NP-Completeness Proofs

Algorithm Design & Analysis

Spring 2019
Outline
NP-Completeness Recap

A decision problem X is NP-Complete if

- $X \in \text{NP}$
- For every $Y \in \text{NP}$, $Y \leq_p X$

Theorem: Let Y be any NP-Complete problem. Then $Y \in \text{P}$ if and only if $\text{P} = \text{NP}$

There are two ways to show a problem Y is NP-Complete:

Definition

- Show that $Y \in \text{NP}$
- Show that for all $X \in \text{NP}$, $X \leq_p Y$

Reduction

- Show that $Y \in \text{NP}$
- Show that $Z \leq_p Y$ for some for some NP-Complete problem Z
NP-Completeness Recap

- A decision problem X is NP-Complete if
 - $X \in NP$
 - For every $Y \in NP$, $Y \leq_p X$
A decision problem X is NP-Complete if
- $X \in \text{NP}$
- For every $Y \in \text{NP}$, $Y \leq_p X$

Theorem: Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = \text{NP}$
NP-Completeness Recap

- A decision problem X is \textit{NP-Complete} if
 - $X \in \text{NP}$
 - For every $Y \in \text{NP}$, $Y \leq_p X$

- **Theorem:** Let Y be \textit{any} NP-Complete problem. Then $Y \in P$ if and only if $P = \text{NP}$

- There are two ways to show a problem Y is NP-Complete

 \textit{Definition}
 - Show that $Y \in \text{NP}$
 - Show that for all $X \in \text{NP}$, $X \leq_p Y$
NP-Completeness Recap

• A decision problem X is *NP-Complete* if
 - $X \in NP$
 - For every $Y \in NP$, $Y \leq_p X$

• **Theorem:** Let Y be *any* NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

• There are two ways to show a problem Y is NP-Complete

 Definition
 - Show that $Y \in NP$
 - Show that for all $X \in NP$, $X \leq_p Y$
NP-Completeness Recap

• A decision problem X is *NP-Complete* if
 • $X \in \text{NP}$
 • For every $Y \in \text{NP}$, $Y \leq_{p} X$

• **Theorem:** Let Y be *any* NP-Complete problem. Then $Y \in P$ if and only if $P = \text{NP}$

• There are two ways to show a problem Y is NP-Complete

 Definition • Show that $Y \in \text{NP}$
 • Show that for all $X \in \text{NP}$, $X \leq_{p} Y$

 Reduction • Show that $Y \in \text{NP}$
NP-Completeness Recap

• A decision problem X is \textit{NP-Complete} if

 • $X \in NP$

 • For every $Y \in NP$, $Y \leq_p X$

• \textbf{Theorem:} Let Y be \textit{any} NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

• There are two ways to show a problem Y is NP-Complete

 \textit{Definition}

 • Show that $Y \in NP$

 • Show that for all $X \in NP$, $X \leq_p Y$

 \textit{Reduction}

 • Show that $Y \in NP$

 • Show that $Z \leq_p Y$ for some for some NP-Complete problem Z
CIRCUITSAT Example

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.
A boolean circuit is a DAG in which

Booleans Circuits

Theorem: Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C that can be produced from A in poly-time such that C produces a 1 if and only if A does.

CIRCUIT SAT: Given a boolean circuit C with n input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that C returns 1 (true/yes)?

Theorem: CIRCUIT SAT is NP-complete
Boolean Circuits

A boolean circuit is a DAG in which
- Sources represent input bits
Boolean Circuits

A boolean circuit is a DAG in which

- Sources represent input bits
- Sinks represent output bits
A boolean circuit is a DAG in which

- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\land, \lor, \neg)

Theorem: Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C that can be produced from A in poly-time such that C produces a 1 if and only if A does.
Boolean Circuits

A boolean circuit is a DAG in which

- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\(\land, \lor, \neg\))

Theorem: Let \(A\) be a poly-time algorithm that takes \(n\) input bits and produces 1 output bit. Then there is a boolean circuit \(C\) that can be produced from \(A\) in poly-time such that \(C\) produces a 1 if and only if \(A\) does

CIRCUITSAT: Given a boolean circuit \(C\) with \(n\) input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that \(C\) returns 1 (true/yes)?

Theorem: CIRCUITSAT is NP-complete
Boolean Circuits

A *boolean circuit* is a DAG in which

- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\land, \lor, \neg)

Theorem: Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C that can be produced from A in poly-time such that C produces a 1 if and only if A does

CIRCUITSAT: Given a boolean circuit C with n input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that C returns 1 (true/yes)?
Boolean Circuits

A *boolean circuit* is a DAG in which

- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\land, \lor, \neg)

Theorem: Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C that can be produced from A in poly-time such that C produces a 1 if and only if A does

CIRCUITSAT: Given a boolean circuit C with n input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that C returns 1 (true/yes)?

Theorem: CIRCUITSAT is NP-complete
From CIRCUITSAT to ATMOGST3SAT

Definition
Let \(\Phi \) be a CNF expression with at most 3 literals per clause. ATMOGST3SAT is the problem of deciding whether \(\Phi \) is satisfiable.
From CIRCUITSAT to ATMOST3SAT

Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.

Theorem
ATMOST3SAT is NP-complete.
From CIRCUITSAT to ATMOST3SAT

Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.

Theorem
ATMOST3SAT is NP-complete.

Idea
Note that ATMOST3SAT is in NP. We show that CIRCUITSAT \leq_p ATMOST3SAT.
From CIRCUITSAT to ATMOST3SAT

Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.

Theorem
ATMOST3SAT is NP-complete.

Idea
Note that ATMOST3SAT is in NP. We show that CIRCUITSAT \leq_p ATMOST3SAT.

• Let C be a boolean circuit. We’ll build formula Φ_C such that
From CIRCUITSAT to ATMOST3SAT

Definition
Let \(\Phi \) be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether \(\Phi \) is satisfiable.

Theorem
ATMOST3SAT is NP-complete.

Idea
Note that ATMOST3SAT is in NP. We show that CIRCUITSAT \(\leq_p \) ATMOST3SAT.

• Let \(C \) be a boolean circuit. We’ll build formula \(\Phi_C \) such that
 • \(C \) is satisfiable if and only if \(\Phi_C \) is satisfiable (or empty).
From \textsc{Circuitsat} to \textsc{Atmost3sat}

\textbf{Definition}
Let Φ be a CNF expression with at most 3 literals per clause. \textsc{Atmost3sat} is the problem of deciding whether Φ is satisfiable.

\textbf{Theorem}
\textsc{Atmost3sat} is \textsc{NP}-complete.

\textbf{Idea}
Note that \textsc{Atmost3sat} is in \textsc{NP}. We show that \textsc{Circuitsat} \leq_p \textsc{Atmost3sat}.

