NP-Completeness

Algorithm Design & Analysis

Spring 2018
Outline
Recap

• $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.
Recap

• $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.

• Polynomial Equivalence: $X \equiv_p Y$ if $X \leq_p Y$ and $Y \leq_p X$
Recap

• \(X \leq_{p} Y \) if problem \(X \) can be solved in polynomial time by some algorithm that is allowed to solve instances of problem \(Y \) in constant time.

• Polynomial Equivalence: \(X \equiv_{p} Y \) if \(X \leq_{p} Y \) and \(Y \leq_{p} X \)

• Transitivity: If \(X \leq_{p} Y \) and \(Y \leq_{p} Z \) then \(X \leq_{p} Z \)
Recap

- $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.
- Polynomial Equivalence: $X \equiv_p Y$ if $X \leq_p Y$ and $Y \leq_p X$
- Transitivity: If $X \leq_p Y$ and $Y \leq_p Z$ then $X \leq_p Z$
- Strategies for reductions
Recap

- $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.
- Polynomial Equivalence: $X \equiv_p Y$ if $X \leq_p Y$ and $Y \leq_p X$
- Transitivity: If $X \leq_p Y$ and $Y \leq_p Z$ then $X \leq_p Z$
- Strategies for reductions
 - Direct equivalence ($\text{INDSET} \equiv_p \text{VERTEXCOVER}$)

- Decision Problems: Output is YES/NO
- Certifiability: If answer is YES, there’s a “short proof”
Recap

- $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.
- Polynomial Equivalence: $X \equiv_p Y$ if $X \leq_p Y$ and $Y \leq_p X$
- Transitivity: If $X \leq_p Y$ and $Y \leq_p Z$ then $X \leq_p Z$
- Strategies for reductions
 - Direct equivalence ($INDSET \equiv_p VERTEXCOVER$)
 - Special Case: ($VERTEXCOVER \leq_p SETCOVER$)
Recap

- $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.
- Polynomial Equivalence: $X \equiv_p Y$ if $X \leq_p Y$ and $Y \leq_p X$
- Transitivity: If $X \leq_p Y$ and $Y \leq_p Z$ then $X \leq_p Z$
- Strategies for reductions
 - Direct equivalence ($\text{INDSET} \equiv_p \text{VERTEXCOVER}$)
 - Special Case: ($\text{VERTEXCOVER} \leq_p \text{SETCOVER}$)
 - Gadget Building: ($\text{3SAT} \leq_p \text{INDSET}$)
Recap

- \(X \leq_p Y \) if problem \(X \) can be solved in polynomial time by some algorithm that is allowed to solve instances of problem \(Y \) in constant time.
- Polynomial Equivalence: \(X \equiv_p Y \) if \(X \leq_p Y \) and \(Y \leq_p X \)
- Transitivity: If \(X \leq_p Y \) and \(Y \leq_p Z \) then \(X \leq_p Z \)
- Strategies for reductions
 - Direct equivalence (\(INDSET \equiv_p VERTEXCOVER \))
 - Special Case: (\(VERTEXCOVER \leq_p SETCOVER \))
 - Gadget Building: (\(3SAT \leq_p INDSET \))
- Problem Characteristics
Recap

- $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.

- Polynomial Equivalence: $X \equiv_p Y$ if $X \leq_p Y$ and $Y \leq_p X$

- Transitivity: If $X \leq_p Y$ and $Y \leq_p Z$ then $X \leq_p Z$

- Strategies for reductions
 - Direct equivalence ($INDSET \equiv_p VERTEXCOVER$)
 - Special Case: ($VERTEXCOVER \leq_p SETCOVER$)
 - Gadget Building: ($3SAT \leq_p INDSET$)

- Problem Characteristics
 - Decision Problems: Output is YES/NO
Recap

• $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.

• Polynomial Equivalence: $X \equiv_p Y$ if $X \leq_p Y$ and $Y \leq_p X$

• Transitivity: If $X \leq_p Y$ and $Y \leq_p Z$ then $X \leq_p Z$

• Strategies for reductions
 • Direct equivalence ($INDSET \equiv_p VERTEXCOVER$)
 • Special Case: ($VERTEXCOVER \leq_p SETCOVER$)
 • Gadget Building: ($3SAT \leq_p INDSET$)

• Problem Characteristics
 • Decision Problems: Output is YES/NO
 • Certifiability: If answer is YES, there’s a "short proof"
Recap: Decision Problems and Certifiers

- Algorithm A solves decision problem X in polynomial time if $A(s)$ executes at most $O(p(|s|))$ operations, for some polynomial $p()$
Recap: Decision Problems and Certifiers

- Algorithm A solves decision problem X in polynomial time if $A(s)$ executes at most $O(p(|s|))$ operations, for some polynomial $p()$
- An algorithm $C(s, t)$, where s and t are strings, is a certifier for decision problem X if for every s
Recap: Decision Problems and Certifiers

