NP-Completeness Proofs

Algorithm Design & Analysis

Fall 2018
NP-Completeness Recap

A decision problem X is NP-Complete if

- $X \in NP$
- For every $Y \in NP$, $Y \leq_p X$

Theorem: Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

There are two ways to show a problem Y is NP-Complete:

- **Definition**
 - Show that $Y \in NP$
 - Show that for all $X \in NP$, $X \leq_p Y$

- **Reduction**
 - Show that $Y \in NP$
 - Show that $Z \leq_p Y$ for some for some NP-Complete problem Z
A decision problem X is *NP-Complete* if

- $X \in NP$
- For every $Y \in NP$, $Y \leq_P X$
NP-Completeness Recap

- A decision problem X is *NP-Complete* if
 - $X \in NP$
 - For every $Y \in NP$, $Y \leq_p X$
- **Theorem:** Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$
A decision problem X is **NP-Complete** if
- $X \in NP$
- For every $Y \in NP$, $Y \leq_p X$

Theorem: Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

There are two ways to show a problem Y is NP-Complete

- **Definition**
 - Show that $Y \in NP$
 - Show that for all $X \in NP$, $X \leq_p Y$
NP-Completeness Recap

• A decision problem X is \textit{NP-Complete} if
 • $X \in \mathsf{NP}$
 • For every $Y \in \mathsf{NP}$, $Y \leq_p X$

• \textbf{Theorem}: Let Y be \textit{any} NP-Complete problem. Then $Y \in \mathsf{P}$ if and only if $\mathsf{P} = \mathsf{NP}$

• There are two ways to show a problem Y is NP-Complete
 \textit{Definition} • Show that $Y \in \mathsf{NP}$
 • Show that for all $X \in \mathsf{NP}$, $X \leq_p Y$
NP-Completeness Recap

- A decision problem X is \textit{NP-Complete} if
 - $X \in NP$
 - For every $Y \in NP$, $Y \leq_p X$

- \textbf{Theorem}: Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

- There are two ways to show a problem Y is NP-Complete
 - \textit{Definition}\hspace{2em} Show that $Y \in NP$
 - Show that for all $X \in NP$, $X \leq_p Y$
 - \textit{Reduction}\hspace{2em} Show that $Y \in NP$
NP-Completeness Recap

• A decision problem X is *NP-Complete* if
 • $X \in \text{NP}$
 • For every $Y \in \text{NP}$, $Y \leq_p X$

• **Theorem:** Let Y be *any* NP-Complete problem. Then $Y \in P$ if and only if $P = \text{NP}$

• There are two ways to show a problem Y is NP-Complete

 Definition
 • Show that $Y \in \text{NP}$
 • Show that for all $X \in \text{NP}$, $X \leq_p Y$

 Reduction
 • Show that $Y \in \text{NP}$
 • Show that $Z \leq_p Y$ for some NP-Complete problem Z
Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.
Boolean Circuits

A boolean circuit is a DAG in which

- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\land, \lor, \neg)

Theorem:
Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C that can be produced from A in poly-time such that C produces a 1 if and only if A does.

CIRCUITSAT:
Given a boolean circuit C with n input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that C returns 1 (true/yes)?

Theorem:
CIRCUITSAT is NP-complete
A *boolean circuit* is a DAG in which

- Sources represent input bits
Boolean Circuits

A boolean circuit is a DAG in which

- Sources represent input bits
- Sinks represent output bits

Theorem: Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C that can be produced from A in poly-time such that C produces a 1 if and only if A does.

CIRCUITSAT:
Given a boolean circuit C with n input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that C returns 1 (true/yes)?

Theorem: CIRCUITSAT is NP-complete
Boolean Circuits

A boolean circuit is a DAG in which

- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\land, \lor, \neg)

Theorem: Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C that can be produced from A in poly-time such that C produces a 1 if and only if A does.

CIRCUITSAT:
Given a boolean circuit C with n input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that C returns 1 (true/yes)?

Theorem: CIRCUITSAT is NP-complete
A boolean circuit is a DAG in which

- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\(\land, \lor, \neg\))

Theorem: Let \(A\) be a poly-time algorithm that takes \(n\) input bits and produces 1 output bit. Then there is a boolean circuit \(C\) that can be produced from \(A\) in poly-time such that \(C\) produces a 1 if and only if \(A\) does

Theorem: CIRCUITSAT is NP-complete
Boolean Circuits

A *boolean circuit* is a DAG in which

- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\land, \lor, \neg)

Theorem: Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C that can be produced from A in poly-time such that C produces a 1 if and only if A does

CIRCUITSAT: Given a boolean circuit C with n input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that C returns 1 (true/yes)?
Boolean Circuits

A boolean circuit is a DAG in which

- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\land, \lor, \neg)

Theorem: Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C that can be produced from A in poly-time such that C produces a 1 if and only if A does

CIRCUITSAT: Given a boolean circuit C with n input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that C returns 1 (true/yes)?