- Let C be a boolean circuit. We’ll build formula Φ_C such that
 - C is satisfiable if and only if Φ_C is satisfiable (or empty).
 - Φ_C can be constructed in time polynomial in the length of C
From CIRCUITSAT to ATMOST3SAT

Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.

Theorem
ATMOST3SAT is NP-complete.

Idea
Note that ATMOST3SAT is in NP. We show that CIRCUITSAT \leq_p ATMOST3SAT.

• Let C be a boolean circuit. We’ll build formula Φ_C such that
 • C is satisfiable if and only if Φ_C is satisfiable (or empty).
 • Φ_C can be constructed in time polynomial in the length of C
• First we’ll develop some gadgets
Some building blocks
Some building blocks

- If C is a ¬-gate v with incoming edge uv:

\[
\Phi_C = (x_v \lor x_u) \land (\neg x_v \lor \neg x_u)
\]

- If C is an ∨-gate v with incoming edges uv and wv:

\[
\Phi_C = (x_v \lor \neg x_u) \land (x_v \lor \neg x_w) \land (\neg x_v \lor x_u \lor x_w)
\]

- If C is an ∧-gate v with incoming edges uv and wv:

\[
\Phi_C = (\neg x_v \lor x_u) \land (\neg x_v \lor x_w) \land (x_v \lor \neg x_u \lor \neg x_w)
\]

In each case:
- Any set of values for u, v, and w consistent with the function of gate C yields an assignment of values to x_u, x_v, x_w that satisfies Φ_C.
- An assignment of values to x_u, x_v, x_w that satisfies Φ_C yields values to x_u, x_v, x_w that is consistent with the function of gate C.
Gadget Design

Some building blocks

- If C is a \neg-gate v with incoming edge uv:
 \[\Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u) \]

- An assignment of values to x_u, x_v, x_w that satisfies Φ_C yields values to x_u, x_v, x_w that is consistent with the function of gate C.
Gadget Design

Some building blocks

• If C is a \neg-gate v with incoming edge uv:
 \[\Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u) \]

• If C is an \lor-gate v with incoming edges uv and wv:

In each case

• Any set of values for u, v, and w consistent with the function of gate C yields an assignment of values to x_u, x_v, x_w that satisfies Φ_C.

• An assignment of values to x_u, x_v, x_w that satisfies Φ_C yields values to x_u, x_v, x_w that is consistent with the function of gate C.
Gadget Design

Some building blocks

- If C is a \neg-gate v with incoming edge uv:
 $$\Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)$$

- If C is an \lor-gate v with incoming edges uv and wv:
 $$\Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor x_w)$$

In each case
- Any set of values for u, v, and w consistent with the function of gate C,
 - yields an assignment of values to x_u, x_v, and x_w that satisfies Φ_C
- An assignment of values to x_u, x_v, and x_w that satisfies Φ_C yields values to x_u, x_v, and x_w that is consistent with the function of gate C.
Some building blocks

- If C is a \neg-gate v with incoming edge uv:
 \[\Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u) \]

- If C is an \lor-gate v with incoming edges uv and wv:
 \[\Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor x_w) \]

- If C is an \land-gate v with incoming edges uv and wv:
Some building blocks

- If C is a \neg-gate v with incoming edge uv:
 \[\Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u) \]

- If C is an \lor-gate v with incoming edges uv and wv:
 \[\Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor x_w) \]

- If C is an \land-gate v with incoming edges uv and wv:
 \[\Phi_C = (\bar{x}_v \lor x_u) \land (\bar{x}_v \lor x_w) \land (x_v \lor \bar{x}_u \lor \bar{x}_w) \]
Some building blocks

- If C is a \neg-gate v with incoming edge uv:
 $$\Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)$$

- If C is an \lor-gate v with incoming edges uv and wv:
 $$\Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor x_w)$$

- If C is an \land-gate v with incoming edges uv and wv:
 $$\Phi_C = (\bar{x}_v \lor x_u) \land (\bar{x}_v \lor x_w) \land (x_v \lor \bar{x}_u \lor \bar{x}_w)$$

In each case
Gadget Design

Some building blocks

• If C is a \neg-gate v with incoming edge uv:
 \[
 \Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)
 \]

• If C is an \lor-gate v with incoming edges uv and wv:
 \[
 \Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor x_w)
 \]

• If C is an \land-gate v with incoming edges uv and wv:
 \[
 \Phi_C = (\bar{x}_v \lor x_u) \land (\bar{x}_v \lor x_w) \land (x_v \lor \bar{x}_u \lor \bar{x}_w)
 \]

In each case

• Any set of values for u, v, and w consistent with the function of gate C, yields an assignment of values to x_u, x_v, x_w that satisfies Φ_C
Some building blocks

- If C is a \neg-gate v with incoming edge uv:
 $$\Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)$$

- If C is an \lor-gate v with incoming edges uv and wv:
 $$\Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor x_w)$$

- If C is an \land-gate v with incoming edges uv and wv:
 $$\Phi_C = (\bar{x}_v \lor x_u) \land (\bar{x}_v \lor x_w) \land (x_v \lor \bar{x}_u \lor \bar{x}_w)$$

In each case

- Any set of values for u, v, and w consistent with the function of gate C, yields an assignment of values to x_u, x_v, x_w that satisfies Φ_C

- An assignment of values to x_u, x_v, x_w that satisfies Φ_C yields values to x_u, x_v, x_w that is consistent with the function of gate C.

Gadget Design
We need any satisfying assignment for Φ_C to ensure that output bit equals 1 and that fixed input bits of C are set properly:

- For fixed input bit v in C: if v is set to 1, $\Phi_C = (x_v)$; else $\Phi_C = (\overline{x_v})$.
- For output bit v of C, $\Phi_C = (x_v)$.

Let's look at an example.

Claim For any boolean circuit C with 1 output bit, satisfying assignments of C yield satisfying assignments of Φ_C (each x_v gets value of v) and vice-versa.
Final Gadgets

We need any satisfying assignment for Φ_C to ensure that output bit equals 1 and that fixed input bits of C are set properly:

- For fixed input bit v in C: if v is set to 1, $\Phi_C = (x_v)$, else $\Phi_C = (\overline{x_v})$.

Let's look at an example...