• Algorithm A solves decision problem X in polynomial time if $A(s)$ executes at most $O(p(|s|))$ operations, for some polynomial $p()$
• An algorithm $C(s, t)$, where s and t are strings, is a certifier for decision problem X if for every s
 • $s \in X$ if and only if there is some string t_s such that $C(s, t_s)$ returns "yes".
Recap: Decision Problems and Certifiers

- Algorithm A solves decision problem X in polynomial time if $A(s)$ executes at most $O(p(|s|))$ operations, for some polynomial $p()$
- An algorithm $C(s, t)$, where s and t are strings, is a certifier for decision problem X if for every s
 - $s \in X$ if and only if there is some string t_s such that $C(s, t_s)$ returns "yes".
- A certifier $C(s, t)$ for decision problem X is a polynomial-time certifier if
Recap: Decision Problems and Certifiers

- Algorithm A solves decision problem X in polynomial time if $A(s)$ executes at most $O(p(|s|))$ operations, for some polynomial $p()$.
- An algorithm $C(s, t)$, where s and t are strings, is a certifier for decision problem X if for every s
 - $s \in X$ if and only if there is some string t_s such that $C(s, t_s)$ returns "yes".
- A certifier $C(s, t)$ for decision problem X is a polynomial-time certifier if
 - $|t_s| \leq p(|s|)$ for some polynomial $p()$ (t_s is not too big!)
Recap: Decision Problems and Certifiers

- Algorithm A solves decision problem X in polynomial time if $A(s)$ executes at most $O(p(|s|))$ operations, for some polynomial $p()$.
- An algorithm $C(s, t)$, where s and t are strings, is a certifier for decision problem X if for every s:
 - $s \in X$ if and only if there is some string t_s such that $C(s, t_s)$ returns "yes".
- A certifier $C(s, t)$ for decision problem X is a polynomial-time certifier if:
 - $|t_s| \leq p(|s|)$ for some polynomial $p()$ (t_s is not too big!)
 - $C(s, t)$ runs in time $q(|s|)$ for some polynomial $q(x)$ ($C()$ is efficient).
A Complexity Hierarchy

- $P = \{X : \text{There is a poly-time algorithm } A() \text{ that decides } X\}$
- $NP = \{X : \text{There is a poly-time certifier } C(s, t) \text{ for } X\}$
A Complexity Hierarchy

- $P = \{ X : \text{There is a poly-time algorithm } A() \text{ that decides } X \}$
- $NP = \{ X : \text{There is a poly-time certifier } C(s, t) \text{ for } X \}$
- Claim: $P \subseteq NP: C(s, t) = A(s); \text{ just let } t_s = \epsilon$

- $\text{EXP} = \{ X : \text{Some exp-time algorithm } A() \text{ that decides } X \}$
- Claim: $NP \subseteq \text{EXP}$
- $P \subset \text{EXP}$: Consequence of the Time Hierarchy Theorem

Big Question: Is $P = NP$?

- Consensus view is "no"
- Most fundamental problem in computer science
- Clay Foundation offers $1,000,000$ prize for the answer
A Complexity Hierarchy

- $P = \{X : \text{There is a poly-time algorithm } A() \text{ that decides } X\}$
- $NP = \{X : \text{There is a poly-time certifier } C(s, t) \text{ for } X\}$
- Claim: $P \subseteq NP$: $C(s, t) = A(s)$; just let $t_s = \epsilon$
- $EXP = \{X : \text{Some exp-time algorithm } A() \text{ that decides } X\}$
A Complexity Hierarchy

- $P = \{X : \text{There is a poly-time algorithm } A() \text{ that decides } X\}$
- $NP = \{X : \text{There is a poly-time certifier } C(s, t) \text{ for } X\}$
- Claim: $P \subseteq NP$: $C(s, t) = A(s)$; just let $t_s = \epsilon$
- $EXP = \{X : \text{Some exp-time algorithm } A() \text{ that decides } X\}$
- Claim: $NP \subseteq EXP$
A Complexity Hierarchy

- \(P = \{ X : \) There is a poly-time algorithm \(A() \) that decides \(X \}\}
- \(NP = \{ X : \) There is a poly-time certifier \(C(s,t) \) for \(X \}\}
- Claim: \(P \subseteq NP: \) \(C(s,t) = A(s) \); just let \(t_s = \epsilon \)
- \(EXP = \{ X : \) Some exp-time algorithm \(A() \) that decides \(X \}\}
- Claim: \(NP \subseteq EXP \)
- \(P \subsetneq EXP: \) Consequence of the \textit{Time Hierarchy Theorem}
A Complexity Hierarchy

- $P = \{X : \text{There is a poly-time algorithm } A() \text{ that decides } X\}$
- $NP = \{X : \text{There is a poly-time certifier } C(s, t) \text{ for } X\}$
- Claim: $P \subseteq NP$: $C(s, t) = A(s); \text{ just let } t_s = \epsilon$
- $EXP = \{X : \text{Some exp-time algorithm } A() \text{ that decides } X\}$
- Claim: $NP \subseteq EXP$
- $P \subsetneq EXP$: Consequence of the *Time Hierarchy Theorem*
- **Big Question:** Is $P = NP$?