Theorem: CIRCUITSAT is NP-complete
From CIRCUITSAT to ATMOST3SAT

Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.
From CIRCUITSAT to ATMOST3SAT

Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.

Theorem
ATMOST3SAT is NP-complete.
From CIRCUITSAT to ATMOST3SAT

Definition
Let \(\Phi \) be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether \(\Phi \) is satisfiable.

Theorem
ATMOST3SAT is \(\text{NP-complete} \).

Idea
Note that ATMOST3SAT is in \(\text{NP} \). We show that CIRCUITSAT \(\leq_p \) ATMOST3SAT.
From CIRCUITSAT to ATMOST3SAT

Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.

Theorem
ATMOST3SAT is NP-complete.

Idea
Note that ATMOST3SAT is in NP. We show that CIRCUITSAT \leq_p ATMOST3SAT.

- Let C be a boolean circuit. We’ll build formula Φ_C such that
From CIRCUITSAT to ATMOST3SAT

Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.

Theorem
ATMOST3SAT is NP-complete.

Idea
Note that ATMOST3SAT is in NP. We show that CIRCUITSAT \leq_p ATMOST3SAT.

- Let C be a boolean circuit. We’ll build formula Φ_C such that
 - C is satisfiable if and only if Φ_C is satisfiable (or empty).
From CIRCUITSAT to ATMOST3SAT

Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.

Theorem
ATMOST3SAT is NP-complete.

Idea
Note that ATMOST3SAT is in NP. We show that CIRCUITSAT \leq_p ATMOST3SAT.

- Let C be a boolean circuit. We’ll build formula Φ_C such that
 - C is satisfiable if and only if Φ_C is satisfiable (or empty).
 - Φ_C can be constructed in time polynomial in the length of C
From CIRCUITSAT to ATMOST3SAT

Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.

Theorem
ATMOST3SAT is NP-complete.

Idea
Note that ATMOST3SAT is in NP. We show that CIRCUITSAT \leq_p ATMOST3SAT.

- Let C be a boolean circuit. We’ll build formula Φ_C such that
 - C is satisfiable if and only if Φ_C is satisfiable (or empty).
 - Φ_C can be constructed in time polynomial in the length of C
- First we’ll develop some gadgets
Gadget Design

Some building blocks
Gadget Design

Some building blocks

- If C is a \neg-gate v with incoming edge uv:

 \[\Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor \bar{x}_w) \]

- Any set of values for u, v, and w consistent with the function of gate C yields an assignment of values to x_u, x_v, x_w that satisfies Φ_C

- An assignment of values to x_u, x_v, x_w that satisfies Φ_C yields values to x_u, x_v, x_w that is consistent with the function of gate C.
Gadget Design

Some building blocks

• If C is a \neg-gate with incoming edge uv:
 \[
 \Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)
 \]

In each case

• Any set of values for u, v, and w consistent with the function of gate C

 • An assignment of values to x_u, x_v, x_w that satisfies Φ_C

• An assignment of values to x_u, x_v, x_w that satisfies Φ_C

 yields values to x_u, x_v, x_w that is consistent with the function of gate C.
Some building blocks

- If C is a \neg-gate v with incoming edge uv:
 \[
 \Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)
 \]

- If C is an \lor-gate v with incoming edges uv and wv:
Gadget Design

Some building blocks

- If C is a \neg-gate v with incoming edge uv:
 \[
 \Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)
 \]

- If C is an \lor-gate v with incoming edges uv and wv:
 \[
 \Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor x_w)
 \]
Some building blocks

- If C is a \neg-gate v with incoming edge uv:
 \[\Phi_C = (x_v \lor x_u) \land (\neg x_v \lor \neg x_u) \]

- If C is an \lor-gate v with incoming edges uv and wv:
 \[\Phi_C = (x_v \lor \neg x_u) \land (x_v \lor \neg x_w) \land (\neg x_v \lor x_u \lor x_w) \]

- If C is an \land-gate v with incoming edges uv and wv:
Gadget Design

Some building blocks

• If C is a \neg-gate v with incoming edge uv:

 $$\Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)$$

• If C is an \lor-gate v with incoming edges uv and wv:

 $$\Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor x_w)$$

• If C is an \land-gate v with incoming edges uv and wv:

 $$\Phi_C = (\bar{x}_v \lor x_u) \land (\bar{x}_v \lor x_w) \land (x_v \lor \bar{x}_u \lor \bar{x}_w)$$
Gadget Design

Some building blocks

- If \(C \) is a \(\neg \)-gate \(v \) with incoming edge \(uv \):
 \[
 \Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)
 \]

- If \(C \) is an \(\lor \)-gate \(v \) with incoming edges \(uv \) and \(wv \):
 \[
 \Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor x_w)
 \]

- If \(C \) is an \(\land \)-gate \(v \) with incoming edges \(uv \) and \(wv \):
 \[
 \Phi_C = (\bar{x}_v \lor x_u) \land (\bar{x}_v \lor x_w) \land (x_v \lor \bar{x}_u \lor \bar{x}_w)
 \]

In each case

- Any set of values for \(u, v, \) and \(w \) consistent with the function of gate \(C \), yields an assignment of values to \(x_u, x_v, x_w \) that satisfies \(\Phi_C \).

