SAT : reduction from ATMOST3SAT
- SAT : (obvious) reduction from 3SAT
- INDSET, VERTEXCOVER, SETCOVER : previous reductions, starting with 3SAT

Let’s continue to expand the list.

To show a new problem X is NP-complete, we can reduce to it from any of our known NP-complete problems.
SETPACKING is NP-Complete

The Problem: Given a collection $S = \{S_1, \ldots S_n\}$ of subsets of a set U and an integer k, is there a collection S_i_1, \ldots, S_i_k of S such that these sets are pairwise disjoint?
SETPACKING is NP-Complete

The Problem: Given a collection $\mathcal{S} = \{S_1, \ldots, S_n\}$ of subsets of a set U and an integer k, is there a collection S_{i_1}, \ldots, S_{i_k} of \mathcal{S} such that these sets are pairwise disjoint?

Clearly SETPACKING \in NP : certificate is list of k such subsets
SETPACKING is NP-Complete

The Problem: Given a collection \(S = \{S_1, \ldots, S_n\} \) of subsets of a set \(U \) and an integer \(k \), is there a collection \(S_{i_1}, \ldots, S_{i_k} \) of \(S \) such that these sets are pairwise disjoint?

Clearly SETPACKING \(\in \) NP : certificate is list of \(k \) such subsets

Claim: INDSET \(\leq_p \) SETPACKING : Reduction FROM INDSET!
SETPACKING is NP-Complete

The Problem: Given a collection $\mathcal{S} = \{S_1, \ldots, S_n\}$ of subsets of a set U and an integer k, is there a collection S_{i_1}, \ldots, S_{i_k} of \mathcal{S} such that these sets are pairwise disjoint?

Clearly SETPACKING \in NP : certificate is list of k such subsets

Claim: INDSET \leq^p SETPACKING : Reduction FROM INDSET!

- Let $G = (V, E)$ be a graph and let $v \in V$. Define $E_v = \{e \in E : e = \{v, u\}$ for some $u \in V\}$
SETPACKING is NP-Complete

The Problem: Given a collection $\mathcal{S} = \{S_1, \ldots, S_n\}$ of subsets of a set U and an integer k, is there a collection S_{i_1}, \ldots, S_{i_k} of \mathcal{S} such that these sets are pairwise disjoint?

Clearly SETPACKING \in NP: certificate is list of k such subsets

Claim: INDSET \leq^p SETPACKING: Reduction FROM INDSET!

- Let $G = (V, E)$ be a graph and let $v \in V$. Define $E_v = \{e \in E : e = \{v, u\} \text{ for some } u \in V\}$
- Note: $X \subseteq V$ is an independent set if and only if $E_u \cap E_v = \emptyset$ for all $u, v \in X$
SETPACKING is NP-Complete

The Problem: Given a collection $S = \{S_1, \ldots, S_n\}$ of subsets of a set U and an integer k, is there a collection S_{i_1}, \ldots, S_{i_k} of S such that these sets are pairwise disjoint?

Clearly SETPACKING \in NP : certificate is list of k such subsets

Claim: INDSET \leq_p SETPACKING : Reduction FROM INDSET!

- Let $G = (V, E)$ be a graph and let $v \in V$. Define $E_v = \{e \in E : e = \{v, u\}$ for some $u \in V\}$

- Note: $X \subseteq V$ is an independent set if and only if $E_u \cap E_v = \emptyset$ for all $u, v \in X$

- Given an instance (G, k) of INDSET, create the set $S_G = \{E_v : v \in V\}$
The Problem: Given a collection $S = \{S_1, \ldots, S_n\}$ of subsets of a set U and an integer k, is there a collection S_{i_1}, \ldots, S_{i_k} of S such that these sets are pairwise disjoint?

Clearly SETPACKING \in NP : certificate is list of k such subsets

Claim: INDSET \leq_p SETPACKING : Reduction FROM INDSET!