- Consensus view is “no”
- Most fundamental problem in computer science
- Clay Foundation offers $1,000,000$ prize for the answer
A Complexity Hierarchy

- **P** = \{X : There is a poly-time algorithm \(A()\) that decides \(X\)\}
- **NP** = \{X : There is a poly-time certifier \(C(s, t)\) for \(X\)\}
- Claim: \(P \subseteq NP\): \(C(s, t) = A(s)\); just let \(t_s = \epsilon\)
- **EXP** = \{X : Some exp-time algorithm \(A()\) that decides \(X\)\}
- Claim: **NP** \(\subseteq\) **EXP**
- **P** \(\subset\) **EXP**: Consequence of the *Time Hierarchy Theorem*
- **Big Question**: Is **P** = **NP**?
 - Consensus view is "no"
A Complexity Hierarchy

- $P = \{X : \text{There is a poly-time algorithm } A() \text{ that decides } X\}$
- $NP = \{X : \text{There is a poly-time certifier } C(s, t) \text{ for } X\}$
- Claim: $P \subseteq NP$: $C(s, t) = A(s)$; just let $t_s = \epsilon$
- $EXP = \{X : \text{Some exp-time algorithm } A() \text{ that decides } X\}$
- Claim: $NP \subseteq EXP$
- $P \not\subseteq EXP$: Consequence of the *Time Hierarchy Theorem*

Big Question: Is $P = NP$?

- Consensus view is "no"
- Most fundamental problem in computer science

Clay Foundation offers $1,000,000$ prize for the answer
A Complexity Hierarchy

- $P = \{X : \text{There is a poly-time algorithm } A() \text{ that decides } X\}$
- $NP = \{X : \text{There is a poly-time certifier } C(s, t) \text{ for } X\}$
- Claim: $P \subseteq NP$: $C(s, t) = A(s)$; just let $t_s = \epsilon$
- $EXP = \{X : \text{Some exp-time algorithm } A() \text{ that decides } X\}$
- Claim: $NP \subseteq EXP$
- $P \not\subseteq EXP$: Consequence of the *Time Hierarchy Theorem*
- **Big Question:** Is $P = NP$?
 - Consensus view is "no"
 - Most fundamental problem in computer science
 - Clay Foundation offers $1,000,000$ prize for the answer
Are there "hardest" problems in NP?
NP-Completeness Defined

Are there "hardest" problems in NP?
Not obvious, but since $NP \subseteq EXP$, at least possible
Are there "hardest" problems in NP?
Not obvious, but since $NP \subseteq EXP$, at least possible

Definition
A decision problem X is *NP-Complete* if
Are there "hardest" problems in NP?
Not obvious, but since $NP \subseteq EXP$, at least possible

Definition
A decision problem X is *NP-Complete* if
- $X \in NP$
NP-Completeness Defined

Are there "hardest" problems in NP?

Not obvious, but since $NP \subseteq EXP$, at least possible

Definition

A decision problem X is NP-Complete if

- $X \in NP$
- For every $Y \in NP$, $Y \leq_p X$
Are there "hardest" problems in NP?

Not obvious, but since \(NP \subseteq EXP \), at least possible

Definition

A decision problem \(X \) is *NP-Complete* if

- \(X \in NP \)
- For every \(Y \in NP \), \(Y \leq_p X \)

Are there *any* such problems?
Are there "hardest" problems in NP?

Not obvious, but since $NP \subseteq EXP$, at least possible

Definition

A decision problem X is *NP-Complete* if

- $X \in NP$
- For every $Y \in NP$, $Y \leq_p X$

Are there *any* such problems?

Surprisingly, *thousands* of problems have been shown to be NP-Complete
Why is Definition Important?

Theorem

Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$.

Proof.

$P = NP \Rightarrow Y \in P$

• Clear: $Y \in NP$, so $Y \in P$.

$Y \in P \Rightarrow P = NP$

• Let $X \in NP$. Then $X \leq_p Y$, since Y is NP-Complete.

• But if $Y \in P$ then $X \in P$.

• Thus $NP \subseteq P$. But $P \subseteq NP$, so $P = NP$.

Why is Definition Important?

Theorem

Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$
Why is Definition Important?

Theorem

Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

Proof.
Why is Definition Important?

Theorem

Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

Proof.

$P = NP \implies Y \in P$

$P = NP \implies X \in P$
Why is Definition Important?

Theorem
Let Y be any \textit{NP-Complete} problem. Then $Y \in P$ if and only if $P = NP$

Proof.

$P = NP \Rightarrow Y \in P$

- Clear: $Y \in NP$, so $Y \in P$
Why is Definition Important?

Theorem
Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

Proof.