- An assignment of values to \(x_u, x_v, x_w \) that satisfies \(\Phi_C \) yields values to \(x_u, x_v, x_w \) that is consistent with the function of gate \(C \).
Gadget Design

Some building blocks

- If C is a \neg-gate v with incoming edge uv:
 \[
 \Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)
 \]

- If C is an \lor-gate v with incoming edges uv and wv:
 \[
 \Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor x_w)
 \]

- If C is an \land-gate v with incoming edges uv and wv:
 \[
 \Phi_C = (\bar{x}_v \lor x_u) \land (\bar{x}_v \lor x_w) \land (x_v \lor \bar{x}_u \lor \bar{x}_w)
 \]

In each case

- Any set of values for u, v, and w consistent with the function of gate C, yields an assignment of values to x_u, x_v, x_w that satisfies \(\Phi_C\)
Gadget Design

Some building blocks

• If C is a \neg-gate v with incoming edge uv:
 \[\Phi_C = (x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u) \]

• If C is an \lor-gate v with incoming edges uv and wv:
 \[\Phi_C = (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w) \land (\bar{x}_v \lor x_u \lor x_w) \]

• If C is an \land-gate v with incoming edges uv and wv:
 \[\Phi_C = (\bar{x}_v \lor x_u) \land (\bar{x}_v \lor x_w) \land (x_v \lor \bar{x}_u \lor \bar{x}_w) \]

In each case

• Any set of values for u, v, and w consistent with the function of gate C, yields an assignment of values to x_u, x_v, x_w that satisfies Φ_C

• An assignment of values to x_u, x_v, x_w that satisfies Φ_C yields values to x_u, x_v, x_w that is consistent with the function of gate C.
Final Gadgets

We need any satisfying assignment for Φ_C to ensure that output bit equals 1 and that fixed input bits of C are set properly:

- For fixed input bit v in C: if v is set to 1, $\Phi_C = (x^v)$, else $\Phi_C = (\overline{x}^v)$.
- For output bit v of C, $\Phi_C = (x^v)$.
Final Gadgets

We need any satisfying assignment for Φ_C to ensure that output bit equals 1 and that fixed input bits of C are set properly:

- For fixed input bit v in C: if v is set to 1, $\Phi_C = (x_v)$, else $\Phi_C = (\overline{x_v})$.

Let's look at an example...

Claim
For any boolean circuit C with 1 output bit, satisfying assignments of C yield satisfying assignments of Φ_C (each x_v gets value of v) and vice-versa.
Final Gadgets

We need any satisfying assignment for Φ_C to ensure that output bit equals 1 and that fixed input bits of C are set properly:

- For fixed input bit v in C: if v is set to 1, $\Phi_C = (x_v)$, else $\Phi_C = (\overline{x_v})$.
- For output bit v of C, $\Phi_C = (x_v)$
We need any satisfying assignment for Φ_C to ensure that output bit equals 1 and that fixed input bits of C are set properly:

- For fixed input bit v in C: if v is set to 1, $\Phi_C = (x_v)$, else $\Phi_C = (\overline{x_v})$.
- For output bit v of C, $\Phi_C = (x_v)$

Let’s look at an example....
We need any satisfying assignment for Φ_C to ensure that output bit equals 1 and that fixed input bits of C are set properly:

- For fixed input bit v in C: if v is set to 1, $\Phi_C = (x_v)$, else $\Phi_C = (\bar{x}_v)$.
- For output bit v of C, $\Phi_C = (x_v)$

Let’s look at an example....