Claim For any boolean circuit C with 1 output bit, satisfying assignments of C yield satisfying assignments of Φ_C (each x_v gets value of v) and vice-versa.
Final Gadgets

We need any satisfying assignment for Φ_C to ensure that output bit equals 1 and that fixed input bits of C are set properly:

- For fixed input bit v in C: if v is set to 1, $\Phi_C = (x_v)$, else $\Phi_C = (\overline{x_v})$.
- For output bit v of C, $\Phi_C = (x_v)$
Final Gadgets

We need any satisfying assignment for Φ_C to ensure that output bit equals 1 and that fixed input bits of C are set properly:

- For fixed input bit v in C: if v is set to 1, $\Phi_C = (x_v)$, else $\Phi_C = (\overline{x}_v)$.
- For output bit v of C, $\Phi_C = (x_v)$

Let’s look at an example....
We need any satisfying assignment for Φ_C to ensure that output bit equals 1 and that fixed input bits of C are set properly:

- For fixed input bit v in C: if v is set to 1, $\Phi_C = (x_v)$, else $\Phi_C = (\bar{x}_v)$.
- For output bit v of C, $\Phi_C = (x_v)$

Let’s look at an example....

Claim

For any boolean circuit C with 1 output bit, satisfying assignments of C yield satisfying assignments of Φ_C (each x_v gets value of v) and vice-versa.
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

C satisfiable $\Rightarrow \Phi_C$ satisfiable
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

C satisfiable $\Rightarrow \Phi_C$ satisfiable

Proof:

- A satisfying assignment to the inputs of C yields values for all other nodes of C.
- The output node gets value true.
- For each internal node of Φ_C, the set of corresponding clauses are all satisfied (by construction).
- Since the output node has value true, the single clause of Φ_C corresponding to it does also.
Proof that \textsc{Circuitsat} \leq_p \textsc{Atmost3sat}

\[\text{C satisfiable} \Rightarrow \Phi_C \text{ satisfiable} \]

\textbf{Proof:}

- A satisfying assignment to the inputs of \(C \) yields values for all other nodes of \(C \)
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

C satisfiable \Rightarrow Φ_C satisfiable

Proof:

- A satisfying assignment to the inputs of C yields values for all other nodes of C
- The output node gets value true
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

C satisfiable $\Rightarrow \Phi_C$ satisfiable

Proof:

- A satisfying assignment to the inputs of C yields values for all other nodes of C
- The output node gets value true
- For each internal node of Φ_C, the set of corresponding clauses are all satisfied (by construction)
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

C satisfiable $\Rightarrow \Phi_C$ satisfiable

Proof:

- A satisfying assignment to the inputs of C yields values for all other nodes of C
- The output node gets value true
- For each internal node of Φ_C, the set of corresponding clauses are all satisfied (by construction)
- Since the output node has value true, the single clause of Φ_C corresponding to it does also
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

$\Phi_C \text{ satisfiable } \Rightarrow \text{ C satisfiable}$
Proof that \textit{CIRCUITSAT} \leq_p \textit{ATMOST3SAT}

\(\Phi_C \text{ satisfiable } \Rightarrow \text{ } C \text{ satisfiable } \)

- Assume we have a satisfying assignment \(S \) for \(\Phi_C \). \(S \) makes each clause of \(\Phi_C \) true.
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Φ_C satisfiable \Rightarrow C satisfiable

- Assume we have a satisfying assignment S for Φ_C. S makes each clause of Φ_C true
- Assign to each input bit v of C the value of x_v in S
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Φ_C satisfiable \Rightarrow C satisfiable

- Assume we have a satisfying assignment S for Φ_C. S makes each clause of Φ_C true
- Assign to each input bit v of C the value of x_v in S
- This induces values on every other node of C.
Proof that $CIRCUITSAT \leq_p ATMOST3SAT$

$\Phi_C \text{ satisfiable } \Rightarrow C \text{ satisfiable}$

- Assume we have a satisfying assignment S for Φ_C. S makes each clause of Φ_C true
- Assign to each input bit v of C the value of x_v in S
- This induces values on every other node of C.
- By construction of Φ_C the values induced on any node v is the value of x_v in S
Proof that \textit{CIRCUITSAT} \leq_p \textit{ATMOST3SAT}

\[\Phi_C \text{ satisfiable } \Rightarrow \text{ \textit{C} satisfiable } \]

- Assume we have a satisfying assignment \(S \) for \(\Phi_C \). \(S \) makes each clause of \(\Phi_C \) true.
- Assign to each input bit \(v \) of \(C \) the value of \(x_v \) in \(S \).
- This induces values on every other node of \(C \).
- By construction of \(\Phi_C \) the values induced on any node \(v \) is the value of \(x_v \) in \(S \).
- In particular, the output bit \(t \) of \(C \) gets value 1, since \((x_t)\) is a clause of \(\Phi_C \).
Proof that \textsc{CircuitSat} \leq_p \textsc{Atmost3Sat}

\[\Phi_C \text{ satisfiable } \Rightarrow \ C \text{ satisfiable} \]

- Assume we have a satisfying assignment \(S \) for \(\Phi_C \). \(S \) makes each clause of \(\Phi_C \) true
- Assign to each input bit \(v \) of \(C \) the value of \(x_v \) in \(S \)
- This induces values on every other node of \(C \).
- By construction of \(\Phi_C \) the values induced on any node \(v \) is the value of \(x_v \) in \(S \)
- In particular, the output bit \(t \) of \(C \) gets value 1, since \((x_t)\) is a clause of \(\Phi_C \)
- Thus \(C \) is satisfiable
Where we are: Two NP-Complete Problems

We have now shown that

1. **CIRCUITSAT** is NP-Complete directly by definition.
2. We checked that **CIRCUITSAT** ∈ NP.
3. We showed, for any problem **X** ∈ NP, **X** ≤ₚ **CIRCUITSAT**.
4. **CIRCUITSAT** ≤ₚ **ATMOST 3 SAT** via a polynomial reduction from **CIRCUITSAT**.
5. We checked that **ATMOST 3 SAT** ∈ NP.
6. We provided a polynomial reduction that, for any instance **I** of **CIRCUITSAT**, created an instance **I'** of **ATMOST 3 SAT** such that:
 - If **I** is a 'yes' instance of **CIRCUITSAT**, then **I'** is a 'yes' instance of **ATMOST 3 SAT**.
 - If **I'** is a 'yes' instance of **ATMOST 3 SAT** that came from an instance **I** of **CIRCUITSAT**, then **I** is a 'yes' instance of **CIRCUITSAT**.

Note that we only care about instances of **ATMOST 3 SAT** that were produced by our transformation!
Where we are: Two NP-Complete Problems

We have now shown that

- *CIRCUITSAT* is *NP*-Complete directly by definition

- We checked that *CIRCUITSAT* ∈ *NP*

- We showed, for any problem $X \in \text{NP}$, $X \leq_p \text{CIRCUITSAT}$

- *CIRCUITSAT* $\leq_p \text{ATMOST 3 SAT}$ via a polynomial reduction from *CIRCUITSAT*

- We checked that *ATMOST 3 SAT* ∈ *NP*

- We provided a polynomial reduction that, for any instance I of *CIRCUITSAT*, created an instance I' of *ATMOST 3 SAT* where

 - If I is a 'yes' instance of *CIRCUITSAT* then I' is a 'yes' instance of *ATMOST 3 SAT*

 - If I' is a 'yes' instance of *ATMOST 3 SAT* that came from an instance I of *CIRCUITSAT*, then I is a 'yes' instance of *CIRCUITSAT*

Note that we only care about instances of *ATMOST 3 SAT* that were produced by our transformation!