$P = NP \Rightarrow Y \in P$

- Clear: $Y \in NP$, so $Y \in P$

$Y \in P \Rightarrow P = NP$
Why is Definition Important?

Theorem

Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

Proof.

$P = NP \Rightarrow Y \in P$

- Clear: $Y \in NP$, so $Y \in P$

$Y \in P \Rightarrow P = NP$

- Let $X \in NP$. Then $X \leq_p Y$, since Y is NP-Complete
Why is Definition Important?

Theorem
Let Y be any
NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

Proof.

$P = NP \Rightarrow Y \in P$

- Clear: $Y \in NP$, so $Y \in P$

$Y \in P \Rightarrow P = NP$

- Let $X \in NP$. Then $X \leq_p Y$, since Y is NP-Complete
- But if $Y \in P$ then $X \in P$.
Why is Definition Important?

Theorem
Let Y be any NP-Complete problem. Then Y ∈ P if and only if P = NP

Proof.

P = NP ⇒ Y ∈ P
• Clear: Y ∈ NP, so Y ∈ P

Y ∈ P ⇒ P = NP
• Let X ∈ NP. Then X ≤_P Y, since Y is NP-Complete
• But if Y ∈ P then X ∈ P.
• Thus NP ⊆ P. But P ⊆ NP, so P = NP
Establishing NP-Completeness

There are two ways to show a problem Y is NP-Complete
Establishing NP-Completeness

There are two ways to show a problem Y is NP-Complete

\textit{From Definition}

\begin{itemize}
 \item Show that $Y \in \text{NP}$
 \item Show that for all $X \in \text{NP}$, $X \leq_p Y$
\end{itemize}

\textbf{Reduction}

\begin{itemize}
 \item Show that $Y \in \text{NP}$
 \item Show that $Z \leq_p Y$ for some for some NP-Complete problem Z
\end{itemize}

So if $X \in \text{NP}$, $X \leq_p Z$ and $Z \leq_p Y$, so $X \leq_p Y$.

Can't use second method until we use first method!
Establishing NP-Completeness

There are two ways to show a problem Y is NP-Complete

From Definition

- Show that $Y \in NP$

Can't use second method until we use first method!
Establishing NP-Completeness

There are two ways to show a problem \(Y \) is NP-Complete

From Definition

- Show that \(Y \in NP \)
- Show that for all \(X \in NP \), \(X \leq_p Y \)

Can’t use second method until we use first method!
Establishing NP-Completeness

There are two ways to show a problem Y is NP-Complete

From Definition

- Show that $Y \in NP$
- Show that for all $X \in NP$, $X \leq_p Y$

Can’t use second method until we use first method!
Establishing NP-Completeness

There are two ways to show a problem Y is NP-Complete

From Definition

- Show that $Y \in NP$
- Show that for all $X \in NP$, $X \leq_p Y$

Reduction

- Show that $Y \in NP$

Can't use second method until we use first method!
Establishing NP-Completeness

There are two ways to show a problem Y is NP-Complete

From Definition

- Show that $Y \in NP$
- Show that for all $X \in NP$, $X \leq_p Y$

Reduction

- Show that $Y \in NP$
- Show that $Z \leq_p Y$ for some for some NP-Complete problem Z

Can't use second method until we use first method!
Establishing NP-Completeness

There are two ways to show a problem Y is NP-Complete

from definition

- Show that $Y \in NP$
- Show that for all $X \in NP$, $X \leq_p Y$

reduction

- Show that $Y \in NP$
- Show that $Z \leq_p Y$ for some NP-Complete problem Z
- So if $X \in NP$, $X \leq_p Z$ and $Z \leq_p Y$, so $X \leq_p Y$

Can't use second method until we use first method!
Establishing NP-Completeness

There are two ways to show a problem Y is NP-Complete

From Definition

- Show that $Y \in NP$
- Show that for all $X \in NP$, $X \leq_p Y$

Reduction

- Show that $Y \in NP$
- Show that $Z \leq_p Y$ for some for some NP-Complete problem Z
- So if $X \in NP$, $X \leq_p Z$ and $Z \leq_p Y$, so $X \leq_p Y$

Can’t use second method until we use first method!
Circuit Satisfiability : A First NP-Complete Problem

We will show the following

- CircuitSAT is NP-Complete
- CircuitSAT ≤p ATMost3SAT, so ATMost3SAT is NP-Complete (ATMost3SAT ∈ NP)
- ATMost3SAT ≤p 3SAT, so 3SAT is NP-Complete (3SAT ∈ NP)

This will show that INDSET, VERTEXCOVER, SETCOVER are NP-Complete, since

- They are all in NP, and
- 3SAT ≤p INDSET ≤p VERTEXCOVER ≤p SETCOVER

From these, an avalanche of NP-Complete problems will follow
Circuit Satisfiability: A First NP-Complete Problem