Claim

For any boolean circuit C with 1 output bit, satisfying assignments of C yield satisfying assignments of Φ_C (each x_v gets value of v) and vice-versa.
Proof that \text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}

\[C \text{ satisfiable} \Rightarrow \Phi_C \text{ satisfiable} \]
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

C satisfiable $\Rightarrow \Phi_C$ satisfiable

Proof:
Proof that $CIRCUITSAT \leq_p ATMOST3SAT$

C satisfiable $\Rightarrow \Phi_C$ satisfiable

Proof:

- A satisfying assignment to the inputs of C yields values for all other nodes of C
Proof that \(\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT} \)

\(C \) satisfiable \(\Rightarrow \) \(\Phi_C \) satisfiable

Proof:

- A satisfying assignment to the inputs of \(C \) yields values for all other nodes of \(C \)
- The output node gets value true
Proof that \(\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT} \)

\(C \) satisfiable \(\Rightarrow \) \(\Phi_C \) satisfiable

Proof:

- A satisfying assignment to the inputs of \(C \) yields values for all other nodes of \(C \)
- The output node gets value true
- For each internal node of \(\Phi_C \), the set of corresponding clauses are all satisfied (by construction)
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

C satisfiable $\implies \Phi_C$ satisfiable

Proof:

- A satisfying assignment to the inputs of C yields values for all other nodes of C
- The output node gets value true
- For each internal node of Φ_C, the set of corresponding clauses are all satisfied (by construction)
- Since the output node has value true, the single clause of Φ_C corresponding to it does also
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

If Φ_C is satisfiable \Rightarrow C is satisfiable

• Assume we have a satisfying assignment S for Φ_C.
 S makes each clause of Φ_C true.

 • Assign to each input bit v of C the value of x_v in S.

 • This induces values on every other node of C.

 • By construction of Φ_C, the values induced on any node v is the value of x_v in S.

 • In particular, the output bit t of C gets value 1, since (x_t) is a clause of Φ_C.

 • Thus C is satisfiable.
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Φ_C satisfiable \Rightarrow C satisfiable

- Assume we have a satisfying assignment S for Φ_C. S makes each clause of Φ_C true
Proof that \(\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT} \)

\(\Phi_C \) satisfiable \(\Rightarrow \) \(C \) satisfiable

- Assume we have a satisfying assignment \(S \) for \(\Phi_C \). \(S \) makes each clause of \(\Phi_C \) true
- Assign to each input bit \(v \) of \(C \) the value of \(x_v \) in \(S \)
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Φ_C satisfiable \Rightarrow C satisfiable

- Assume we have a satisfying assignment S for Φ_C. S makes each clause of Φ_C true
- Assign to each input bit v of C the value of x_v in S
- This induces values on every other node of C.
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Φ_C satisfiable $\implies C$ satisfiable

- Assume we have a satisfying assignment S for Φ_C. S makes each clause of Φ_C true
- Assign to each input bit v of C the value of x_v in S
- This induces values on every other node of C.
- By construction of Φ_C the values induced on any node v is the value of x_v in S
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Φ_C satisfiable \Rightarrow C satisfiable

- Assume we have a satisfying assignment S for Φ_C. S makes each clause of Φ_C true.
- Assign to each input bit v of C the value of x_v in S.
- This induces values on every other node of C.
- By construction of Φ_C the values induced on any node v is the value of x_v in S.
- In particular, the output bit t of C gets value 1, since (x_t) is a clause of Φ_C.

Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Φ_C satisfiable \Rightarrow C satisfiable

- Assume we have a satisfying assignment S for Φ_C. S makes each clause of Φ_C true
- Assign to each input bit v of C the value of x_v in S
- This induces values on every other node of C
- By construction of Φ_C the values induced on any node v is the value of x_v in S
- In particular, the output bit t of C gets value 1, since (x_t) is a clause of Φ_C
- Thus C is satisfiable
3SAT is NP-Complete

3SAT ∈ NP. Let’s show that ATMOST3SAT ≤ₚ 3SAT.
3SAT is \(NP \)-Complete

\(3SAT \in NP \). Let’s show that \({\text{ATMOST3SAT}} \leq_p 3\text{SAT} \).

The Gadget: Let \(z_1, z_2, z_3, z_4 \) be boolean variables. Let

\[
\Phi_1 = (\overline{z}_1 \lor z_3 \lor z_4) \land (\overline{z}_1 \lor \overline{z}_3 \lor \overline{z}_4) \land (\overline{z}_1 \lor z_3 \lor \overline{z}_4) \land (\overline{z}_1 \lor \overline{z}_3 \lor \overline{z}_4)
\]

\[
\Phi_2 = (\overline{z}_2 \lor z_3 \lor z_4) \land (\overline{z}_2 \lor \overline{z}_3 \lor \overline{z}_4) \land (\overline{z}_2 \lor z_3 \lor \overline{z}_4) \land (\overline{z}_2 \lor \overline{z}_3 \lor \overline{z}_4)
\]
3SAT is NP-Complete

3SAT ∈ NP. Let’s show that ATMOST3SAT ≤ₚ 3SAT.

The Gadget: Let z₁, z₂, z₃, z₄ be boolean variables. Let

\[\Phi_1 = (\bar{z}_1 \lor z_3 \lor z_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_1 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor \bar{z}_4) \]

\[\Phi_2 = (\bar{z}_2 \lor z_3 \lor z_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_2 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor \bar{z}_4) \]
3SAT is NP-Complete

3SAT ∈ NP. Let’s show that ATMOST3SAT ≤ₚ 3SAT.

