Network Flow Algorithm: Complexity, Improvements, Applications

Algorithm Design & Analysis

Spring 2018
Outline
Recap

Let G be a flow network, f a flow on G and G_f the residual flow graph of G and f.
Recap

Let G be a flow network, f a flow on G and G_f the residual flow graph of G and f

- If G_f contains no flow-augmenting path, then there is a cut $[A, B]$ with $v(f) = \text{cap}(A, B)$.
Recap

Let G be a flow network, f a flow on G and G_f the residual flow graph of G and f

- If G_f contains no flow-augmenting path, then there is a cut $[A, B]$ with $v(f) = cap(A, B)$.
- If there is a cut $[A, B]$ with $v(f) = cap(A, B)$ then f is a maximum flow (and $[A, B]$ is a minimum capacity cut).
Recap

Let G be a flow network, f a flow on G and G_f the residual flow graph of G and f

- If G_f contains no flow-augmenting path, then there is a cut $[A, B]$ with $v(f) = \text{cap}(A, B)$.

- If there is a cut $[A, B]$ with $v(f) = \text{cap}(A, B)$ then f is a maximum flow (and $[A, B]$ is a minimum capacity cut).

- If f is a maximum flow, then G_f has no flow-augmenting path.
Recap

Let G be a flow network, f a flow on G and G_f the residual flow graph of G and f

- If G_f contains no flow-augmenting path, then there is a cut $[A, B]$ with $v(f) = \text{cap}(A, B)$.
- If there is a cut $[A, B]$ with $v(f) = \text{cap}(A, B)$ then f is a maximum flow (and $[A, B]$ is a minimum capacity cut)
- If f is a maximum flow, then G_f has no flow-augmenting path.

Thus f is a maximum flow if and only if G_f has no flow-augmenting path if and only if $v(f) = \text{cap}[A, B]$ for some cut $[A, B]$.
Complexity Analysis

Some observations
Complexity Analysis

Some observations

• If capacities are integers and initial flow is 0, then all intermediate flows will be integer-valued
Some observations

• If capacities are integers and initial flow is 0, then all intermediate flows will be integer-valued
• Thus there is always an *integer-valued* maximum flow
Complexity Analysis

Some observations

• If capacities are integers and initial flow is 0, then all intermediate flows will be integer-valued

• Thus there is always an \textit{integer-valued} maximum flow

• Also \(\nu(f) \) will increase by at least 1 with every augmentation
Complexity Analysis

Some observations

- If capacities are integers and initial flow is 0, then all intermediate flows will be integer-valued
- Thus there is always an *integer-valued* maximum flow
- Also $v(f)$ will increase by at least 1 with every augmentation
- If $C = \max_{(s,v) \in E} c(s, v)$, then there are at most nC augmentations

G_f can be constructed in $O(m + n)$ time

A flow-augmenting path can be found in $O(m + n)$ time

G_f can be updated in $O(n)$ time.

$n \in O(m)$ if G is connected

Total space needed is $O(m + n)$
Complexity Analysis

Some observations

• If capacities are integers and initial flow is 0, then all intermediate flows will be integer-valued
• Thus there is always an *integer-valued* maximum flow
• Also \(v(f) \) will increase by at least 1 with every augmentation
• If \(C = \max_{(s,v) \in E} c(s, v) \), then there are at most \(nC \) augmentations
• Thus runtime is \(O(mnC) \)
Some observations

- If capacities are integers and initial flow is 0, then all intermediate flows will be integer-valued.
- Thus there is always an \(integer-valued \) maximum flow.
- Also \(v(f) \) will increase by at least 1 with every augmentation.
- If \(C = \max_{(s,v) \in E} c(s,v) \), then there are at most \(nC \) augmentations.
- Thus runtime is \(O(mnC) \)
 - \(G_f \) can be constructed in \(O(m + n) \) time.
Some observations

- If capacities are integers and initial flow is 0, then all intermediate flows will be integer-valued
- Thus there is always an *integer-valued* maximum flow
- Also $\nu(f)$ will increase by at least 1 with every augmentation
- If $C = \max_{(s,v) \in E} c(s, v)$, then there are at most nC augmentations
- Thus runtime is $O(mnC)$
 - G_f can be constructed in $O(m + n)$ time
 - A flow-augmenting path can be found in $O(m + n)$ time

Total space needed is $O(m + n)$ if G is connected
Some observations

- If capacities are integers and initial flow is 0, then all intermediate flows will be integer-valued.
- Thus there is always an integer-valued maximum flow.
- Also $v(f)$ will increase by at least 1 with every augmentation.
- If $C = \max_{(s,v) \in E} c(s,v)$, then there are at most nC augmentations.
- Thus runtime is $O(mnC)$.
 - G_f can be constructed in $O(m + n)$ time.
 - A flow-augmenting path can be found in $O(m + n)$ time.
 - G_f can be updated in $O(n)$ time.