We will show the following

- CIRCUITSAT is NP-Complete
Circuit Satisfiability : A First NP-Complete Problem

We will show the following

- CIRCUITSAT is NP-Complete
- CIRCUITSAT \leq_p ATMOST3SAT, so ATMOST3SAT is NP-Complete (ATMOST3SAT \in NP)
We will show the following:

- CIRCUITSAT is NP-Complete
- CIRCUITSAT \(\leq_p \) ATMOST3SAT, so ATMOST3SAT is NP-Complete (ATMOST3SAT \(\in \) NP)
- ATMOST3SAT \(\leq_p \) 3SAT, so 3SAT is NP-Complete (3SAT \(\in \) NP)

From these, an avalanche of NP-Complete problems will follow.
Circuit Satisfiability : A First NP-Complete Problem

We will show the following

- CIRCUITSAT is NP-Complete
- CIRCUITSAT \leq_p ATMOST3SAT, so ATMOST3SAT is NP-Complete (ATMOST3SAT \in NP)
- ATMOST3SAT \leq_p 3SAT, so 3SAT is NP-Complete (3SAT \in NP)
- This will show that INDSET, VERTEXCOVER, SETCOVER are NP-Complete, since
We will show the following

- CIRCUITSAT is NP-Complete
- CIRCUITSAT \leq_p ATMOST3SAT, so ATMOST3SAT is NP-Complete (ATMOST3SAT \in NP)
- ATMOST3SAT \leq_p 3SAT, so 3SAT is NP-Complete (3SAT \in NP)
- This will show that INDSET, VERTEXCOVER, SETCOVER are NP-Complete, since
 - They are all in NP, and
We will show the following

- CIRCUITSAT is NP-Complete
- CIRCUITSAT \leq_p ATMOST3SAT, so ATMOST3SAT is NP-Complete (ATMOST3SAT \in NP)
- ATMOST3SAT \leq_p 3SAT, so 3SAT is NP-Complete (3SAT \in NP)
- This will show that INDSET, VERTEXCOVER, SETCOVER are NP-Complete, since
 - They are all in NP, and
 - 3SAT \leq_p INDSET \leq_p VERTEXCOVER \leq_p SETCOVER
Circuit Satisfiability: A First NP-Complete Problem

We will show the following

- CIRCUITSAT is NP-Complete
- CIRCUITSAT \leq_p ATMOST3SAT, so ATMOST3SAT is NP-Complete (ATMOST3SAT \in NP)
- ATMOST3SAT \leq_p 3SAT, so 3SAT is NP-Complete (3SAT \in NP)
- This will show that INDSET, VERTEXCOVER, SETCOVER are NP-Complete, since
 - They are all in NP, and
 - 3SAT \leq_p INDSET \leq_p VERTEXCOVER \leq_p SETCOVER
- From these, an avalanche of NP-Complete problems will follow
A Note on Alphabets and Strings

An alphabet Σ is (just) a finite set. The inputs to decision problems are strings over some alphabet Σ. We write Σ^* for the set of all finite strings over Σ, including ϵ. A language X over Σ is just some $X \subseteq \Sigma^*$. So a decision problem X is just a language over Σ. It doesn’t really matter which alphabet we choose. If $|\Sigma| = k$, any $\sigma \in \Sigma$ can be encoded with $c = \lceil \log k \rceil$ bits. So if $s \in \Sigma^*$ has length n, its bit-encoding has length cn over $\{0, 1\}$. So alphabet choice impacts efficiency by only a constant factor.
A Note on Alphabets and Strings

An alphabet Σ is (just) a finite set
A Note on Alphabets and Strings

An alphabet Σ is (just) a finite set

The inputs to decision problems are strings over some alphabet Σ
A Note on Alphabets and Strings

An alphabet Σ is (just) a finite set

The inputs to decision problems are strings over some alphabet Σ

We write Σ^* for the set of all finite strings over Σ (including ϵ)
A Note on Alphabets and Strings

An alphabet Σ is (just) a finite set

The inputs to decision problems are strings over some alphabet Σ

We write Σ^* for the set of all finite strings over Σ (including ϵ)

A language X over Σ is just some $X \subseteq \Sigma^*$
A Note on Alphabets and Strings

An alphabet \(\Sigma \) is (just) a finite set

The inputs to decision problems are strings over some alphabet \(\Sigma \)

We write \(\Sigma^* \) for the set of all finite strings over \(\Sigma \) (including \(\epsilon \))

A language \(X \) over \(\Sigma \) is just some \(X \subseteq \Sigma^* \)

So a decision problem \(X \) is just a language over \(\Sigma \)
A Note on Alphabets and Strings

An alphabet Σ is (just) a finite set

The inputs to decision problems are strings over some alphabet Σ

We write Σ^* for the set of all finite strings over Σ (including ϵ)

A language X over Σ is just some $X \subseteq \Sigma^*$

So a decision problem X is just a language over Σ

It doesn’t really matter which alphabet we choose
A Note on Alphabets and Strings

An alphabet Σ is (just) a finite set.