The Gadget: Let \(z_1, z_2, z_3, z_4 \) be boolean variables. Let

\[
\Phi_1 = (\overline{z}_1 \lor z_3 \lor z_4) \land (\overline{z}_1 \lor \overline{z}_3 \lor z_4) \land (\overline{z}_1 \lor z_3 \lor \overline{z}_4) \land (\overline{z}_1 \lor \overline{z}_3 \lor \overline{z}_4)
\]

\[
\Phi_2 = (\overline{z}_2 \lor z_3 \lor z_4) \land (\overline{z}_2 \lor \overline{z}_3 \lor z_4) \land (\overline{z}_2 \lor z_3 \lor \overline{z}_4) \land (\overline{z}_2 \lor \overline{z}_3 \lor \overline{z}_4)
\]

Claim: \(\Phi_1 \land \Phi_2 \) is satisfiable exactly when \(z_1 = z_2 = 0 \)
3SAT is NP-Complete

3SAT \in NP. Let’s show that ATMOST3SAT \leq_p 3SAT.

The Gadget: Let z_1, z_2, z_3, z_4 be boolean variables. Let

$$
\Phi_1 = (\bar{z}_1 \lor z_3 \lor z_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_1 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor \bar{z}_4)
$$

$$
\Phi_2 = (\bar{z}_2 \lor z_3 \lor z_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_2 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor \bar{z}_4)
$$

Claim: $\Phi_1 \land \Phi_2$ is satisfiable exactly when $z_1 = z_2 = 0$

Let $\Phi \in$ ATMOST3SAT, and let $z_1, \ldots z_4$ be 4 variables NOT occurring in Φ, and let C be a clause of Φ with at most 2 literals.
3SAT is NP-Complete

3SAT ∈ NP. Let’s show that ATMOST3SAT ≤p 3SAT.

The Gadget: Let z_1, z_2, z_3, z_4 be boolean variables. Let

$$\Phi_1 = (\overline{z}_1 \lor z_3 \lor z_4) \land (\overline{z}_1 \lor \overline{z}_3 \lor z_4) \land (\overline{z}_1 \lor z_3 \lor \overline{z}_4) \land (\overline{z}_1 \lor \overline{z}_3 \lor \overline{z}_4)$$

$$\Phi_2 = (\overline{z}_2 \lor z_3 \lor z_4) \land (\overline{z}_2 \lor \overline{z}_3 \lor z_4) \land (\overline{z}_2 \lor z_3 \lor \overline{z}_4) \land (\overline{z}_2 \lor \overline{z}_3 \lor \overline{z}_4)$$

Claim: $\Phi_1 \land \Phi_2$ is satisfiable exactly when $z_1 = z_2 = 0$

Let $\Phi \in$ ATMOST3SAT, and let z_1, \ldots, z_4 be 4 variables NOT occurring in Φ, and let C be a clause of Φ with at most 2 literals.

- If $C = (l_1 \lor l_2)$, replace C with $C' = (l_1 \lor l_2 \lor z_1)$
3SAT is NP-Complete

3SAT ∈ NP. Let’s show that ATMOST3SAT ≤ₚ 3SAT.

The Gadget: Let z₁, z₂, z₃, z₄ be boolean variables. Let

Φ₁ = (¯z₁ ∨ z₃ ∨ z₄) ∧ (¯z₁ ∨ ¯z₃ ∨ z₄) ∧ (z₁ ∨ z₃ ∨ ¯z₄) ∧ (¯z₁ ∨ ¯z₃ ∨ ¯z₄)

Φ₂ = (¯z₂ ∨ z₃ ∨ z₄) ∧ (¯z₂ ∨ ¯z₃ ∨ z₄) ∧ (z₂ ∨ z₃ ∨ ¯z₄) ∧ (¯z₂ ∨ ¯z₃ ∨ ¯z₄)

Claim: Φ₁ ∧ Φ₂ is satisfiable exactly when z₁ = z₂ = 0

Let Φ ∈ ATMOST3SAT, and let z₁, . . . z₄ be 4 variables NOT occurring in Φ, and let C be a clause of Φ with at most 2 literals.

• If C = (l₁ ∨ l₂), replace C with C’ = (l₁ ∨ l₂ ∨ z₁)

• If C = (l₁), replace C with C’ = (l₁ ∨ z₁ ∨ z₂)
3SAT is NP-Complete

$3SAT \in NP$. Let's show that $\text{ATMOST3SAT} \leq_p 3SAT$.

