NP-Completeness

Algorithm Design & Analysis

Fall 2018
Outline
Recap

• $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.
Recap

• $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.

• Polynomial Equivalence: $X \equiv_p Y$ if $X \leq_p Y$ and $Y \leq_p X$
Recap

- $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.
- Polynomial Equivalence: $X \equiv_p Y$ if $X \leq_p Y$ and $Y \leq_p X$
- Transitivity: If $X \leq_p Y$ and $Y \leq_p Z$ then $X \leq_p Z$
Recap

• $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.

• Polynomial Equivalence: $X \equiv_p Y$ if $X \leq_p Y$ and $Y \leq_p X$

• Transitivity: If $X \leq_p Y$ and $Y \leq_p Z$ then $X \leq_p Z$

• Strategies for reductions
Recap

- $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.
- Polynomial Equivalence: $X \equiv_p Y$ if $X \leq_p Y$ and $Y \leq_p X$
- Transitivity: If $X \leq_p Y$ and $Y \leq_p Z$ then $X \leq_p Z$
- Strategies for reductions
 - Direct equivalence ($\text{INDSET} \equiv_p \text{VERTEXCOVER}$)
Recap

- $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.
- Polynomial Equivalence: $X \equiv_p Y$ if $X \leq_p Y$ and $Y \leq_p X$
- Transitivity: If $X \leq_p Y$ and $Y \leq_p Z$ then $X \leq_p Z$
- Strategies for reductions
 - Direct equivalence ($INDSET \equiv_p VERTEXCOVER$)
 - Special Case: ($VERTEXCOVER \leq_p SETCOVER$)
Recap

- $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.
- Polynomial Equivalence: $X \equiv_p Y$ if $X \leq_p Y$ and $Y \leq_p X$.
- Transitivity: If $X \leq_p Y$ and $Y \leq_p Z$ then $X \leq_p Z$.
- Strategies for reductions:
 - Direct equivalence ($INDSET \equiv_p VERTEXCOVER$).
 - Special Case: ($VERTEXCOVER \leq_p SETCOVER$).
 - Gadget Building: ($3SAT \leq_p INDSET$).
Recap

• $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.

• Polynomial Equivalence: $X \equiv_p Y$ if $X \leq_p Y$ and $Y \leq_p X$

• Transitivity: If $X \leq_p Y$ and $Y \leq_p Z$ then $X \leq_p Z$

• Strategies for reductions
 • Direct equivalence ($\text{INDSET} \equiv_p \text{VERTEXCOVER}$)
 • Special Case: ($\text{VERTEXCOVER} \leq_p \text{SETCOVER}$)
 • Gadget Building: ($\text{3SAT} \leq_p \text{INDSET}$)

• Problem Characteristics
Recap

- $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.

- Polynomial Equivalence: $X \equiv_p Y$ if $X \leq_p Y$ and $Y \leq_p X$

- Transitivity: If $X \leq_p Y$ and $Y \leq_p Z$ then $X \leq_p Z$

- Strategies for reductions
 - Direct equivalence ($INDSET \equiv_p VERTEXCOVER$)
 - Special Case: ($VERTEXCOVER \leq_p SETCOVER$)
 - Gadget Building: ($3SAT \leq_p INDSET$)

- Problem Characteristics
 - Decision Problems: Output is YES/NO
Recap

- $X \leq_p Y$ if problem X can be solved in polynomial time by some algorithm that is allowed to solve instances of problem Y in constant time.
- Polynomial Equivalence: $X \equiv_p Y$ if $X \leq_p Y$ and $Y \leq_p X$
- Transitivity: If $X \leq_p Y$ and $Y \leq_p Z$ then $X \leq_p Z$
- Strategies for reductions
 - Direct equivalence ($\text{INDSET} \equiv_p \text{VERTEXCOVER}$)
 - Special Case: ($\text{VERTEXCOVER} \leq_p \text{SETCOVER}$)
 - Gadget Building: ($\text{3SAT} \leq_p \text{INDSET}$)
- Problem Characteristics
 - Decision Problems: Output is YES/NO
 - Certifiability: If answer is YES, there's a "short proof"
Recap: Decision Problems and Certifiers

- Algorithm A solves decision problem X in polynomial time if $A(s)$ executes at most $O(p(|s|))$ operations, for some polynomial $p()$
Recap: Decision Problems and Certifiers

- Algorithm A solves decision problem X in polynomial time if $A(s)$ executes at most $O(p(|s|))$ operations, for some polynomial $p()$
- An algorithm $C(s, t)$, where s and t are strings, is a certifier for decision problem X if for every s
Recap: Decision Problems and Certifiers

- Algorithm A solves decision problem X in polynomial time if $A(s)$ executes at most $O(p(|s|))$ operations, for some polynomial $p()