The inputs to decision problems are strings over some alphabet Σ.

We write Σ^* for the set of all finite strings over Σ (including ϵ).

A language X over Σ is just some $X \subseteq \Sigma^*$.

So a decision problem X is just a language over Σ.

It doesn’t really matter which alphabet we choose.

If $|\Sigma| = k$, any $\sigma \in \Sigma$ can be encoded with $c = \lceil \log k \rceil$ bits.
A Note on Alphabets and Strings

An alphabet Σ is (just) a finite set.

The inputs to decision problems are strings over some alphabet Σ.

We write Σ^* for the set of all finite strings over Σ (including ϵ).

A language X over Σ is just some $X \subseteq \Sigma^*$.

So a decision problem X is just a language over Σ.

It doesn’t really matter which alphabet we choose.

If $|\Sigma| = k$, any $\sigma \in \Sigma$ can be encoded with $c = \lceil \log k \rceil$ bits.

So if $s \in \Sigma^*$ has length n, its bit-encoding has length cn over $\{0, 1\}$.
A Note on Alphabets and Strings

An alphabet Σ is (just) a finite set

The inputs to decision problems are strings over some alphabet Σ

We write Σ^* for the set of all finite strings over Σ (including ϵ)

A language X over Σ is just some $X \subseteq \Sigma^*$

So a decision problem X is just a language over Σ

It doesn’t really matter which alphabet we choose

If $|\Sigma| = k$, any $\sigma \in \Sigma$ can be encoded with $c = \lceil \log k \rceil$ bits

So if $s \in \Sigma^*$ has length n, its bit-encoding has length cn over $\{0, 1\}$

So alphabet choice impacts efficiency by only a constant factor
Boolean Circuits: An Example

We will assume that $\Sigma = \{0, 1\}$ in what follows
Boolean Circuits: An Example

We will assume that $\Sigma = \{0, 1\}$ in what follows.

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.
Boolean Circuits

Definition
A boolean circuit is a DAG in which

• Sources represent input bits
• Sinks represent output bits
• Other bits represent boolean operations (\(\land\), \(\lor\), \(\neg\))
Boolean Circuits

Definition

A boolean circuit is a DAG in which

- Sources represent input bits
Definition

A boolean circuit is a DAG in which

- Sources represent input bits
- Sinks represent output bits
Boolean Circuits

Definition

A *boolean circuit* is a DAG in which

- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\land, \lor, \neg)

Theorem

Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C such that

- C can be produced from A in poly-time (and hence is of poly-size)
- C produces a 1 if and only if A does
Boolean Circuits

Definition

A boolean circuit is a DAG in which
 • Sources represent input bits
 • Sinks represent output bits
 • Other bits represent boolean operations (\land, \lor, \lnot)

Theorem

Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C such that
Boolean Circuits

Definition
A boolean circuit is a DAG in which

- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\land, \lor, \neg)

Theorem
Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C such that

- C can be produced from A in poly-time (and hence is of poly-size)
Boolean Circuits

Definition
A boolean circuit is a DAG in which

- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\land, \lor, \neg)

Theorem
Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C such that

- C can be produced from A in poly-time (and hence is of poly-size)
- C produces a 1 if and only if A does
Definition (CIRCUITSAT)

Given a boolean circuit C with n input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that C returns 1 (true/yes)?
Definition (CIRCUITSAT)

Given a boolean circuit C with n input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that C returns 1 (true/yes)?

Theorem

CIRCUITSAT is NP-complete
CIRCUITSAT is NP-Complete
CIRCUITSAT is NP-Complete

Proof.

• Since $X \in \text{NP}$, X has a poly-time certifier $C(s, t)$.

 A string s is in X if and only if some t of length $p(|s|)$ makes $C(s, t)$ return "yes" (that is, 1).

• So view $C(s, t)$ as an algorithm that takes $|s|+p(|s|)$ bits and outputs 1 bit.

 $C(s, t)$ can be converted into a boolean circuit C with $|s|$ fixed bits; other $p(|s|)$ bits represent t.

• C is satisfiable if and only if there's some setting of t bits that makes $C(s, t)$ true.

• Thus X has been poly-time reduced to an instance of CIRCUITSAT.
CIRCUITSAT is NP-Complete

Proof.
Need to show that, for any $X \in NP$, $X \leq_p CIRCUITSAT$
CIRCUITSAT is NP-Complete

Proof.

Need to show that, for any $X \in \mathit{NP}$, $X \leq_p \text{CIRCUITSAT}$

- Since $X \in \mathit{NP}$, X has a poly-time certifier $C(s, t)$
CIRCUITSAT is NP-Complete

Proof.

Need to show that, for any $X \in NP$, $X \leq_p CIRCUITSAT$

- Since $X \in NP$, X has a poly-time certifier $C(s, t)$
- A string s is in X if and only if some t_s of length $p(|s|)$ makes $C(s, t_s)$ return "yes" (that is, 1).
CIRCUITSAT is NP-Complete

Proof.