Total space needed is $O(m + n)$ if G is connected.
Some observations

- If capacities are integers and initial flow is 0, then all intermediate flows will be integer-valued
- Thus there is always an *integer-valued* maximum flow
- Also $v(f)$ will increase by at least 1 with every augmentation
- If $C = \max_{(s,v) \in E} c(s, v)$, then there are at most nC augmentations
- Thus runtime is $O(mnC)$
 - G_f can be constructed in $O(m + n)$ time
 - A flow-augmenting path can be found in $O(m + n)$ time
 - G_f can be updated in $O(n)$ time.
 - $n \in O(m)$ if G is connected
Complexity Analysis

Some observations

• If capacities are integers and initial flow is 0, then all intermediate flows will be integer-valued
• Thus there is always an *integer-valued* maximum flow
• Also \(v(f) \) will increase by at least 1 with every augmentation
• If \(C = \max_{(s,v) \in E} c(s, v) \), then there are at most \(nC \) augmentations
• Thus runtime is \(O(mnC) \)
 • \(G_f \) can be constructed in \(O(m + n) \) time
 • A flow-augmenting path can be found in \(O(m + n) \) time
 • \(G_f \) can be updated in \(O(n) \) time.
 • \(n \in O(m) \) if \(G \) is connected
• Total space needed is \(O(m + n) \)
Choosing Good Augmenting Paths

- Ford-Fulkerson is pseudo-polynomial, since C could be exponential in n and m.

- Strategies for good augmenting paths:
 - Look for path that maximizes bottleneck capacity
 - Look for path with large bottleneck capacity
 - Look for path with fewest edges
 - Do something other than finding augmenting paths
Choosing Good Augmenting Paths

- Ford-Fulkerson is *pseudo-polynomial*, since C could be exponential in n and m.
- There are simple pathological cases resulting in $O(nC)$ augmentations.

Strategies for good augmenting paths:

- Look for path that maximizes bottleneck capacity.
- Look for path with large bottleneck capacity.
- Look for path with fewest edges.
- Do something other than finding augmenting paths.
Choosing Good Augmenting Paths

- Ford-Fulkerson is *pseudo-polynomial*, since C could be exponential in n and m.
- There are simple pathological cases resulting in $O(nC)$ augmentations
- Strategies for good augmenting paths
Choosing Good Augmenting Paths

- Ford-Fulkerson is *pseudo-polynomial*, since C could be exponential in n and m.
- There are simple pathological cases resulting in $O(nC)$ augmentations.
- Strategies for good augmenting paths
 - Look for path that maximizes bottleneck capacity.
Choosing Good Augmenting Paths

- Ford-Fulkerson is pseudo-polynomial, since C could be exponential in n and m.
- There are simple pathological cases resulting in $O(nC)$ augmentations.
- Strategies for good augmenting paths:
 - Look for path that maximizes bottleneck capacity
 - Look for path with large bottleneck capacity
Choosing Good Augmenting Paths

- Ford-Fulkerson is *pseudo-polynomial*, since C could be exponential in n and m.
- There are simple pathological cases resulting in $O(nC)$ augmentations.
- Strategies for good augmenting paths:
 - Look for path that maximizes bottleneck capacity
 - Look for path with large bottleneck capacity
 - Look for path with fewest edges
Choosing Good Augmenting Paths

• Ford-Fulkerson is *pseudo-polynomial*, since C could be exponential in n and m.

• There are simple pathological cases resulting in $O(nC)$ augmentations.