- An algorithm $C(s, t)$, where s and t are strings, is a certifier for decision problem X if for every s
 - $s \in X$ if and only if there is some string t_s such that $C(s, t_s)$ returns "yes".
Recap: Decision Problems and Certifiers

- Algorithm A solves decision problem X in polynomial time if $A(s)$ executes at most $O(p(|s|))$ operations, for some polynomial $p()$
- An algorithm $C(s, t)$, where s and t are strings, is a certifier for decision problem X if for every s
 - $s \in X$ if and only if there is some string t_s such that $C(s, t_s)$ returns "yes".
- A certifier $C(s, t)$ for decision problem X is a polynomial-time certifier if
Recap: Decision Problems and Certifiers

- Algorithm A solves decision problem X in polynomial time if $A(s)$ executes at most $O(p(|s|))$ operations, for some polynomial $p()$
- An algorithm $C(s, t)$, where s and t are strings, is a certifier for decision problem X if for every s
 - $s \in X$ if and only if there is some string t_s such that $C(s, t_s)$ returns "yes".
- A certifier $C(s, t)$ for decision problem X is a polynomial-time certifier if
 - $|t_s| \leq p(|s|)$ for some polynomial $p()$ (t_s is not too big!)
Recap: Decision Problems and Certifiers

- Algorithm A solves decision problem X in polynomial time if $A(s)$ executes at most $O(p(|s|))$ operations, for some polynomial $p()$
- An algorithm $C(s, t)$, where s and t are strings, is a certifier for decision problem X if for every s
 - $s \in X$ if and only if there is some string t_s such that $C(s, t_s)$ returns "yes".
- A certifier $C(s, t)$ for decision problem X is a polynomial-time certifier if
 - $|t_s| \leq p(|s|)$ for some polynomial $p()$ (t_s is not too big!)
 - $C(s, t)$ runs in time $q(|s|)$ for some polynomial $q(x)$ ($C()$ is efficient)
A Complexity Hierarchy

- $P = \{X : \text{There is a poly-time algorithm } A() \text{ that decides } X\}$
- $NP = \{X : \text{There is a poly-time certifier } C(s, t) \text{ for } X\}$
A Complexity Hierarchy

- $P = \{X : \text{There is a poly-time algorithm } A() \text{ that decides } X\}$
- $NP = \{X : \text{There is a poly-time certifier } C(s, t) \text{ for } X\}$
- Claim: $P \subseteq NP$: $C(s, t) = A(s)$; just let $t_s = \epsilon$
- $\text{EXP} = \{X : \text{Some exp-time algorithm } A() \text{ that decides } X\}$
- Claim: $NP \subseteq \text{EXP}$
- $P \subset \text{EXP}$: Consequence of the Time Hierarchy Theorem
- Big Question: Is $P = NP$?
- Consensus view is "no"
- Most fundamental problem in computer science
- Clay Foundation offers $1,000,000$ prize for the answer
A Complexity Hierarchy

- $P = \{X : \text{There is a poly-time algorithm } A() \text{ that decides } X\}$
- $NP = \{X : \text{There is a poly-time certifier } C(s, t) \text{ for } X\}$
- Claim: $P \subseteq NP$: $C(s, t) = A(s)$; just let $t_s = \epsilon$
- $EXP = \{X : \text{Some exp-time algorithm } A() \text{ that decides } X\}$
A Complexity Hierarchy

• \(P = \{ X : \) There is a poly-time algorithm \(A() \) that decides \(X \}\}
• \(NP = \{ X : \) There is a poly-time certifier \(C(s, t) \) for \(X \}\}
• Claim: \(P \subseteq NP: C(s, t) = A(s); \) just let \(t_s = \epsilon \)
• \(EXP = \{ X : \) Some exp-time algorithm \(A() \) that decides \(X \}\}
• Claim: \(NP \subseteq EXP \)
A Complexity Hierarchy

- $P = \{ X : \text{There is a poly-time algorithm } A() \text{ that decides } X \}$
- $NP = \{ X : \text{There is a poly-time certifier } C(s, t) \text{ for } X \}$
- Claim: $P \subseteq NP$: $C(s, t) = A(s)$; just let $t_s = \epsilon$
- $EXP = \{ X : \text{Some exp-time algorithm } A() \text{ that decides } X \}$
- Claim: $NP \subseteq EXP$
- $P \nsubseteq EXP$: Consequence of the Time Hierarchy Theorem
A Complexity Hierarchy

- \(P = \{ X : \) There is a poly-time algorithm \(A() \) that decides \(X \}\)
- \(NP = \{ X : \) There is a poly-time certifier \(C(s, t) \) for \(X \}\)
- Claim: \(P \subseteq NP: C(s, t) = A(s); \) just let \(t_s = \epsilon \)
- \(EXP = \{ X : \) Some exp-time algorithm \(A() \) that decides \(X \}\)
- Claim: \(NP \subseteq EXP \)
- \(P \subsetneq EXP: \) Consequence of the Time Hierarchy Theorem
- **Big Question:** Is \(P = NP \)?
A Complexity Hierarchy