Need to show that, for any \(X \in NP, X \leq_p CIRCUITSAT \)

- Since \(X \in NP \), \(X \) has a poly-time certifier \(C(s, t) \)
- A string \(s \) is in \(X \) if and only if some \(t_s \) of length \(p(|s|) \) makes \(C(s, t_s) \) return "yes" (that is, 1).
- So view \(C(s, t) \) as an algorithm that takes \(|s| + p(|s|) \) bits and outputs 1 bit
Proof.

Need to show that, for any \(X \in NP \), \(X \leq_p CIRCUITSAT \)

- Since \(X \in NP \), \(X \) has a poly-time certifier \(C(s, t) \)
- A string \(s \) is in \(X \) if and only if some \(t_s \) of length \(p(|s|) \) makes \(C(s, t_s) \) return "yes" (that is, 1).
- So view \(C(s, t) \) as an algorithm that takes \(|s| + p(|s|) \) bits and outputs 1 bit
- \(C(s, t) \) can be converted into a boolean circuit \(C \) with \(|s| \) fixed bits; other \(p(|s|) \) bits represent \(t_s \)
CIRCUITSAT is NP-Complete

Proof.

Need to show that, for any \(X \in NP, X \leq_p CIRCUITSAT \)

- Since \(X \in NP \), \(X \) has a poly-time certifier \(C(s, t) \)
- A string \(s \) is in \(X \) if and only if some \(t_s \) of length \(p(|s|) \) makes \(C(s, t_s) \) return "yes" (that is, 1).
- So view \(C(s, t) \) as an algorithm that takes \(|s| + p(|s|) \) bits and outputs 1 bit
- \(C(s, t) \) can be converted into a boolean circuit \(C \) with \(|s| \) fixed bits; other \(p(|s|) \) bits represent \(t_s \)
CIRCUITSAT is NP-Complete

Proof.
Need to show that, for any \(X \in NP \), \(X \leq_p CIRCUITSAT \)

- Since \(X \in NP \), \(X \) has a poly-time certifier \(C(s, t) \)
- A string \(s \) is in \(X \) if and only if some \(t_s \) of length \(p(|s|) \) makes \(C(s, t_s) \) return "yes" (that is, 1).
- So view \(C(s, t) \) as an algorithm that takes \(|s| + p(|s|) \) bits and outputs 1 bit
- \(C(s, t) \) can be converted into a boolean circuit \(C \) with \(|s| \) fixed bits; other \(p(|s|) \) bits represent \(t_s \)
- \(C \) is satisfiable if and only if there’s some setting of \(t_s \) bits that makes \(C(s, t_s) \) true.
CIRCUITSAT is NP-Complete

Proof.

Need to show that, for any $X \in NP$, $X \leq_p CIRCUITSAT$

• Since $X \in NP$, X has a poly-time certifier $C(s, t)$

• A string s is in X if and only if some t_s of length $p(|s|)$ makes $C(s, t_s)$ return "yes" (that is, 1).

• So view $C(s, t)$ as an algorithm that takes $|s| + p(|s|)$ bits and outputs 1 bit

• $C(s, t)$ can be converted into a boolean circuit C with $|s|$ fixed bits; other $p(|s|)$ bits represent t_s

• C is satisfiable if and only if there’s some setting of t_s bits that makes $C(s, t_s)$ true.

• Thus X has been poly-time reduced to an instance of CIRCUITSAT
From CIRCUITSAT to ATMOST3SAT

Definition

Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.
From CIRCUITSAT to ATMOST3SAT

Definition
Let \(\Phi \) be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether \(\Phi \) is satisfiable.

Theorem
ATMOST3SAT is NP-complete.
Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.

Theorem
ATMOST3SAT is NP-complete.

Proof.
Note that ATMOST3SAT is in NP. We show that CIRCUITSAT \leq_p ATMOST3SAT.
Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.

Theorem
ATMOST3SAT is NP-complete.

Proof.
Note that ATMOST3SAT is in NP. We show that CIRCUITSAT \leq_p ATMOST3SAT.

- Let C be a boolean circuit. We’ll build Φ_C
Proof that \textit{CIRCUITSAT} \(\leq_p\) \textit{ATMOST3SAT}

\textit{Proof}.

\begin{itemize}
 \item For each fixed bit source \(v\), create clause \((v)\) if value is 1 and \((\overline{v})\) otherwise.
 \item For output bit (sink) \(v_{\text{final}}\), create clause \((v_{\text{final}})\) to force output bit to be 1.
 \item For each internal node \(v\),
 \begin{itemize}
 \item If \(v\) is a \(\neg\) gate from \(u\), create clauses \((v \lor u) \land (\overline{v} \lor \overline{u})\).
 \item If \(v\) is a \(\lor\) gate from \(u\) and \(w\), create clauses \((v \lor \overline{u}) \land (v \lor \overline{w}) \land (\overline{v} \lor u \lor w)\).
 \item If \(v\) is a \(\land\) gate from \(u\) and \(w\), create clauses \((\overline{v} \lor u) \land (\overline{v} \lor w) \land (v \lor \overline{u} \lor \overline{w})\).
 \end{itemize}
 \item If \(C\) is satisfiable, \(\Phi\) is satisfiable (induction on size of \(C\)).
 \item If \(\Phi\) is satisfiable, \((v_{\text{final}})\) has value 1, and all fixed source variables received their correct values, and all other source variables received values that make \(C\) produce 1.
\end{itemize}
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Proof.