So, we now have identified 2 *NP*-complete problems
Where we are: Two NP-Complete Problems

We have now shown that

- *CIRCUITSAT* is *NP*-Complete directly by definition
 - We checked that *CIRCUITSAT* ∈ *NP*

- We showed, for any problem *X* ∈ *NP*, *X* ≤ₚ *CIRCUITSAT*

- *CIRCUITSAT* ≤ₚ *ATMOST 3 SAT* via a polynomial reduction from *CIRCUITSAT*

- We checked that *ATMOST 3 SAT* ∈ *NP*

- We provided a polynomial reduction that, for any instance *I* of *CIRCUITSAT*, created an instance *I*′ of *ATMOST 3 SAT* where
 - If *I* is a 'yes' instance of *CIRCUITSAT* then *I*′ is a 'yes' instance of *ATMOST 3 SAT*
 - If *I*′ is a 'yes' instance of *ATMOST 3 SAT* that came from an instance *I* of *CIRCUITSAT*, then *I* is a 'yes' instance of *CIRCUITSAT*

- Note that we only care about instances of *ATMOST 3 SAT* that were produced by our transformation!

So, we now have identified 2 *NP*-complete problems
Where we are: Two NP-Complete Problems

We have now shown that

- \textit{CIRCUITSAT} is \textit{NP}-Complete directly by definition
 - We checked that \textit{CIRCUITSAT} \(\in\text{NP}\)
 - We showed, for any problem \(X \in \text{NP}\), \(X \leq_p \text{CIRCUITSAT}\)
Where we are: Two NP-Complete Problems

We have now shown that

- *CIRCUITSAT* is *NP*-Complete directly by definition
 - We checked that *CIRCUITSAT* \(\in\) *NP*
 - We showed, for any problem \(X \in NP\), \(X \leq_p CIRCUITSAT\)
- \(CIRCUITSAT \leq_p ATMOST3SAT\) via a polynomial reduction from *CIRCUITSAT*
Where we are: Two NP-Complete Problems

We have now shown that

- \textit{CIRCUITSAT} is NP-Complete directly by definition
 - We checked that \textit{CIRCUITSAT} \(\in \text{NP} \)
 - We showed, for any problem \(X \in \text{NP} \), \(X \leq_p \text{CIRCUITSAT} \)
- \textit{CIRCUITSAT} \(\leq_p \text{ATMOST3SAT} \) via a polynomial reduction from \textit{CIRCUITSAT}
 - We checked that \textit{ATMOST3SAT} \(\in \text{NP} \)

So, we now have identified 2 NP-Complete problems.
Where we are: Two NP-Complete Problems

We have now shown that

- **CIRCUITSAT** is *NP*-Complete directly by definition
 - We checked that **CIRCUITSAT** ∈ *NP*
 - We showed, for any problem *X* ∈ *NP*, *X* ≤ₚ **CIRCUITSAT**
- **CIRCUITSAT** ≤ₚ **ATMOST3SAT** via a polynomial reduction from **CIRCUITSAT**
 - We checked that **ATMOST3SAT** ∈ *NP*
 - We provided a polynomial reduction that, for any instance *I* of **CIRCUITSAT**, created an instance *I'* of **ATMOST3SAT** where

• If *I* is a 'yes' instance of **CIRCUITSAT** then *I'* is a 'yes' instance of **ATMOST3SAT**
• If *I'* is a 'yes' instance of **ATMOST3SAT** that came from an instance *I* of **CIRCUITSAT**, then *I* is a 'yes' instance of **CIRCUITSAT**

Note that we only care about instances of **ATMOST3SAT** that were produced by our transformation!
Where we are: Two NP-Complete Problems

We have now shown that

- \textit{CIRCUITSAT} is NP-Complete directly by definition
 - We checked that \textit{CIRCUITSAT} \in \textit{NP}
 - We showed, for any problem $X \in \textit{NP}$, $X \leq_p \textit{CIRCUITSAT}$

- \textit{CIRCUITSAT} $\leq_p \textit{ATMOST3SAT}$ via a polynomial reduction from \textit{CIRCUITSAT}
 - We checked that \textit{ATMOST3SAT} \in \textit{NP}
 - We provided a polynomial reduction that, for any instance I of \textit{CIRCUITSAT}, created an instance I' of \textit{ATMOST3SAT} where

 - If I is a 'yes' instance of \textit{CIRCUITSAT} then I' is a 'yes' instance of \textit{ATMOST3SAT}
Where we are: Two NP-Complete Problems

We have now shown that

- \textit{CIRCUITSAT} is \textit{NP}-Complete directly by definition
 - We checked that \textit{CIRCUITSAT} \(\in\ \textit{NP}\)
 - We showed, for any problem \(X \in \textit{NP}\), \(X \leq_p \textit{CIRCUITSAT}\)
- \textit{CIRCUITSAT} \(\leq_p \textit{ATMOST3SAT}\) via a polynomial reduction from \textit{CIRCUITSAT}
 - We checked that \textit{ATMOST3SAT} \(\in\ \textit{NP}\)
 - We provided a polynomial reduction that, for any instance \(I\) of \textit{CIRCUITSAT}, created an instance \(I'\) of \textit{ATMOST3SAT} where
 - If \(I\) is a 'yes' instance of \textit{CIRCUITSAT} then \(I'\) is a 'yes' instance of \textit{ATMOST3SAT}
 - If \(I'\) is a 'yes' instance of \textit{ATMOST3SAT} that came from an instance \(I\) of \textit{CIRCUITSAT}, then \(I\) is a 'yes' instance of \textit{CIRCUITSAT}
Where we are: Two NP-Complete Problems

We have now shown that

- \textit{CIRCUITSAT} is \textit{NP}-Complete directly by definition
 - We checked that \textit{CIRCUITSAT} $\in \textit{NP}$
 - We showed, for any problem $X \in \textit{NP}$, $X \leq_p \textit{CIRCUITSAT}$
- \textit{CIRCUITSAT} $\leq_p \textit{ATMOST3SAT}$ via a polynomial reduction from \textit{CIRCUITSAT}
 - We checked that \textit{ATMOST3SAT} $\in \textit{NP}$
 - We provided a polynomial reduction that, for any instance I of \textit{CIRCUITSAT}, created an instance I' of \textit{ATMOST3SAT} where
 - If I is a 'yes' instance of \textit{CIRCUITSAT} then I' is a 'yes' instance of \textit{ATMOST3SAT}
 - If I' is a 'yes' instance of \textit{ATMOST3SAT} that came from an instance I of \textit{CIRCUITSAT}, then I is a 'yes' instance of \textit{CIRCUITSAT}
 - Note that we only care about instances of \textit{ATMOST3SAT} that were produced by our transformation!