- \(P = \{ X : \text{There is a poly-time algorithm } A() \text{ that decides } X \} \)
- \(NP = \{ X : \text{There is a poly-time certifier } C(s, t) \text{ for } X \} \)
- Claim: \(P \subseteq NP: \ C(s, t) = A(s); \text{ just let } t_s = \epsilon \)
- \(EXP = \{ X : \text{Some exp-time algorithm } A() \text{ that decides } X \} \)
- Claim: \(NP \subseteq EXP \)
- \(P \subsetneq EXP: \text{Consequence of the Time Hierarchy Theorem} \)
- **Big Question:** Is \(P = NP \)?
 - Consensus view is "no"
A Complexity Hierarchy

- $P = \{X : \text{There is a poly-time algorithm } A() \text{ that decides } X\}$
- $NP = \{X : \text{There is a poly-time certifier } C(s, t) \text{ for } X\}$
- Claim: $P \subseteq NP$: $C(s, t) = A(s)$; just let $t_s = \epsilon$
- $EXP = \{X : \text{Some exp-time algorithm } A() \text{ that decides } X\}$
- Claim: $NP \subseteq EXP$
- $P \subset EXP$: Consequence of the Time Hierarchy Theorem
- Big Question: Is $P = NP$?
 - Consensus view is "no"
 - Most fundamental problem in computer science

The Clay Foundation offers $1,000,000 prize for the answer.
A Complexity Hierarchy

- $P = \{X : \text{There is a poly-time algorithm } A() \text{ that decides } X\}$
- $NP = \{X : \text{There is a poly-time certifier } C(s, t) \text{ for } X\}$
- Claim: $P \subseteq NP$: $C(s, t) = A(s)$; just let $t_s = \epsilon$
- $EXP = \{X : \text{Some exp-time algorithm } A() \text{ that decides } X\}$
- Claim: $NP \subseteq EXP$
- $P \subsetneq EXP$: Consequence of the Time Hierarchy Theorem
- **Big Question:** Is $P = NP$?
 - Consensus view is "no"
 - Most fundamental problem in computer science
 - Clay Foundation offers $1,000,000$ prize for the answer
NP-Completeness Defined

Are there "hardest" problems in NP?
NP-Completeness Defined

Are there "hardest" problems in NP?

Not obvious, but since $NP \subseteq EXP$, at least possible
Are there "hardest" problems in NP?

Not obvious, but since $NP \subseteq EXP$, at least possible

Definition

A decision problem X is *NP-Complete* if
NP-Completeness Defined

Are there "hardest" problems in NP?

Not obvious, but since $NP \subseteq EXP$, at least possible

Definition

A decision problem X is NP-Complete if

- $X \in NP$
Are there "hardest" problems in NP?

Not obvious, but since $NP \subseteq EXP$, at least possible

Definition

A decision problem X is *NP-Complete* if

- $X \in NP$
- For every $Y \in NP$, $Y \leq_p X$
Are there "hardest" problems in NP?
Not obvious, but since $NP \subseteq EXP$, at least possible

Definition
A decision problem X is NP-Complete if
- $X \in NP$
- For every $Y \in NP$, $Y \leq_p X$

Are there any such problems?
NP-Completeness Defined

Are there "hardest" problems in NP?
Not obvious, but since $NP \subseteq EXP$, at least possible

Definition
A decision problem X is *NP-Complete* if
- $X \in NP$
- For every $Y \in NP$, $Y \leq_p X$

Are there *any* such problems?

Surprisingly, *thousands* of problems have been shown to be NP-Complete
Why is Definition Important?

Theorem

Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$.

Proof.

$P = NP \implies Y \in P$

• Clear: $Y \in NP$, so $Y \in P$.

$Y \in P \implies P = NP$

• Let $X \in NP$. Then $X \leq_P Y$, since Y is NP-Complete.

• But if $Y \in P$ then $X \in P$.

• Thus $NP \subseteq P$. But $P \subseteq NP$, so $P = NP$.

Why is Definition Important?

Theorem

Let Y be any *NP-Complete problem*. Then $Y \in P$ if and only if $P = NP$.
Theorem
Let Y be any \textit{NP-Complete} problem. Then $Y \in P$ if and only if $P = NP$

Proof.
Why is Definition Important?

Theorem

Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

Proof.

$P = NP \Rightarrow Y \in P$
Why is Definition Important?

Theorem

Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

Proof.

$P = NP \Rightarrow Y \in P$

- Clear: $Y \in NP$, so $Y \in P$
Why is Definition Important?