- For each fixed bit source v, create clause (v) if value is 1 and (\bar{v}) otherwise
Proof that \(\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT} \)

Proof.

- For each fixed bit source \(v \), create clause \((v) \) if value is 1 and \((\overline{v}) \) otherwise
- For output bit (sink) \(v_{\text{final}} \), create clause \((v_{\text{final}}) \) to force output bit to be 1
Proof that $CIRCUITSAT \leq_p ATMOST3SAT$

Proof.

- For each fixed bit source v, create clause (v) if value is 1 and (\bar{v}) otherwise
- For output bit (sink) v_{final}, create clause (v_{final}) to force output bit to be 1
- For each internal node v
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Proof.

- For each fixed bit source v, create clause (v) if value is 1 and (\overline{v}) otherwise
- For output bit (sink) v_{final}, create clause (v_{final}) to force output bit to be 1
- For each internal node v
 - If v is a \neg gate from u, create clauses $(v \lor u) \land (\overline{v} \lor \overline{u})$
Proof that $CIRCUITSAT \leq_p ATMOST3SAT$

Proof.

- For each fixed bit source v, create clause (v) if value is 1 and (\overline{v}) otherwise
- For output bit (sink) v_{final}, create clause (v_{final}) to force output bit to be 1
- For each internal node v
 - If v is a \neg gate from u, create clauses $(v \lor u) \land (\overline{v} \lor \overline{u})$
 - If v is a \lor gate from u and w, create clauses $(v \lor \overline{u}) \land (v \lor \overline{w}) \land (\overline{v} \lor u \lor w)$

If C is satisfiable, Φ is satisfiable (induction on size of C)

If Φ is satisfiable, v_{final} has value 1, and all fixed source variables received their correct values, and all other source variables received values that make C produce 1
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Proof.

- For each fixed bit source v, create clause (v) if value is 1 and (\overline{v}) otherwise
- For output bit (sink) v_{final}, create clause (v_{final}) to force output bit to be 1
- For each internal node v
 - If v is a \neg gate from u, create clauses $(v \lor u) \land (\overline{v} \lor \overline{u})$
 - If v is a \lor gate from u and w, create clauses $(v \lor \overline{u}) \land (v \lor \overline{w}) \land (\overline{v} \lor u \lor w)$
 - If v is a \land gate from u and w, create clauses $(\overline{v} \lor u) \land (\overline{v} \lor w) \land (v \lor \overline{u} \lor \overline{w})$
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Proof.

• For each fixed bit source v, create clause (v) if value is 1 and (\overline{v}) otherwise
• For output bit (sink) v_{final}, create clause (v_{final}) to force output bit to be 1
• For each internal node v
 • If v is a \neg gate from u, create clauses $(v \lor u) \land (\overline{v} \lor \overline{u})$
 • If v is a \lor gate from u and w, create clauses $(v \lor \overline{u}) \land (v \lor \overline{w}) \land (\overline{v} \lor u \lor w)$
 • If v is a \land gate from u and w, create clauses $(\overline{v} \lor u) \land (\overline{v} \lor w) \land (v \lor \overline{u} \lor \overline{w})$
• If C is satisfiable, Φ is satisfiable (induction on size of C)
Proof that \(\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT} \)

Proof.

- For each fixed bit source \(v \), create clause \((v)\) if value is 1 and \((\overline{v})\) otherwise
- For output bit (sink) \(v_{\text{final}} \), create clause \((v_{\text{final}})\) to force output bit to be 1
- For each internal node \(v \)
 - If \(v \) is a \(\neg \) gate from \(u \), create clauses \((v \lor u) \land (\overline{v} \lor \overline{u})\)
 - If \(v \) is a \(\lor \) gate from \(u \) and \(w \), create clauses \((v \lor \overline{u}) \land (v \lor \overline{w}) \land (\overline{v} \lor u \lor w)\)
 - If \(v \) is a \(\land \) gate from \(u \) and \(w \), create clauses \((\overline{v} \lor u) \land (\overline{v} \lor w) \land (v \lor \overline{u} \lor \overline{w})\)
- If \(C \) is satisfiable, \(\Phi \) is satisfiable (induction on size of \(C \))
- If \(\Phi \) is satisfiable, \((v_{\text{final}})\) has value 1, and all fixed source variables received their correct values, and all other source variables received values that make \(C \) produce 1