- Let $G = (V, E)$ be a graph and let $v \in V$. Define $E_v = \{e \in E : e = \{v, u\}$ for some $u \in V\}$
- Note: $X \subseteq V$ is an independent set if and only if $E_u \cap E_v = \emptyset$ for all $u, v \in X$
- Given an instance (G, k) of INDSET, create the set $S_G = \{E_v : v \in V\}$
- SETPACKING returns "yes" if and only if there are sets E_{v_1}, \ldots, E_{v_k} of S_G that are pairwise disjoint
SETPACKING is NP-Complete

The Problem: Given a collection \(S = \{S_1, \ldots, S_n\} \) of subsets of a set \(U \) and an integer \(k \), is there a collection \(S_{i_1}, \ldots, S_{i_k} \) of \(S \) such that these sets are pairwise disjoint?

Clearly SETPACKING \(\in \text{NP} \) : certificate is list of \(k \) such subsets

Claim: \(\text{INDSET} \leq_p \text{SETPACKING} \) : Reduction FROM \(\text{INDSET}! \)

- Let \(G = (V, E) \) be a graph and let \(v \in V \). Define \(E_v = \{e \in E : e = \{v, u\} \text{ for some } u \in V\} \)
- Note: \(X \subseteq V \) is an independent set if and only if \(E_u \cap E_v = \emptyset \) for all \(u, v \in X \)
- Given an instance \((G, k)\) of \(\text{INDSET} \), create the set \(S_G = \{E_v : v \in V\} \)
- \(\text{SETPACKING} \) returns "yes" if and only if there are sets \(E_{v_1}, \ldots, E_{v_k} \) of \(S_G \) that are pairwise disjoint
- That is, if and only if \(\{v_1, \ldots, v_k\} \) is an independent set of \(G \).
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories:

• Packing Problems: INDSET, SETPACKING
• "...at least \(k\)...
• Covering Problems: VERTEXCOVER, SETCOVER
• "...at most \(k\)...
• Constraint Satisfaction Problems: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We'll explore three more categories:

• Partition Problems: Packing meets Covering
• Sequencing Problems
• Numerical Problems
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- Packing Problems: INDSET, SETPACKING
 - "...at least k..."

- Covering Problems: VERTEXCOVER, SETCOVER
 - "...at most k..."

- Constraint Satisfaction Problems: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

- Partition Problems: Packing meets Covering
- Sequencing Problems
- Numerical Problems
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- Packing Problems: INDSET, SETPACKING
 - "...at least k..."
- Covering Problems: VERTEXCOVER, SETCOVER
 - "...at most k..."
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- Packing Problems: INDSET, SETPACKING
 - "...at least k..."
- Covering Problems: VERTEXCOVER, SETCOVER
 - "...at most k..."
- Constraint Satisfaction Problems: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We'll explore three more categories

- Partition Problems: Packing meets Covering
- Sequencing Problems
- Numerical Problems
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- Packing Problems: INDSET, SETPACKING
 - "...at least k..."
- Covering Problems: VERTEXCOVER, SETCOVER
 - "...at most k..."
- Constraint Satisfaction Problems: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- Packing Problems: INDSET, SETPACKING
 - "...at least k..."
- Covering Problems: VERTEXCOVER, SETCOVER
 - "...at most k..."
- Constraint Satisfaction Problems: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We’ll explore three more categories
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- **Packing Problems**: INDSET, SETPACKING
 - "...at least k..."
- **Covering Problems**: VERTEXCOVER, SETCOVER
 - "...at most k..."
- **Constraint Satisfaction Problems**: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We’ll explore three more categories

- **Partition Problems**: Packing meets Covering
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- Packing Problems: INDSET, SETPACKING
 - "...at least k..."
- Covering Problems: VERTEXCOVER, SETCOVER
 - "...at most k..."
- Constraint Satisfaction Problems: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We’ll explore three more categories

- Partition Problems: Packing meets Covering
- Sequencing Problems
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- Packing Problems: INDSET, SETPACKING
 - "...at least $k...""
- Covering Problems: VERTEXCOVER, SETCOVER
 - "...at most $k...""
- Constraint Satisfaction Problems: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We’ll explore three more categories

- Partition Problems: Packing meets Covering
- Sequencing Problems
- Numerical Problems