Theorem
Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

Proof.

$P = NP \Rightarrow Y \in P$

- Clear: $Y \in NP$, so $Y \in P$

$Y \in P \Rightarrow P = NP$
Why is Definition Important?

Theorem

Let Y be any *NP-Complete* problem. Then $Y \in P$ if and only if $P = NP$

Proof.

$P = NP \Rightarrow Y \in P$

- Clear: $Y \in NP$, so $Y \in P$

$Y \in P \Rightarrow P = NP$

- Let $X \in NP$. Then $X \leq_p Y$, since Y is *NP-Complete*
Why is Definition Important?

Theorem
Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

Proof.

$P = NP \Rightarrow Y \in P$

- Clear: $Y \in NP$, so $Y \in P$

$Y \in P \Rightarrow P = NP$

- Let $X \in NP$. Then $X \leq_p Y$, since Y is NP-Complete
- But if $Y \in P$ then $X \in P$.
Why is Definition Important?

Theorem
Let Y be any NP-Complete problem. Then $Y \in P$ if and only if $P = NP$

Proof.

$P = NP \Rightarrow Y \in P$

- Clear: $Y \in NP$, so $Y \in P$

$Y \in P \Rightarrow P = NP$

- Let $X \in NP$. Then $X \leq_p Y$, since Y is NP-Complete
- But if $Y \in P$ then $X \in P$.
- Thus $NP \subseteq P$. But $P \subseteq NP$, so $P = NP$
Establishing NP-Completeness

There are two ways to show a problem Y is NP-Complete:

1. **From Definition**
 - Show that $Y \in NP$
 - Show that for all $X \in NP$, $X \leq_p Y$

2. **Reduction**
 - Show that $Y \in NP$
 - Show that $Z \leq_p Y$ for some NP-Complete problem Z

So if $X \in NP$, $X \leq_p Z$ and $Z \leq_p Y$, so $X \leq_p Y$.

Can't use second method until we use first method!
Establishing NP-Completeness

There are two ways to show a problem Y is NP-Complete

From Definition
Establishing NP-Completeness

There are two ways to show a problem Y is NP-Complete

From Definition

1. Show that $Y \in NP$

Can't use second method until we use first method!
Establishing NP-Completeness

There are two ways to show a problem Y is NP-Complete

From Definition

- Show that $Y \in NP$
- Show that for all $X \in NP$, $X \leq_p Y$

Can’t use second method until we use first method!
Establishing NP-Completeness

There are two ways to show a problem Y is NP-Complete

From Definition

- Show that $Y \in NP$
- Show that for all $X \in NP$, $X \leq_p Y$

Can’t use second method until we use first method!
Establishing NP-Completeness

There are two ways to show a problem Y is NP-Complete

From Definition

- Show that $Y \in NP$
- Show that for all $X \in NP$, $X \leq_p Y$

Reduction

- Show that $Y \in NP$

Can’t use second method until we use first method!
Establishing NP-Completeness

There are two ways to show a problem Y is NP-Complete

From Definition

- Show that $Y \in NP$
- Show that for all $X \in NP$, $X \leq_p Y$

Reduction

- Show that $Y \in NP$
- Show that $Z \leq_p Y$ for some NP-Complete problem Z

Can't use second method until we use first method!
Establishing NP-Completeness

There are two ways to show a problem Y is NP-Complete

From Definition

- Show that $Y \in NP$
- Show that for all $X \in NP$, $X \leq_p Y$

Reduction

- Show that $Y \in NP$
- Show that $Z \leq_p Y$ for some NP-Complete problem Z
- So if $X \in NP$, $X \leq_p Z$ and $Z \leq_p Y$, so $X \leq_p Y$

Can't use second method until we use first method!
Establishing NP-Completeness

There are two ways to show a problem \(Y \) is NP-Complete

From Definition

- Show that \(Y \in NP \)
- Show that for all \(X \in NP \), \(X \leq_p Y \)

Reduction

- Show that \(Y \in NP \)
- Show that \(Z \leq_p Y \) for some for some NP-Complete problem \(Z \)
- So if \(X \in NP \), \(X \leq_p Z \) and \(Z \leq_p Y \), so \(X \leq_p Y \)

Can’t use second method until we use first method!
Circuit Satisfiability : A First NP-Complete Problem

We will show the following

• \textsc{CircuitSat} is NP-Complete
• \textsc{CircuitSat} \leq_p \textsc{Atmost3Sat}, so \textsc{Atmost3Sat} is NP-Complete (\textsc{Atmost3Sat} \in NP)
• \textsc{Atmost3Sat} \leq_p \textsc{3Sat}, so \textsc{3Sat} is NP-Complete (\textsc{3Sat} \in NP)

This will show that \textsc{Indset}, \textsc{VertexCover}, \textsc{Setcover} are NP-Complete, since