• Strategies for good augmenting paths
 • Look for path that maximizes bottleneck capacity
 • Look for path with large bottleneck capacity
 • Look for path with fewest edges
 • Do something other than finding augmenting paths
Augmenting Path Selection with Scaling

Idea: Consider only edges in G_f with large capacity
Augmenting Path Selection with Scaling

Idea: Consider only edges in G_f with large capacity

- Pick a large value Δ (say a power of 2)
Augmenting Path Selection with Scaling

Idea: Consider only edges in G_f with large capacity

- Pick a large value Δ (say a power of 2)
- Let $G_f(\Delta)$ be the subgraph of G_f of edges e with $c(e) \geq \Delta$
Augmenting Path Selection with Scaling

Idea: Consider only edges in G_f with large capacity

- Pick a large value Δ (say a power of 2)
- Let $G_f(\Delta)$ be the subgraph of G_f of edges e with $c(e) \geq \Delta$
- Δ-scaling phase: Repeatedly search $G_f(\Delta)$ for flow-augmenting s, t-paths, augmenting f

That is: The algorithm is correct, now let’s show that it’s fast!
Augmenting Path Selection with Scaling

Idea: Consider only edges in G_f with large capacity

- Pick a large value Δ (say a power of 2)
- Let $G_f(\Delta)$ be the subgraph of G_f of edges e with $c(e) \geq \Delta$
- Δ-scaling phase: Repeatedly search $G_f(\Delta)$ for flow-augmenting s, t-paths, augmenting f
- When no such path is found, set $\Delta \leftarrow \Delta/2$ and repeat
Augmenting Path Selection with Scaling

Idea: Consider only edges in G_f with large capacity

- Pick a large value Δ (say a power of 2)
- Let $G_f(\Delta)$ be the subgraph of G_f of edges e with $c(e) \geq \Delta$
- **Δ-scaling phase:** Repeatedly search $G_f(\Delta)$ for flow-augmenting s, t-paths, augmenting f
- When no such path is found, set $\Delta \leftarrow \Delta/2$ and repeat
- Eventually, $\Delta = 1$ and $G_f(\Delta) = G_f$; normal F-F algorithm is in force

Thus a maximum-value flow will be found. That is: The algorithm is correct, now let's show that it's fast!
Augmenting Path Selection with Scaling

Idea: Consider only edges in G_f with large capacity

- Pick a large value Δ (say a power of 2)
- Let $G_f(\Delta)$ be the subgraph of G_f of edges e with $c(e) \geq \Delta$
- Δ-scaling phase: Repeatedly search $G_f(\Delta)$ for flow-augmenting s, t-paths, augmenting f
- When no such path is found, set $\Delta \leftarrow \Delta/2$ and repeat
- Eventually, $\Delta = 1$ and $G_f(\Delta) = G_f$; normal F-F algorithm is in force
- Thus a maximum-value flow will be found.
Augmenting Path Selection with Scaling

Idea: Consider only edges in G_f with large capacity

- Pick a large value Δ (say a power of 2)
- Let $G_f(\Delta)$ be the subgraph of G_f of edges e with $c(e) \geq \Delta$
- **Δ-scaling phase:** Repeatedly search $G_f(\Delta)$ for flow-augmenting s, t-paths, augmenting f
- When no such path is found, set $\Delta \leftarrow \Delta/2$ and repeat
- Eventually, $\Delta = 1$ and $G_f(\Delta) = G_f$; normal F-F algorithm is in force
- Thus a maximum-value flow will be found.

That is: The algorithm is **correct**, now let’s show that it’s **fast**!
Augmentation with Scaling: Complexity Analysis

- Start with Δ such that $\Delta \leq C < 2\Delta$ where C is the max. capacity of an edge leaving s
Augmentation with Scaling: Complexity Analysis

- Start with Δ such that $\Delta \leq C < 2\Delta$ where C is the max. capacity of an edge leaving s
- Thus, there are at most $\lceil \log C \rceil$ Δ-scaling phases

Note: Every augmentation in Δ-scaling phase increases flow by Δ
Augmentation with Scaling : Complexity Analysis

- Start with Δ such that $\Delta \leq C < 2\Delta$ where C is the max. capacity of an edge leaving s
- Thus, there are at most $\lceil \log C \rceil$ Δ-scaling phases
- We’ll show that each Δ-scaling phase entails at most $2m$ augmentations.
Augmentation with Scaling: Complexity Analysis

- Start with Δ such that $\Delta \leq C < 2\Delta$ where C is the max. capacity of an edge leaving s
- Thus, there are at most $\lceil \log C \rceil$ Δ-scaling phases
- We’ll show that each Δ-scaling phase entails at most $2m$ augmentations.
- This guarantees a run-time of $O(m^2 \log C)$
Augmentation with Scaling: Complexity Analysis