The Gadget: Let z_1, z_2, z_3, z_4 be boolean variables. Let

$$\Phi_1 = (\overline{z}_1 \lor z_3 \lor z_4) \land (\overline{z}_1 \lor \overline{z}_3 \lor z_4) \land (\overline{z}_1 \lor z_3 \lor \overline{z}_4) \land (\overline{z}_1 \lor \overline{z}_3 \lor \overline{z}_4)$$

$$\Phi_2 = (\overline{z}_2 \lor z_3 \lor z_4) \land (\overline{z}_2 \lor \overline{z}_3 \lor z_4) \land (\overline{z}_2 \lor z_3 \lor \overline{z}_4) \land (\overline{z}_2 \lor \overline{z}_3 \lor \overline{z}_4)$$

Claim: $\Phi_1 \land \Phi_2$ is satisfiable exactly when $z_1 = z_2 = 0$

Let $\Phi \in \text{ATMOST3SAT}$, and let z_1, \ldots, z_4 be 4 variables NOT occurring in Φ, and let C be a clause of Φ with at most 2 literals.

- If $C = (l_1 \lor l_2)$, replace C with $C' = (l_1 \lor l_2 \lor z_1)$
- If $C = (l_1)$, replace C with $C' = (l_1 \lor z_1 \lor z_2)$
- Now add $\Phi_1 \land \Phi_2$ and call the modified expression Φ'.
3SAT is NP-Complete

3SAT ∈ NP. Let’s show that ATMOST3SAT ≤ₚ 3SAT.

The Gadget: Let z_1, z_2, z_3, z_4 be boolean variables. Let

$$\Phi_1 = (\bar{z}_1 \lor z_3 \lor z_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_1 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_1 \lor \bar{z}_3 \lor \bar{z}_4)$$

$$\Phi_2 = (\bar{z}_2 \lor z_3 \lor z_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor z_4) \land (\bar{z}_2 \lor z_3 \lor \bar{z}_4) \land (\bar{z}_2 \lor \bar{z}_3 \lor \bar{z}_4)$$

Claim: $\Phi_1 \land \Phi_2$ is satisfiable exactly when $z_1 = z_2 = 0$

Let $\Phi \in$ ATMOST3SAT, and let z_1, \ldots, z_4 be 4 variables NOT occurring in Φ, and let C be a clause of Φ with at most 2 literals.

- If $C = (l_1 \lor l_2)$, replace C with $C' = (l_1 \lor l_2 \lor z_1)$
- If $C = (l_1)$, replace C with $C' = (l_1 \lor z_1 \lor z_2)$
- Now add $\Phi_1 \land \Phi_2$ and call the modified expression Φ'.

Claim: Φ' is satisfiable if and only if Φ' is satisfiable.
We’ve established that all of the following problems are NP-Complete:

- **CIRCUITSAT**: direct proof from definition of NP-Complete
- **ATMOST3SAT**: reduction from CIRCUITSAT
- **3SAT**: reduction from ATMOST3SAT
- **SAT**: (obvious) reduction from 3SAT
- **INDSET, VERTEXCOVER, SETCOVER**: previous reductions, starting with 3SAT

Let’s continue to expand the list. To show a new problem X is NP-complete, we can reduce to it from any of our known NP-complete problems.
We’ve established that all of the following problems are NP-Complete

- CIRCUITSAT: direct proof from definition of NP-Complete
We’ve established that all of the following problems are NP-Complete:

- CIRCUITSAT: direct proof from definition of NP-Complete
- ATMOST3SAT: reduction from CIRCUITSAT
- 3SAT: reduction from ATMOST3SAT
- SAT: (obvious) reduction from 3SAT
- INDSET, VERTEXCOVER, SETCOVER: previous reductions, starting with 3SAT

Let's continue to expand the list.

To show a new problem X is NP-complete, we can reduce to it from any of our known NP-complete problems.
We’ve established that all of the following problems are NP-Complete

- CIRCUITSAT: direct proof from definition of NP-Complete
- ATMOST3SAT: reduction from CIRCUITSAT
- 3SAT: reduction from ATMOST3SAT
- SAT: (obvious) reduction from 3SAT
- INDSET, VERTEXCOVER, SETCOVER: previous reductions, starting with 3SAT

Let’s continue to expand the list.