• They are all in NP, and
• \textsc{3Sat} \leq_p \textsc{Indset} \leq_p \textsc{VertexCover} \leq_p \textsc{Setcover}

From these, an avalanche of NP-Complete problems will follow
We will show the following:

- CIRCUITSAT is NP-Complete
We will show the following

- CIRCUITSAT is NP-Complete
- CIRCUITSAT \leq_p ATMOST3SAT, so ATMOST3SAT is NP-Complete (ATMOST3SAT \in NP)
We will show the following

- CIRCUITSAT is NP-Complete
- CIRCUITSAT \(\leq_p \) ATMOST3SAT, so ATMOST3SAT is NP-Complete (ATMOST3SAT \(\in \) NP)
- ATMOST3SAT \(\leq_p \) 3SAT, so 3SAT is NP-Complete (3SAT \(\in \) NP)

From these, an avalanche of NP-Complete problems will follow
Circuit Satisfiability: A First NP-Complete Problem

We will show the following

- CIRCUITSAT is NP-Complete
- CIRCUITSAT \leq_p ATMOST3SAT, so ATMOST3SAT is NP-Complete (ATMOST3SAT \in NP)
- ATMOST3SAT \leq_p 3SAT, so 3SAT is NP-Complete (3SAT \in NP)
- This will show that INDSET, VERTEXCOVER, SETCOVER are NP-Complete, since
Circuit Satisfiability : A First NP-Complete Problem

We will show the following

• CIRCUITSAT is NP-Complete
• CIRCUITSAT \leq_p ATMOST3SAT, so ATMOST3SAT is NP-Complete (ATMOST3SAT \in NP)
• ATMOST3SAT \leq_p 3SAT, so 3SAT is NP-Complete (3SAT \in NP)
• This will show that INDSET, VERTEXCOVER, SETCOVER are NP-Complete, since
 • They are all in NP, and
We will show the following

- CIRCUITSAT is NP-Complete
- CIRCUITSAT \leq_p ATMOST3SAT, so ATMOST3SAT is NP-Complete (ATMOST3SAT \in NP)
- ATMOST3SAT \leq_p 3SAT, so 3SAT is NP-Complete (3SAT \in NP)
- This will show that INDSET, VERTEXCOVER, SETCOVER are NP-Complete, since
 - They are all in NP, and
 - 3SAT \leq_p INDSET \leq_p VERTEXCOVER \leq_p SETCOVER
Circuit Satisfiability: A First NP-Complete Problem

We will show the following

- CIRCUITSAT is NP-Complete
- CIRCUITSAT \leq_p ATMOST3SAT, so ATMOST3SAT is NP-Complete (ATMOST3SAT \in NP)
- ATMOST3SAT \leq_p 3SAT, so 3SAT is NP-Complete (3SAT \in NP)
- This will show that INDSET, VERTEXCOVER, SETCOVER are NP-Complete, since
 - They are all in NP, and
 - 3SAT \leq_p INDSET \leq_p VERTEXCOVER \leq_p SETCOVER
- From these, an avalanche of NP-Complete problems will follow
A Note on Alphabets and Strings

An alphabet Σ is just a finite set. The inputs to decision problems are strings over some alphabet Σ. We write Σ^* for the set of all finite strings over Σ (including ϵ).

A language X over Σ is just some $X \subseteq \Sigma^*$. So a decision problem X is just a language over Σ. It doesn't really matter which alphabet we choose.

If $|\Sigma| = k$, any $\sigma \in \Sigma$ can be encoded with $c = \lceil \log k \rceil$ bits.

So if $s \in \Sigma^*$ has length n, its bit-encoding has length cn over $\{0, 1\}$.

So alphabet choice impacts efficiency by only a constant factor.
A Note on Alphabets and Strings

An alphabet Σ is (just) a finite set
A Note on Alphabets and Strings

An alphabet Σ is (just) a finite set

The inputs to decision problems are strings over some alphabet Σ
A Note on Alphabets and Strings

An alphabet Σ is (just) a finite set

The inputs to decision problems are strings over some alphabet Σ

We write Σ^* for the set of all finite strings over Σ (including ϵ)
A Note on Alphabets and Strings

An alphabet Σ is (just) a finite set.

The inputs to decision problems are strings over some alphabet Σ.

We write Σ^* for the set of all finite strings over Σ (including ϵ).

A *language* X over Σ is just some $X \subseteq \Sigma^*$.
A Note on Alphabets and Strings

An alphabet Σ is (just) a finite set.

The inputs to decision problems are strings over some alphabet Σ.

We write Σ^* for the set of all finite strings over Σ (including ϵ).

A language X over Σ is just some $X \subseteq \Sigma^*$.