So, we now have identified 2 \textit{NP}-complete problems.
Where we are: Two NP-Complete Problems

We have now shown that

- \textit{CIRCUITSAT} is \textit{NP}-Complete directly by definition
 - We checked that \textit{CIRCUITSAT} \(\in \text{NP} \)
 - We showed, for any problem \(X \in \text{NP} \), \(X \leq_p \text{CIRCUITSAT} \)
- \textit{CIRCUITSAT} \(\leq_p \text{ATMOST3SAT} \) via a polynomial reduction from \textit{CIRCUITSAT}
 - We checked that \textit{ATMOST3SAT} \(\in \text{NP} \)
 - We provided a polynomial reduction that, for any instance \(I \) of \textit{CIRCUITSAT}, created an instance \(I' \) of \textit{ATMOST3SAT} where
 - If \(I \) is a 'yes' instance of \textit{CIRCUITSAT} then \(I' \) is a 'yes' instance of \textit{ATMOST3SAT}
 - If \(I' \) is a 'yes' instance of \textit{ATMOST3SAT} that came from an instance \(I \) of \textit{CIRCUITSAT}, then \(I \) is a 'yes' instance of \textit{CIRCUITSAT}
 - Note that we only care about instances of \textit{ATMOST3SAT} that were produced by our transformation!

So, we now have identified 2 \textit{NP}-complete problems
We will now establish the NP-completeness of several problems. Our approach will be:

1. Identify a decision problem \(Y \) we suspect to be NP-complete.
2. Confirm that \(Y \in \text{NP} \).
3. Identify a known NP-complete problem \(X \).
4. Provide a polynomial time reduction from \(X \) to \(Y \).
 - That is, prove \(X \leq_p Y \) by creating, for any instance \(I \) of \(X \), an instance \(I' \) of \(Y \) such that:
 - If \(I \) is a 'yes' instance of \(X \) then \(I' \) is a 'yes' instance of \(Y \).
 - If \(I' \) is a 'yes' instance of \(Y \) that came from an instance \(I \) of \(X \), then \(I \) is a 'yes' instance of \(X \).
 - That is: If \(I \in X \), then \(I' \in Y \) and if \(I \not\in X \) then \(I' \not\in Y \).
5. Only instances of \(Y \) produced by our transformation matter!
Now the Fun Begins: Many NP-Complete Problems

We will now establish the \textit{NP}-completeness of several problems.
Now the Fun Begins: Many NP-Complete Problems

We will now establish the NP-completeness of several problems.

Our approach will be

• Identify a decision problem Y we suspect to be NP-complete.
• Confirm that $Y \in NP$.
• Identify a known NP-complete problem X.
• Provide a polynomial time reduction from X to Y.
• That is, prove $X \leq_p Y$ by creating, for any instance I of X:
 • If I is a 'yes' instance of X then I' is a 'yes' instance of Y.
 • If I' is a 'yes' instance of Y that came from an instance I of X then I is a 'yes' instance of X.
• That is: If $I \in X$ then $I' \in Y$ and if $I \not\in X$ then $I' \not\in Y$.
• Only instances of Y produced by our transformation matter!
We will now establish the \textit{NP}-completeness of several problems.

Our approach will be

- Identify a decision problem Y we suspect to be \textit{NP}-complete.
Now the Fun Begins: Many NP-Complete Problems

We will now establish the NP-completeness of several problems.

Our approach will be

• Identify a decision problem Y we suspect to be NP-complete.
• Confirm that $Y \in NP$
Now the Fun Begins: Many NP-Complete Problems

We will now establish the \(NP\)-completeness of several problems.

Our approach will be

- Identify a decision problem \(Y\) we suspect to be \(NP\)-complete.
- Confirm that \(Y \in NP\)
- Identify a \textbf{known} \(NP\)-complete problem \(X\)
Now the Fun Begins: Many NP-Complete Problems

We will now establish the \(NP \)-completeness of several problems.

Our approach will be

- Identify a decision problem \(Y \) we suspect to be \(NP \)-complete.
- Confirm that \(Y \in NP \)
- Identify a \textbf{known} \(NP \)-complete problem \(X \)
- Provide a polynomial time reduction \textbf{from} \(X \) \textbf{to} \(Y \)
Now the Fun Begins: Many NP-Complete Problems

We will now establish the \(NP\)-completeness of several problems.

Our approach will be

- Identify a decision problem \(Y\) we suspect to be \(NP\)-complete.
- Confirm that \(Y \in NP\)
- Identify a \textit{known} \(NP\)-complete problem \(X\)
- Provide a polynomial time reduction \textbf{from} \(X\) \textbf{to} \(Y\)
- That is, prove \(X \leq_p Y\) by creating, for any instance \(I\) of \(X\), an instance \(I'\) of \(Y\) such that
Now the Fun Begins: Many NP-Complete Problems

We will now establish the NP-completeness of several problems.

Our approach will be

- Identify a decision problem Y we suspect to be NP-complete.
- Confirm that $Y \in NP$
- Identify a known NP-complete problem X
- Provide a polynomial time reduction from X to Y
- That is, prove $X \leq_p Y$ by creating, for any instance I of X, an instance I' of Y such that
 - If I is a 'yes' instance of X then I' is a 'yes' instance of Y
Now the Fun Begins: Many NP-Complete Problems

We will now establish the *NP*-completeness of several problems.

Our approach will be

- Identify a decision problem \(Y \) we suspect to be \(NP \)-complete.
- Confirm that \(Y \in NP \)
- Identify a known \(NP \)-complete problem \(X \)
- Provide a polynomial time reduction from \(X \) to \(Y \)
- That is, prove \(X \leq_p Y \) by creating, for any instance \(I \) of \(X \), an instance \(I' \) of \(Y \) such that
 - If \(I \) is a 'yes' instance of \(X \) then \(I' \) is a 'yes' instance of \(Y \)
 - If \(I' \) is a 'yes' instance of \(Y \) that came from an instance \(I \) of \(X \), then \(I \) is a 'yes' instance of \(X \)
Now the Fun Begins: Many NP-Complete Problems

We will now establish the *NP*-completeness of several problems.