- Start with Δ such that $\Delta \leq C < 2\Delta$ where C is the max. capacity of an edge leaving s
- Thus, there are at most $\lceil \log C \rceil \Delta$-scaling phases
- We’ll show that each Δ-scaling phase entails at most $2m$ augmentations.
- This guarantees a run-time of $O(m^2 \log C)$
- Since $\log C$ is (at most) linear in the problem input size, we have a polynomial run time!
Augmentation with Scaling: Complexity Analysis

- Start with Δ such that $\Delta \leq C < 2\Delta$ where C is the max. capacity of an edge leaving s
- Thus, there are at most $\lceil \log C \rceil$ Δ-scaling phases
- We’ll show that each Δ-scaling phase entails at most $2m$ augmentations.
- This guarantees a run-time of $O(m^2 \log C)$
- Since $\log C$ is (at most) linear in the problem input size, we have a polynomial run time!

Note: Every augmentation in Δ-scaling phase increases flow by Δ
Lemma

If \(f^* \) is a maximum flow and \(f \) is the flow at the end of the \(\Delta \)-scaling phase, then \(v(f^*) - v(f) \leq m\Delta \).

Proof.
Lemma
If f^* is a maximum flow and f is the flow at the end of the Δ-scaling phase, then $v(f^*) - v(f) \leq m\Delta$.

Proof.
Let A be all vertices reachable from s in $G_f(\Delta)$ at end of Δ-scaling phase.
Lemma
If f^* is a maximum flow and f is the flow at the end of the Δ-scaling phase, then $v(f^*) - v(f) \leq m\Delta$.

Proof.
Let A be all vertices reachable from s in $G_f(\Delta)$ at end of Δ-scaling phase.
- $[A, B]$ is an s, t-cut of G
Lemma

If \(f^* \) is a maximum flow and \(f \) is the flow at the end of the \(\Delta \)-scaling phase, then \(v(f^*) - v(f) \leq m\Delta \).

Proof.

Let \(A \) be all vertices reachable from \(s \) in \(G_f(\Delta) \) at end of \(\Delta \)-scaling phase.

- \([A, B]\) is an \(s, t \)-cut of \(G \)
- For every \(e \in [A, B] \), \(c(e) - f(e) < \Delta \), so \(c(e) - \Delta < f(e) \)
Number of Augmentations per Scaling Phase

Lemma

If f^* is a maximum flow and f is the flow at the end of the Δ-scaling phase, then $v(f^*) - v(f) \leq m\Delta$.

Proof.

Let A be all vertices reachable from s in $G_f(\Delta)$ at end of Δ-scaling phase.

- $[A, B]$ is an s, t-cut of G
- For every $e \in [A, B]$, $c(e) - f(e) < \Delta$, so $c(e) - \Delta < f(e)$
- For every $e \in [B, A]$, $f(e) < \Delta$
Number of Augmentations per Scaling Phase

Lemma
If f^* is a maximum flow and f is the flow at the end of the Δ-scaling phase, then $v(f^*) - v(f) \leq m\Delta$.

Proof.
Let A be all vertices reachable from s in $G_f(\Delta)$ at end of Δ-scaling phase.

- $[A, B]$ is an s, t-cut of G
- For every $e \in [A, B]$, $c(e) - f(e) < \Delta$, so $c(e) - \Delta < f(e)$
- For every $e \in [B, A]$, $f(e) < \Delta$
- Now calculate $v(f)$...

Proof of Lemma continued

\[v(f) = \sum_{e \in [A,B]} f(e) - \sum_{e \in [B,A]} f(e) \] (1)

Thus \(v(f^*) - v(f) \leq m\Delta \); that is:

\[v(f^*) \leq v(f) + m\Delta \] (5)
Proof of Lemma continued

\[v(f) = \sum_{e \in [A,B]} f(e) - \sum_{e \in [B,A]} f(e) \quad (1) \]

\[> \sum_{e \in [A,B]} (c(e) - \Delta) - \sum_{e \in [B,A]} \Delta \quad (2) \]

\[= \sum_{e \in [A,B]} c(e) - \sum_{e \in [B,A]} \Delta \geq v(f^*) - m \Delta \quad (5) \]