So a decision problem X is just a language over Σ.
A Note on Alphabets and Strings

An alphabet Σ is (just) a finite set

The inputs to decision problems are strings over some alphabet Σ

We write Σ^* for the set of all finite strings over Σ (including ϵ)

A language X over Σ is just some $X \subseteq \Sigma^*$

So a decision problem X is just a language over Σ

It doesn’t really matter which alphabet we choose
A Note on Alphabets and Strings

An *alphabet* Σ is (just) a finite set

The inputs to decision problems are strings over some alphabet Σ

We write Σ^* for the set of all finite strings over Σ (including ϵ)

A *language* X over Σ is just some $X \subseteq \Sigma^*$

So a decision problem X is just a language over Σ

It doesn’t really matter which alphabet we choose

If $|\Sigma| = k$, any $\sigma \in \Sigma$ can be encoded with $c = \lceil \log k \rceil$ bits
A Note on Alphabets and Strings

An alphabet Σ is (just) a finite set.

The inputs to decision problems are strings over some alphabet Σ.

We write Σ^* for the set of all finite strings over Σ (including ϵ).

A language X over Σ is just some $X \subseteq \Sigma^*$.

So a decision problem X is just a language over Σ.

It doesn’t really matter which alphabet we choose.

If $|\Sigma| = k$, any $\sigma \in \Sigma$ can be encoded with $c = \lceil \log k \rceil$ bits.

So if $s \in \Sigma^*$ has length n, its bit-encoding has length cn over $\{0, 1\}$.
A Note on Alphabets and Strings

An alphabet Σ is (just) a finite set.

The inputs to decision problems are strings over some alphabet Σ.

We write Σ^* for the set of all finite strings over Σ (including ϵ).

A language X over Σ is just some $X \subseteq \Sigma^*$.

So a decision problem X is just a language over Σ.

It doesn’t really matter which alphabet we choose.

If $|\Sigma| = k$, any $\sigma \in \Sigma$ can be encoded with $c = \lceil \log k \rceil$ bits.

So if $s \in \Sigma^*$ has length n, its bit-encoding has length cn over $\{0, 1\}$.

So alphabet choice impacts efficiency by only a constant factor.
Boolean Circuits: An Example

We will assume that $\Sigma = \{0, 1\}$ in what follows.
Boolean Circuits: An Example

We will assume that $\Sigma = \{0, 1\}$ in what follows.

![Diagram of a Boolean circuit with three inputs, two additional sources with assigned truth values, and one output.](image)

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.
Boolean Circuits

Definition
A boolean circuit is a DAG in which

• Sources represent input bits
• Sinks represent output bits
• Other bits represent boolean operations (∧, ∨, ¬)

Theorem (We won’t prove this....)
Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C such that
• C can be produced from A in poly-time (and hence is of poly-size)
• C produces a 1 if and only if A does
Boolean Circuits

Definition

A *boolean circuit* is a DAG in which

- Sources represent input bits
Boolean Circuits

Definition

A boolean circuit is a DAG in which

- Sources represent input bits
- Sinks represent output bits

Theorem (We won’t prove this....)

Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C such that

- C can be produced from A in poly-time (and hence is of poly-size)
- C produces a 1 if and only if A does
Boolean Circuits

Definition

A boolean circuit is a DAG in which

- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\wedge, \vee, \neg)

Theorem (We won’t prove this....)

Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C such that

- C can be produced from A in poly-time (and hence is of poly-size)
- C produces a 1 if and only if A does
Boolean Circuits

Definition

A boolean circuit is a DAG in which

• Sources represent input bits
• Sinks represent output bits
• Other bits represent boolean operations (\land, \lor, \neg)

Theorem (We won’t prove this....)

Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C such that
Boolean Circuits

Definition

A boolean circuit is a DAG in which

- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\land, \lor, \neg)

Theorem (We won’t prove this....)

Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C such that

- C can be produced from A in poly-time (and hence is of poly-size)
Boolean Circuits

Definition
A boolean circuit is a DAG in which
- Sources represent input bits
- Sinks represent output bits
- Other bits represent boolean operations (\wedge, \vee, \neg)

Theorem (We won’t prove this....)
Let A be a poly-time algorithm that takes n input bits and produces 1 output bit. Then there is a boolean circuit C such that
- C can be produced from A in poly-time (and hence is of poly-size)
- C produces a 1 if and only if A does
Definition (CIRCUITSAT)

Given a boolean circuit C with n input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that C returns 1 (true/yes)?
Definition (CIRCUITSAT)

Given a boolean circuit C with n input bits (some of which may be fixed), is there an assignment of values to the unfixed input bits such that C returns 1 (true/yes)?