Our approach will be

- Identify a decision problem Y we suspect to be *NP*-complete.
- Confirm that $Y \in *NP*$
- Identify a known *NP*-complete problem X
- Provide a polynomial time reduction from X to Y
- That is, prove $X \leq_p Y$ by creating, for any instance I of X, an instance I' of Y such that
 - If I is a 'yes' instance of X then I' is a 'yes' instance of Y
 - If I' is a 'yes' instance of Y that came from an instance I of X, then I is a 'yes' instance of X
 - That is: If $I \in X$, then $I' \in Y$ and if $I \notin X$ then $I' \notin Y$
Now the Fun Begins: Many NP-Complete Problems

We will now establish the NP-completeness of several problems.

Our approach will be

- Identify a decision problem Y we suspect to be NP-complete.
- Confirm that $Y \in NP$
- Identify a known NP-complete problem X
- Provide a polynomial time reduction from X to Y
- That is, prove $X \leq_p Y$ by creating, for any instance I of X, an instance I' of Y such that
 - If I is a 'yes' instance of X then I' is a 'yes' instance of Y
 - If I' is a 'yes' instance of Y that came from an instance I of X, then I is a 'yes' instance of X
 - That is: If $I \in X$, then $I' \in Y$ and if $I \notin X$ then $I' \notin Y$
- Only instances of Y produced by our transformation matter!
3SAT is NP-Complete

3SAT ∈ NP. Let’s show that ATMOST3SAT ≤p 3SAT.
3SAT is NP-Complete

3SAT $\in NP$. Let’s show that ATMOST3SAT \leq_p 3SAT.

The Gadget: Let z_1, z_2, z_3, z_4 be boolean variables. Let
3SAT is NP-Complete

3SAT \in NP. Let's show that ATMOST3SAT \leq_p 3SAT.

The Gadget: Let \(z_1, z_2, z_3, z_4 \) be boolean variables. Let

\[
\Phi_1 = (\bar{z}_1 \lor z_3 \lor z_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_1 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor \bar{z}_4)
\]

\[
\Phi_2 = (\bar{z}_2 \lor z_3 \lor z_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_2 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor \bar{z}_4)
\]
3SAT is NP-Complete

3SAT ∈ \textit{NP}. Let’s show that ATMOST3SAT ≤_p 3SAT.

The Gadget: Let \(z_1, z_2, z_3, z_4 \) be boolean variables. Let

\[
\Phi_1 = (\overline{z}_1 \lor z_3 \lor z_4) \land (\overline{z}_1 \lor \overline{z}_3 \lor z_4) \land (\overline{z}_1 \lor z_3 \lor \overline{z}_4) \land (\overline{z}_1 \lor \overline{z}_3 \lor \overline{z}_4)
\]

\[
\Phi_2 = (\overline{z}_2 \lor z_3 \lor z_4) \land (\overline{z}_2 \lor \overline{z}_3 \lor z_4) \land (\overline{z}_2 \lor z_3 \lor \overline{z}_4) \land (\overline{z}_2 \lor \overline{z}_3 \lor \overline{z}_4)
\]

Claim: \(\Phi_1 \land \Phi_2 \) is satisfiable exactly when \(z_1 \) and \(z_2 \) are false.
3SAT is NP-Complete

3SAT ∈ NP. Let’s show that ATMOST3SAT ≤_p 3SAT.

The Gadget: Let z₁, z₂, z₃, z₄ be boolean variables. Let

Φ₁ = (¬z₁ ∨ z₃ ∨ z₄) ∧ (¬z₁ ∨ ¬z₃ ∨ z₄) ∧ (¬z₁ ∨ z₃ ∨ ¬z₄) ∧ (¬z₁ ∨ ¬z₃ ∨ ¬z₄)

Φ₂ = (¬z₂ ∨ z₃ ∨ z₄) ∧ (¬z₂ ∨ ¬z₃ ∨ z₄) ∧ (¬z₂ ∨ z₃ ∨ ¬z₄) ∧ (¬z₂ ∨ ¬z₃ ∨ ¬z₄)

Claim: Φ₁ ∧ Φ₂ is satisfiable exactly when z₁ and z₂ are false

Let Φ ∈ ATMOST3SAT, and let z₁, . . . z₄ be 4 variables NOT occurring in Φ, and let C be a clause of Φ with at most 2 literals.
3SAT is NP-Complete

3SAT \in NP. Let's show that ATMOST3SAT \leq_p 3SAT.

The Gadget: Let z_1, z_2, z_3, z_4 be boolean variables. Let

$$\Phi_1 = (\bar{z}_1 \lor z_3 \lor z_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_1 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor \bar{z}_4)$$

$$\Phi_2 = (\bar{z}_2 \lor z_3 \lor z_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_2 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor \bar{z}_4)$$

Claim: $\Phi_1 \land \Phi_2$ is satisfiable exactly when z_1 and z_2 are false.

Let $\Phi \in$ ATMOST3SAT, and let z_1, \ldots, z_4 be 4 variables NOT occurring in Φ, and let C be a clause of Φ with at most 2 literals.

- If $C = (l_1 \lor l_2)$, replace C with $C' = (l_1 \lor l_2 \lor z_1)$
3SAT is NP-Complete

3SAT \in NP. Let’s show that ATMOST3SAT \leq_p 3SAT.

The Gadget: Let z_1, z_2, z_3, z_4 be boolean variables. Let

$$\Phi_1 = (\overline{z}_1 \lor z_3 \lor z_4) \land (\overline{z}_1 \lor \overline{z}_3 \lor z_4) \land (\overline{z}_1 \lor z_3 \lor \overline{z}_4) \land (\overline{z}_1 \lor \overline{z}_3 \lor \overline{z}_4)$$

$$\Phi_2 = (\overline{z}_2 \lor z_3 \lor z_4) \land (\overline{z}_2 \lor \overline{z}_3 \lor z_4) \land (\overline{z}_2 \lor z_3 \lor \overline{z}_4) \land (\overline{z}_2 \lor \overline{z}_3 \lor \overline{z}_4)$$

Claim: $\Phi_1 \land \Phi_2$ is satisfiable exactly when z_1 and z_2 are false

Let $\Phi \in$ ATMOST3SAT, and let z_1, \ldots, z_4 be 4 variables NOT occurring in Φ, and let C be a clause of Φ with at most 2 literals.

- If $C = (l_1 \lor l_2)$, replace C with $C' = (l_1 \lor l_2 \lor z_1)$
- If $C = (l_1)$, replace C with $C' = (l_1 \lor z_1 \lor z_2)$
3SAT is NP-Complete

3SAT ∈ NP. Let’s show that ATMOST3SAT ≤ₚ 3SAT. Let z₁, z₂, z₃, z₄ be boolean variables. Let

\[\Phi_1 = (\bar{z}_1 \lor z_3 \lor z_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_1 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor \bar{z}_4) \]

\[\Phi_2 = (\bar{z}_2 \lor z_3 \lor z_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_2 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor \bar{z}_4) \]

Claim: \(\Phi_1 \land \Phi_2 \) is satisfiable exactly when \(z_1 \) and \(z_2 \) are false

Let \(\Phi \in \text{ATMOST3SAT} \), and let \(z_1, \ldots, z_4 \) be 4 variables NOT occurring in \(\Phi \), and let \(C \) be a clause of \(\Phi \) with at most 2 literals.