To show a new problem X is NP-complete, we can reduce to it from any of our known NP-complete problems.
We’ve established that all of the following problems are NP-Complete:

- **CIRCUITSAT**: direct proof from definition of NP-Complete
- **ATMOST3SAT**: reduction from CIRCUITSAT
- **3SAT**: reduction from ATMOST3SAT
- **SAT**: (obvious) reduction from 3SAT
We’ve established that all of the following problems are NP-Complete

- CIRCUITSAT : direct proof from definition of NP-Complete
- ATMOST3SAT : reduction from CIRCUITSAT
- 3SAT : reduction from ATMOST3SAT
- SAT : (obvious) reduction from 3SAT
- INDSET, VERTEXCOVER, SETCOVER : previous reductions, starting with 3SAT

Let’s continue to expand the list. To show a new problem \(X \) is NP-complete, we can reduce to it from any of our known NP-complete problems.
We’ve established that all of the following problems are NP-Complete

- CIRCUITSAT : direct proof from definition of NP-Complete
- ATMOST3SAT : reduction from CIRCUITSAT
- 3SAT : reduction from ATMOST3SAT
- SAT : (obvious) reduction from 3SAT
- INDSET, VERTEXCOVER, SETCOVER : previous reductions, starting with 3SAT

Let’s continue to expand the list.
NP-Complete Problems So Far

We’ve established that all of the following problems are NP-Complete

- CIRCUITSAT: direct proof from definition of NP-Complete
- ATMOST3SAT: reduction from CIRCUITSAT
- 3SAT: reduction from ATMOST3SAT
- SAT: (obvious) reduction from 3SAT
- INDSET, VERTEXCOVER, SETCOVER: previous reductions, starting with 3SAT

Let’s continue to expand the list.

To show a new problem X is NP-complete, we can reduce to it from any of our known NP-complete problems.
SETPACKING is NP-Complete

The Problem: Given a collection \(S = \{S_1, \ldots, S_n\} \) of subsets of a set \(U \) and an integer \(k \), is there a collection \(S_{i_1}, \ldots, S_{i_k} \) of \(S \) such that these sets are pairwise disjoint?
SETPACKING is NP-Complete

The Problem: Given a collection \(S = \{S_1, \ldots, S_n\} \) of subsets of a set \(U \) and an integer \(k \), is there a collection \(S_{i_1}, \ldots, S_{i_k} \) of \(S \) such that these sets are pairwise disjoint?

Clearly \(\text{SETPACKING} \in \text{NP} \) : certificate is list of \(k \) such subsets
SETPACKING is NP-Complete

The Problem: Given a collection $S = \{S_1, \ldots, S_n\}$ of subsets of a set U and an integer k, is there a collection S_{i_1}, \ldots, S_{i_k} of S such that these sets are pairwise disjoint?

Clearly $SETPACKING \in NP$: certificate is list of k such subsets

Claim: $INDSET \leq_p SETPACKING$: Reduction $FROM$ $INDSET$
SETPACKING is NP-Complete

The Problem: Given a collection $S = \{S_1, \ldots, S_n\}$ of subsets of a set U and an integer k, is there a collection S_{i_1}, \ldots, S_{i_k} of S such that these sets are pairwise disjoint?

Clearly SETPACKING \in NP : certificate is list of k such subsets

Claim: INDSET \leq_p SETPACKING : Reduction FROM INDSET

- Let $G = (V, E)$ be a graph and let $v \in V$. Define $E_v = \{e \in E : e = \{v, u\} \text{ for some } u \in V\}$
SETPACKING is NP-Complete

The Problem: Given a collection $S = \{S_1, \ldots S_n\}$ of subsets of a set U and an integer k, is there a collection $S_{i_1}, \ldots , S_{i_k}$ of S such that these sets are pairwise disjoint?

Clearly, SETPACKING \in NP : certificate is list of k such subsets

Claim: INDSET \leq_p SETPACKING : Reduction FROM INDSET

- Let $G = (V, E)$ be a graph and let $v \in V$. Define $E_v = \{e \in E : e = \{v, u\}$ for some $u \in V\}$

- Note: $X \subseteq V$ is an independent set if and only if $E_{u} \cap E_{v} = \emptyset$ for all $u, v \in X$
SETPACKING is NP-Complete

The Problem: Given a collection $S = \{S_1, \ldots, S_n\}$ of subsets of a set U and an integer k, is there a collection S_{i_1}, \ldots, S_{i_k} of S such that these sets are pairwise disjoint?

Clearly SETPACKING \in NP : certificate is list of k such subsets

Claim: INDSET \leq_p SETPACKING : Reduction *FROM* INDSET

- Let $G = (V, E)$ be a graph and let $v \in V$. Define $E_v = \{e \in E : e = \{v, u\} \text{ for some } u \in V\}$
- Note: $X \subseteq V$ is an independent set if and only if $E_u \cap E_v = \emptyset$ for all $u, v \in X$
- Given an instance (G, k) of INDSET, create the set $S_G = \{E_v : v \in V\}$
SETPACKING is NP-Complete

The Problem: Given a collection \(S = \{S_1, \ldots, S_n\} \) of subsets of a set \(U \) and an integer \(k \), is there a collection \(S_{i_1}, \ldots, S_{i_k} \) of \(S \) such that these sets are pairwise disjoint?