Theorem

CIRCUITSAT is NP-complete
Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.
CIRCUITSAT is NP-Complete
CIRCUITSAT is NP-Complete

Proof.
CIRCUITSAT is NP-Complete

Proof.
Need to show that, for any $X \in NP$, $X \leq_p CIRCUITSAT$
CIRCUITSAT is NP-Complete

Proof.
Need to show that, for any $X \in NP$, $X \leq_p CIRCUITSAT$

- Since $X \in NP$, X has a poly-time certifier $C(s, t)$
CIRCUITSAT is NP-Complete

Proof.

Need to show that, for any $X \in NP$, $X \leq_p CIRCUITSAT$

- Since $X \in NP$, X has a poly-time certifier $C(s, t)$
- A string s is in X if and only if some t_s of length $p(|s|)$ makes $C(s, t_s)$ return "yes" (that is, 1).
CIRCUITSAT is NP-Complete

Proof.
Need to show that, for any $X \in NP$, $X \leq_p CIRCUITSAT$

- Since $X \in NP$, X has a poly-time certifier $C(s, t)$
- A string s is in X if and only if some t_s of length $p(|s|)$ makes $C(s, t_s)$ return "yes" (that is, 1).
- So view $C(s, t)$ as an algorithm that takes at most $|s| + p(|s|)$ bits and outputs 1 bit
CIRCUITSAT is NP-Complete

Proof.

Need to show that, for any $X \in NP$, $X \leq_p CIRCUITSAT$

- Since $X \in NP$, X has a poly-time certifier $C(s, t)$
- A string s is in X if and only if some t_s of length $p(|s|)$ makes $C(s, t_s)$ return "yes" (that is, 1).
- So view $C(s, t)$ as an algorithm that takes at most $|s| + p(|s|)$ bits and outputs 1 bit
- $C(s, t)$ can be converted into a boolean circuit C with $|s|$ fixed bits; other $p(|s|)$ bits represent t_s
CIRCUITSAT is NP-Complete

Proof.

Need to show that, for any $X \in NP, X \leq_p CIRCUITSAT$

- Since $X \in NP$, X has a poly-time certifier $C(s, t)$
- A string s is in X if and only if some t_s of length $p(|s|)$ makes $C(s, t_s)$ return "yes" (that is, 1).
- So view $C(s, t)$ as an algorithm that takes at most $|s| + p(|s|)$ bits and outputs 1 bit
- $C(s, t)$ can be converted into a boolean circuit C with $|s|$ fixed bits; other $p(|s|)$ bits represent t_s
CIRCUITSAT is NP-Complete

Proof.
Need to show that, for any \(X \in NP \), \(X \leq_p CIRCUITSAT \)

- Since \(X \in NP \), \(X \) has a poly-time certifier \(C(s, t) \)
- A string \(s \) is in \(X \) if and only if some \(t_s \) of length \(p(|s|) \) makes \(C(s, t_s) \) return "yes" (that is, 1).
- So view \(C(s, t) \) as an algorithm that takes at most \(|s| + p(|s|)\) bits and outputs 1 bit
- \(C(s, t) \) can be converted into a boolean circuit \(C \) with \(|s|\) fixed bits; other \(p(|s|) \) bits represent \(t_s \)
- \(C \) is satisfiable if and only if there’s some setting of \(t_s \) bits that makes \(C(s, t_s) \) true.
CIRCUITSAT is NP-Complete

Proof.

Need to show that, for any \(X \in NP \), \(X \leq_p CIRCUITSAT \)

- Since \(X \in NP \), \(X \) has a poly-time certifier \(C(s, t) \)
- A string \(s \) is in \(X \) if and only if some \(t_s \) of length \(p(|s|) \) makes \(C(s, t_s) \) return "yes" (that is, 1).
- So view \(C(s, t) \) as an algorithm that takes at most \(|s| + p(|s|)\) bits and outputs 1 bit
- \(C(s, t) \) can be converted into a boolean circuit \(C \) with \(|s|\) fixed bits; other \(p(|s|) \) bits represent \(t_s \)
- \(C \) is satisfiable if and only if there's some setting of \(t_s \) bits that makes \(C(s, t_s) \) true.
- Thus \(X \) has been poly-time reduced to an instance of CIRCUITSAT
From CIRCUITSAT to ATMOST3SAT

Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.
Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.

Theorem
ATMOST3SAT is NP-complete.
From \textit{CIRCUITSAT} to \textit{ATMOST3SAT}

\textbf{Definition}
Let Φ be a CNF expression with at most 3 literals per clause. \textit{ATMOST3SAT} is the problem of deciding whether Φ is satisfiable.

\textbf{Theorem}
\textit{ATMOST3SAT} is \textit{NP}-complete.

\textbf{Proof.}
Note that \textit{ATMOST3SAT} is in \textit{NP}. We show that \textit{CIRCUITSAT} \leq_p \textit{ATMOST3SAT}.
From CIRCUITSAT to ATMOST3SAT

Definition
Let Φ be a CNF expression with at most 3 literals per clause. ATMOST3SAT is the problem of deciding whether Φ is satisfiable.