Thus \(v(f^*) - v(f) \leq m \Delta \); that is:
\[v(f^*) \leq v(f) + m \Delta \]
Proof of Lemma continued

\[v(f) = \sum_{e \in [A, B]} f(e) - \sum_{e \in [B, A]} f(e) \quad (1) \]

\[> \sum_{e \in [A, B]} (c(e) - \Delta) - \sum_{e \in [B, A]} \Delta \quad (2) \]

\[= \sum_{e \in [A, B]} c(e) - \sum_{e \in [A, B]} \Delta - \sum_{e \in [B, A]} \Delta \quad (3) \]

\[\geq \sum_{e \in [A, B]} c(e) - m \Delta \quad (4) \]

\[= \operatorname{cap} [A, B] - m \Delta \geq v(f^*) - m \Delta \quad (5) \]

Thus

\[v(f^*) - v(f) \leq m \Delta \]; that is:

\[v(f^*) \leq v(f) + m \Delta \]
Proof of Lemma continued

\[v(f) = \sum_{e \in [A, B]} f(e) - \sum_{e \in [B, A]} f(e) \]

\[> \sum_{e \in [A, B]} (c(e) - \Delta) - \sum_{e \in [B, A]} \Delta \]

\[= \sum_{e \in [A, B]} c(e) - \sum_{e \in [A, B]} \Delta - \sum_{e \in [B, A]} \Delta \]

\[\geq \sum_{e \in [A, B]} c(e) - m\Delta \]
Proof of Lemma continued

\[v(f) = \sum_{e \in [A,B]} f(e) - \sum_{e \in [B,A]} f(e) \] \hspace{1cm} (1)

\[> \sum_{e \in [A,B]} (c(e) - \Delta) - \sum_{e \in [B,A]} \Delta \] \hspace{1cm} (2)

\[= \sum_{e \in [A,B]} c(e) - \sum_{e \in [A,B]} \Delta - \sum_{e \in [B,A]} \Delta \] \hspace{1cm} (3)

\[\geq \sum_{e \in [A,B]} c(e) - m\Delta \] \hspace{1cm} (4)

\[= \text{cap}[A, B] - m\Delta \geq v(f^*) - m\Delta \] \hspace{1cm} (5)
Proof of Lemma continued

\[v(f) = \sum_{e \in [A,B]} f(e) - \sum_{e \in [B,A]} f(e) \quad (1) \]

\[> \sum_{e \in [A,B]} (c(e) - \Delta) - \sum_{e \in [B,A]} \Delta \quad (2) \]

\[= \sum_{e \in [A,B]} c(e) - \sum_{e \in [B,A]} \Delta - \sum_{e \in [B,A]} \Delta \quad (3) \]

\[\geq \sum_{e \in [A,B]} c(e) - m\Delta \quad (4) \]

\[= \text{cap}[A, B] - m\Delta \geq v(f^*) - m\Delta \quad (5) \]

Thus \(v(f^*) - v(f) \leq m\Delta \); that is: \(v(f^*) \leq v(f) + m\Delta \)
Wrapping up the Analysis

Lemma

Each Δ-scaling phase performs at most $2m$ augmentations.

Proof.
Wrapping up the Analysis

Lemma
Each Δ-scaling phase performs at most $2m$ augmentations.

Proof.

- First phase: True: An edge leaving s can be used in at most one augmentation
Lemma
Each Δ-scaling phase performs at most $2m$ augmentations.

Proof.

- First phase: True: An edge leaving s can be used in at most one augmentation
- Consider any other phase Δ, and the previous Δ'-phase ($\Delta' = 2\Delta$); let f_p be the flow value at end of Δ'-phase
Wrapping up the Analysis

Lemma
Each Δ-scaling phase performs at most $2m$ augmentations.

Proof.

- First phase: True: An edge leaving s can be used in at most one augmentation
- Consider any other phase Δ, and the previous Δ'-phase ($\Delta' = 2\Delta$); let f_p be the flow value at end of Δ'-phase
 - At end of Δ'- phase, $v(f^*) \leq v(f_p) + m\Delta'$
Wrapping up the Analysis

Lemma
Each Δ-scaling phase performs at most $2m$ augmentations.

Proof.

• First phase: True: An edge leaving s can be used in at most one augmentation
• Consider any other phase Δ, and the previous Δ'-phase ($\Delta' = 2\Delta$); let f_p be the flow value at end of Δ'-phase
 • At end of Δ'- phase, $\nu(f^*) \leq \nu(f_p) + m\Delta'$
 • So $\nu(f^*) \leq \nu(f_p) + 2m\Delta$ at beginning of Δ phase
Wrapping up the Analysis

Lemma
Each Δ-scaling phase performs at most $2m$ augmentations.