- If \(C = (l_1 \lor l_2) \), replace \(C \) with \(C' = (l_1 \lor l_2 \lor z_1) \)
- If \(C = (l_1) \), replace \(C \) with \(C' = (l_1 \lor z_1 \lor z_2) \)
- Now add \(\Phi_1 \land \Phi_2 \) and call the modified expression \(\Phi' \).
3SAT is NP-Complete

3SAT ∈ NP. Let's show that ATMOST3SAT ≤ₚ 3SAT.

The Gadget: Let z₁, z₂, z₃, z₄ be boolean variables. Let

\[\Phi_1 = (\bar{z}_1 \lor z_3 \lor z_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_1 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor \bar{z}_4) \]

\[\Phi_2 = (\bar{z}_2 \lor z_3 \lor z_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_2 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor \bar{z}_4) \]

Claim: \(\Phi_1 \land \Phi_2 \) is satisfiable exactly when \(z_1 \) and \(z_2 \) are false

Let \(\Phi \in \text{ATMOST3SAT} \), and let \(z_1, \ldots, z_4 \) be 4 variables NOT occurring in \(\Phi \), and let \(C \) be a clause of \(\Phi \) with at most 2 literals.

- If \(C = (l_1 \lor l_2) \), replace \(C \) with \(C' = (l_1 \lor l_2 \lor z_1) \)
- If \(C = (l_1) \), replace \(C \) with \(C' = (l_1 \lor z_1 \lor z_2) \)
- Now add \(\Phi_1 \land \Phi_2 \) and call the modified expression \(\Phi' \).

Claim: \(\Phi \) is satisfiable if and only if \(\Phi' \) is satisfiable.
NP-Complete Problems So Far

We’ve established that all of the following problems are NP-Complete

1. CIRCUITSAT: direct proof from definition of NP-Complete
2. ATMOST3SAT: reduction from CIRCUITSAT
3. 3SAT: reduction from ATMOST3SAT
4. SAT: (obvious) reduction from 3SAT
5. INDSET, VERTEXCOVER, SETCOVER: previous reductions, starting with 3SAT

Let’s continue to expand the list. Remember: To show a new problem Y is NP-complete, we can reduce to Y from any of our known NP-complete problems.
We’ve established that all of the following problems are NP-Complete:

- CIRCUITSAT: direct proof from definition of NP-Complete

Let’s continue to expand the list. Remember: To show a new problem Y is NP-complete, we can reduce to Y from any of our known NP-complete problems.
We’ve established that all of the following problems are NP-Complete

- CIRCUITSAT : direct proof from definition of NP-Complete
- ATMOST3SAT : reduction from CIRCUITSAT
- 3SAT : reduction from ATMOST3SAT
- SAT : (obvious) reduction from 3SAT
- INDSET, VERTEXCOVER, SETCOVER : previous reductions, starting with 3SAT

Let’s continue to expand the list.

Remember: To show a new problem Y is NP-complete, we can reduce to Y from any of our known NP-complete problems.
NP-Complete Problems So Far

We’ve established that all of the following problems are NP-Complete

- CIRCUITSAT: direct proof from definition of NP-Complete
- ATMOST3SAT: reduction from CIRCUITSAT
- 3SAT: reduction from ATMOST3SAT
- SAT: (obvious) reduction from 3SAT
- INDSET, VERTEXCOVER, SETCOVER: previous reductions, starting with 3SAT

Let’s continue to expand the list.

Remember: To show a new problem Y is NP-complete, we can reduce to Y from any of our known NP-complete problems.
We’ve established that all of the following problems are NP-Complete

- CIRCUITSAT: direct proof from definition of NP-Complete
- ATMOST3SAT: reduction from CIRCUITSAT
- 3SAT: reduction from ATMOST3SAT
- SAT: (obvious) reduction from 3SAT
NP-Complete Problems So Far

We’ve established that all of the following problems are NP-Complete

- CIRCUITSAT: direct proof from definition of NP-Complete
- ATMOST3SAT: reduction from CIRCUITSAT
- 3SAT: reduction from ATMOST3SAT
- SAT: (obvious) reduction from 3SAT
- INDSET, VERTEXCOVER, SETCOVER: previous reductions, starting with 3SAT
We’ve established that all of the following problems are NP-Complete

- CIRCUITSAT: direct proof from definition of NP-Complete
- ATMOST3SAT: reduction from CIRCUITSAT
- 3SAT: reduction from ATMOST3SAT
- SAT: (obvious) reduction from 3SAT
- INDSET, VERTEXCOVER, SETCOVER: previous reductions, starting with 3SAT

Let’s continue to expand the list.
We’ve established that all of the following problems are NP-Complete

- CIRCUITSAT : direct proof from definition of NP-Complete
- ATMOST3SAT : reduction from CIRCUITSAT
- 3SAT : reduction from ATMOST3SAT
- SAT : (obvious) reduction from 3SAT
- INDSET, VERTEXCOVER, SETCOVER : previous reductions, starting with 3SAT

Let’s continue to expand the list.

Remember: To show a new problem Y is NP-complete, we can reduce to Y from any of our known NP-complete problems.
SETPACKING is NP-Complete

The Problem: Given a collection $S = \{S_1, \ldots, S_n\}$ of subsets of a set U and an integer k, is there a collection S_{i_1}, \ldots, S_{i_k} of S such that these sets are pairwise disjoint?
SETPACKING is NP-Complete

The Problem: Given a collection $S = \{S_1, \ldots, S_n\}$ of subsets of a set U and an integer k, is there a collection S_{i_1}, \ldots, S_{i_k} of S such that these sets are pairwise disjoint?

Clearly SETPACKING \in NP : certificate is list of k such subsets
SETPACKING is NP-Complete

The Problem: Given a collection $\mathcal{S} = \{S_1, \ldots, S_n\}$ of subsets of a set U and an integer k, is there a collection S_{i_1}, \ldots, S_{i_k} of \mathcal{S} such that these sets are pairwise disjoint?

Clearly SETPACKING \in NP: certificate is list of k such subsets

Claim: INDSET \leq_p SETPACKING : Reduction FROM INDSET
SETPACKING is NP-Complete

The Problem: Given a collection $S = \{S_1, \ldots, S_n\}$ of subsets of a set U and an integer k, is there a collection S_{i_1}, \ldots, S_{i_k} of S such that these sets are pairwise disjoint?