Theorem
ATMOST3SAT is NP-complete.

Proof.
Note that ATMOST3SAT is in NP. We show that CIRCUITSAT \leq_p ATMOST3SAT.

- Let C be a boolean circuit. We’ll build Φ_C such that Φ_C is satisfiable if and only if C is satisfiable.
Proof that CIRCUITSAT \leq_p ATMOST3SAT

Proof.
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Proof.

- For each fixed bit source v, create clause (v) if value is 1 and (\overline{v}) otherwise
Proof that \(\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT} \)

Proof.

- For each fixed bit source \(v \), create clause \((v) \) if value is 1 and \((\overline{v}) \) otherwise.
- For output bit (sink) \(v_{\text{final}} \), create clause \((v_{\text{final}}) \) to force output bit to be 1.
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Proof.

- For each fixed bit source v, create clause (v) if value is 1 and (\overline{v}) otherwise
- For output bit (sink) v_{final}, create clause (v_{final}) to force output bit to be 1
- For each internal node v
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Proof.

- For each fixed bit source v, create clause (v) if value is 1 and (\overline{v}) otherwise.
- For output bit (sink) v_{final}, create clause (v_{final}) to force output bit to be 1.
- For each internal node v:
 - If v is a \neg gate from u, create clauses $(v \lor u) \land (\overline{v} \lor \overline{u})$.

If Φ is satisfiable, (v_{final}) has value 1, and all fixed source variables received their correct values, and all other source variables received values that make C produce 1.

If C is satisfiable, Φ is satisfiable.
Proof that $\text{CIRCUIT SAT} \leq_p \text{ATMOST3SAT}$

Proof.

- For each fixed bit source v, create clause (v) if value is 1 and (\overline{v}) otherwise
- For output bit (sink) v_{final}, create clause (v_{final}) to force output bit to be 1
- For each internal node v
 - If v is a \neg gate from u, create clauses $(v \lor u) \land (\overline{v} \lor \overline{u})$
 - If v is a \lor gate from u and w, create clauses $(v \lor \overline{u}) \land (v \lor \overline{w}) \land (\overline{v} \lor u \lor w)$
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Proof.

- For each fixed bit source v, create clause (v) if value is 1 and (\bar{v}) otherwise
- For output bit (sink) v_{final}, create clause (v_{final}) to force output bit to be 1
- For each internal node v
 - If v is a \neg gate from u, create clauses $(v \lor u) \land (\bar{v} \lor \bar{u})$
 - If v is a \lor gate from u and w, create clauses $(v \lor \bar{u}) \land (v \lor \bar{w}) \land (\bar{v} \lor u \lor w)$
 - If v is a \land gate from u and w, create clauses $(\bar{v} \lor u) \land (\bar{v} \lor w) \land (v \lor \bar{u} \lor \bar{w})$
Proof that CIRCUITSAT \leq_p ATMOST3SAT

Proof.

- For each fixed bit source v, create clause (v) if value is 1 and (\bar{v}) otherwise
- For output bit (sink) v_{final}, create clause (v_{final}) to force output bit to be 1
- For each internal node v
 - If v is a \neg gate from u, create clauses $(v \lor u) \land (\bar{v} \lor \bar{u})$
 - If v is a \lor gate from u and w, create clauses $(v \lor \bar{u}) \land (v \lor \bar{w}) \land (\bar{v} \lor u \lor w)$
 - If v is a \land gate from u and w, create clauses $(\bar{v} \lor u) \land (\bar{v} \lor w) \land (v \lor \bar{u} \lor \bar{w})$
 - If Φ is satisfiable, (v_{final}) has value 1, and all fixed source variables received their correct values, and all other source variables received values that make C produce 1
Proof that $\text{CIRCUITSAT} \leq_p \text{ATMOST3SAT}$

Proof.

- For each fixed bit source v, create clause (v) if value is 1 and (\bar{v}) otherwise
- For output bit (sink) v_{final}, create clause (v_{final}) to force output bit to be 1
- For each internal node v
 - If v is a \neg gate from u, create clauses $(v \lor u) \land (\bar{v} \lor \bar{u})$
 - If v is a \lor gate from u and w, create clauses $(v \lor \bar{u}) \land (v \lor \bar{w}) \land (\bar{v} \lor u \lor w)$
 - If v is a \land gate from u and w, create clauses $(\bar{v} \lor u) \land (\bar{v} \lor w) \land (v \lor \bar{u} \lor \bar{w})$
- If Φ is satisfiable, (v_{final}) has value 1, and all fixed source variables received their correct values, and all other source variables received values that make C produce 1
- If C is satisfiable, Φ is satisfiable