Clearly SETPACKING \(\in \) NP : certificate is list of \(k \) such subsets

Claim: INDSET \(\leq_p \) SETPACKING : Reduction FROM INDSET

- Let \(G = (V, E) \) be a graph and let \(v \in V \). Define \(E_v = \{e \in E : e = \{v, u\} \text{ for some } u \in V\} \)
- Note: \(X \subseteq V \) is an independent set if and only if \(E_u \cap E_v = \emptyset \) for all \(u, v \in X \)
- Given an instance \((G, k) \) of INDSET, create the set \(S_G = \{E_v : v \in V\} \)
- SETPACKING returns "yes" if and only if there are sets \(E_{v_1}, \ldots, E_{v_k} \) of \(S_G \) that are pairwise disjoint
SETPACKING is NP-Complete

The Problem: Given a collection $S = \{S_1, \ldots S_n\}$ of subsets of a set U and an integer k, is there a collection S_{i_1}, \ldots, S_{i_k} of S such that these sets are pairwise disjoint?

Clearly SETPACKING \in NP : certificate is list of k such subsets

Claim: INDSET \leq_p SETPACKING : Reduction FROM INDSET

- Let $G = (V, E)$ be a graph and let $v \in V$. Define $E_v = \{e \in E : e = \{v, u\} \text{ for some } u \in V\}$
- Note: $X \subseteq V$ is an independent set if and only if $E_u \cap E_v = \emptyset$ for all $u, v \in X$
- Given an instance (G, k) of INDSET, create the set $S_G = \{E_v : v \in V\}$
- SETPACKING returns "yes" if and only if there are sets E_{v_1}, \ldots, E_{v_k} of S_G that are pairwise disjoint
- That is, if and only if $\{v_1, \ldots, v_k\}$ is an independent set of G.
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories:

- **Packing Problems**: INDSET, SETPACKING
- **"...at least \(k \)...**
- **Covering Problems**: VERTEXCOVER, SETCOVER
- **"...at most \(k \)...**
- **Constraint Satisfaction Problems**: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT
- We'll explore three more categories:
 - **Partition Problems**: Packing meets Covering
 - **Sequencing Problems**
 - **Numerical Problems**
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- Packing Problems: INDSET, SETPACKING
 - "...at least k..."
- Covering Problems: VERTEXCOVER, SETCOVER
 - "...at most k..."
- Constraint Satisfaction Problems: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We'll explore three more categories

- Partition Problems: Packing meets Covering
- Sequencing Problems
- Numerical Problems
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- **Packing Problems**: INDSET, SETPACKING
 - "...at least k..."
- **Covering Problems**: VERTEXCOVER, SETCOVER
 - "...at most k..."

We'll explore three more categories:

- **Partition Problems**: Packing meets Covering
- **Sequencing Problems**
- **Numerical Problems**
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

• Packing Problems: INDSET, SETPACKING
 • "...at least k..."

• Covering Problems: VERTEXCOVER, SETCOVER
 • "...at most k..."

• Constraint Satisfaction Problems: CIRCUITSAT, ATMOBST3SAT, 3SAT, SAT
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories:

- **Packing Problems**: INDSET, SETPACKING
 - "...at least k..."
- **Covering Problems**: VERTEXCOVER, SETCOVER
 - "...at most k..."
- **Constraint Satisfaction Problems**: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We'll explore three more categories:

- **Partition Problems**: Packing meets Covering
- **Sequencing Problems**
- **Numerical Problems**
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- Packing Problems: INDSET, SETPACKING
 - "...at least k..."
- Covering Problems: VERTEXCOVER, SETCOVER
 - "...at most k..."
- Constraint Satisfaction Problems: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We’ll explore three more categories
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- **Packing Problems**: INDSET, SETPACKING
 - "...at least \(k \)...

- **Covering Problems**: VERTEXCOVER, SETCOVER
 - "...at most \(k \)...

- **Constraint Satisfaction Problems**: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We’ll explore three more categories

- **Partition Problems**: Packing meets Covering
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- Packing Problems: INDSET, SETPACKING
 - "...at least k..."
- Covering Problems: VERTEXCOVER, SETCOVER
 - "...at most k..."
- Constraint Satisfaction Problems: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We’ll explore three more categories

- Partition Problems : Packing meets Covering
- Sequencing Problems
A Partial Taxonomy of NP-Complete Problems

The NP-complete problems discussed so far fall into three rough categories

- **Packing Problems**: INDSET, SETPACKING
 - "...at least k..."

- **Covering Problems**: VERTEXCOVER, SETCOVER
 - "...at most k..."

- **Constraint Satisfaction Problems**: CIRCUITSAT, ATMOST3SAT, 3SAT, SAT

We’ll explore three more categories

- **Partition Problems**: Packing meets Covering
- **Sequencing Problems**
- **Numerical Problems**