Clearly SETPACKING \in NP : certificate is list of k such subsets

Claim: INDSET \leq_p SETPACKING : Reduction FROM INDSET

- Let $G = (V, E)$ be a graph and let $v \in V$. Define $E_v = \{e \in E : e = \{v, u\} \text{ for some } u \in V\}$
SETPACKING is NP-Complete

The Problem: Given a collection \(S = \{S_1, \ldots S_n\} \) of subsets of a set \(U \) and an integer \(k \), is there a collection \(S_{i_1}, \ldots, S_{i_k} \) of \(S \) such that these sets are pairwise disjoint?

Clearly SETPACKING \(\in \) NP : certificate is list of \(k \) such subsets

Claim: INDSET \(\leq_p \) SETPACKING : Reduction FROM INDSET

- Let \(G = (V, E) \) be a graph and let \(v \in V \). Define \(E_v = \{e \in E : e = \{v, u\} \text{ for some } u \in V\} \)
- Note: \(X \subseteq V \) is an independent set if and only if \(E_u \cap E_v = \emptyset \) for all \(u, v \in X \)
SETPACKING is NP-Complete

The Problem: Given a collection \(S = \{S_1, \ldots, S_n\} \) of subsets of a set \(U \) and an integer \(k \), is there a collection \(S_{i_1}, \ldots, S_{i_k} \) of \(S \) such that these sets are pairwise disjoint?

Clearly SETPACKING \(\in \) NP : certificate is list of \(k \) such subsets

Claim: INDSET \(\leq_p \) SETPACKING : Reduction FROM INDSET

- Let \(G = (V, E) \) be a graph and let \(v \in V \). Define \(E_v = \{e \in E : e = \{v, u\} \text{ for some } u \in V\} \)
- Note: \(X \subseteq V \) is an independent set if and only if \(E_u \cap E_v = \emptyset \) for all \(u, v \in X \)
- Given an instance \((G, k)\) of INDSET, create the set \(S_G = \{E_v : v \in V\} \)
SETPACKING is NP-Complete

The Problem: Given a collection $S = \{S_1, \ldots, S_n\}$ of subsets of a set U and an integer k, is there a collection S_{i_1}, \ldots, S_{i_k} of S such that these sets are pairwise disjoint?

Clearly SETPACKING \in NP: certificate is list of k such subsets

Claim: INDSET \leq_P SETPACKING: Reduction FROM INDSET

- Let $G = (V, E)$ be a graph and let $v \in V$. Define $E_v = \{e \in E : e = \{v, u\}$ for some $u \in V\}$
- Note: $X \subseteq V$ is an independent set if and only if $E_u \cap E_v = \emptyset$ for all $u, v \in X$
- Given an instance (G, k) of INDSET, create the set $S_G = \{E_v : v \in V\}$
- SETPACKING returns "yes" if and only if there are sets E_{v_1}, \ldots, E_{v_k} of S_G that are pairwise disjoint
SETPACKING is NP-Complete

The Problem: Given a collection \(S = \{S_1, \ldots, S_n\} \) of subsets of a set \(U \) and an integer \(k \), is there a collection \(S_{i_1}, \ldots, S_{i_k} \) of \(S \) such that these sets are pairwise disjoint?

Clearly SETPACKING \(\in \text{NP} \) : certificate is list of \(k \) such subsets

Claim: \(\text{INDSET} \leq_p \text{SETPACKING} \) : Reduction *FROM* INDSET

- Let \(G = (V, E) \) be a graph and let \(v \in V \). Define \(E_v = \{e \in E : e = \{v, u\} \text{ for some } u \in V\} \)
- Note: \(X \subseteq V \) is an independent set if and only if \(E_u \cap E_v = \emptyset \) for all \(u, v \in X \)
- Given an instance \((G, k)\) of INDSET, create the set \(S_G = \{E_v : v \in V\} \)
- SETPACKING returns "yes" if and only if there are sets \(E_{v_1}, \ldots, E_{v_k} \) of \(S_G \) that are pairwise disjoint
- That is, if and only if \(\{v_1, \ldots, v_k\} \) is an independent set of \(G \).
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories:

1. Packing Problems: INDSET, SETPACKING
2. Covering Problems: VERTEXCOVER, SETCOVER
3. Constraint Satisfaction Problems: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We'll explore three more categories:

- Partition Problems: Packing meets Covering
- Sequencing Problems
- Numerical Problems
The NP-complete problems discussed so far fall into three rough categories:

- **Packing Problems**: INDSET, SETPACKING
 - "...at least k...

- **Covering Problems**: VERTEXCOVER, SETCOVER
 - "...at most k...

- **Constraint Satisfaction Problems**: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We'll explore three more categories:

- **Partition Problems**: Packing meets Covering
- **Sequencing Problems**
- **Numerical Problems**
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- Packing Problems: INDSET, SETPACKING
 - "...at least \(k\)"
- Covering Problems: VERTEXCOVER, SETCOVER
 - "...at most \(k\)"
- Constraint Satisfaction Problems: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- Packing Problems: INDSET, SETPACKING
 - "...at least k..."
- Covering Problems: VERTEXCOVER, SETCOVER
 - "...at most k..."
- Constraint Satisfaction Problems: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories:

- **Packing Problems**: PINDSET, SETPACKING
 - "...at least k...
- **Covering Problems**: VERTEXCOVER, SETCOVER
 - "...at most k...
- **Constraint Satisfaction Problems**: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We'll explore three more categories:

- **Partition Problems**: Packing meets Covering
- **Sequencing Problems**
- **Numerical Problems**
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- Packing Problems: INDSET, SETPACKING
 - "...at least \(k \)..."
- Covering Problems: VERTEXCOVER, SETCOVER
 - "...at most \(k \)..."
- Constraint Satisfaction Problems: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We’ll explore three more categories
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- **Packing Problems**: INDSET, SETPACKING
 - "...at least k..."

- **Covering Problems**: VERTEXCOVER, SETCOVER
 - "...at most k..."

- **Constraint Satisfaction Problems**: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We’ll explore three more categories

- **Partition Problems**: Packing meets Covering
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

• Packing Problems: INDSET, SETPACKING
 • "...at least k..."
• Covering Problems: VERTEXCOVER, SETCOVER
 • "...at most k..."
• Constraint Satisfaction Problems: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We’ll explore three more categories

• Partition Problems : Packing meets Covering
• Sequencing Problems
The NP-complete problems discussed so far fall into three rough categories

- Packing Problems: INDSET, SETPACKING
 - "...at least \(k \)..."
- Covering Problems: VERTEXCOVER, SETCOVER
 - "...at most \(k \)..."
- Constraint Satisfaction Problems: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We’ll explore three more categories

- Partition Problems: Packing meets Covering
- Sequencing Problems
- Numerical Problems