Proof.

- First phase: True: An edge leaving s can be used in at most one augmentation.
- Consider any other phase Δ, and the previous Δ'-phase ($\Delta' = 2\Delta$); let f_p be the flow value at end of Δ'-phase.
 - At end of Δ'-phase, $\nu(f^*) \leq \nu(f_p) + m\Delta'$
 - So $\nu(f^*) \leq \nu(f_p) + 2m\Delta$ at beginning of Δ phase
 - But each augmentation of Δ-phase increases flow by at least Δ
Wrapping up the Analysis

Lemma
Each Δ-scaling phase performs at most $2m$ augmentations.

Proof.

- First phase: True: An edge leaving s can be used in at most one augmentation.
- Consider any other phase Δ, and the previous Δ'-phase ($\Delta' = 2\Delta$); let f_p be the flow value at end of Δ'-phase
 - At end of Δ'-phase, $v(f^*) \leq v(f_p) + m\Delta'$
 - So $v(f^*) \leq v(f_p) + 2m\Delta$ at beginning of Δ phase
 - But each augmentation of Δ-phase increases flow by at least Δ
 - Thus there can be at most $2m$ such augmentations before the flow would exceed $v(f^*)$
We can easily adapt our methods to networks with multiple sources and sinks.
Multiple Sources & Multiple Sinks

We can easily adapt our methods to networks with multiple sources and sinks.

An \((S, T)\)-flow network is a directed graph \(G = (V, E)\) with edge capacities \(c(e) \geq 0\) and \(S, T\) are disjoint subsets of \(V\) in which each \(s \in S\) has in-degree 0 and each \(t \in T\) has out-degree 0.
Multiple Sources & Multiple Sinks

We can easily adapt our methods to networks with multiple sources and sinks.

An \((S, T)\)-flow network is a directed graph \(G = (V, E)\) with edge capacities \(c(e) \geq 0\) and \(S, T\) are disjoint subsets of \(V\) in which each \(s \in S\) has in-degree 0 and each \(t \in T\) has out-degree 0.

An \((S, T)\) flow \(f\) on an \((S, T)\)-flow network assigns a flow \(0 \leq f(e) \leq c(e)\) to each edge such that for every \(v \notin S \cup T\), \(f^{in}(v) = f^{out}(v)\).
Multiple Sources & Multiple Sinks

We can easily adapt our methods to networks with multiple sources and sinks.

An \((S, T)\)-flow network is a directed graph \(G = (V, E)\) with edge capacities \(c(e) \geq 0\) and \(S, T\) are disjoint subsets of \(V\) in which each \(s \in S\) has in-degree 0 and each \(t \in T\) has out-degree 0.

An \((S, T)\) flow \(f\) on an \((S, T)\)-flow network assigns a flow \(0 \leq f(e) \leq c(e)\) to each edge such that for every \(v \notin S \cup T\), \(f^{in}(v) = f^{out}(v)\).

The value of an \((S, T)\) flow \(f\) is given by \(v(f) = \sum_{s \in S} f^{out}(s)\).
Multiple Sources & Multiple Sinks

An \((S, T)\)-cut on an \((S, T)\)-flow network is a partition of the vertices \((A, B)\) such that \(S \subseteq A\) and \(T \subseteq B\)
An \((S, T)\)-cut on an \((S, T)\)-flow network is a partition of the vertices \((A, B)\) such that \(S \subseteq A\) and \(T \subseteq B\)

All of the facts established for single source/sink flows have obvious analogs for \((S, T)\)-flow networks. Here’s the trick to seeing this.
Multiple Sources & Multiple Sinks

An \((S, T)\)-cut on an \((S, T)\)-flow network is a partition of the vertices \((A, B)\) such that \(S \subseteq A\) and \(T \subseteq B\)

All of the facts established for single source/sink flows have obvious analogs for \((S, T)\)-flow networks. Here’s the trick to seeing this.

Given an \((S, T)\)-flow network \(G = (V, E)\), create a new flow network \(G' = (V', E')\) where
Multiple Sources & Multiple Sinks

An \((S, T)\)-cut on an \((S, T)\)-flow network is a partition of the vertices \((A, B)\) such that \(S \subseteq A\) and \(T \subseteq B\)

All of the facts established for single source/sink flows have obvious analogs for \((S, T)\)-flow networks. Here’s the trick to seeing this.

Given an \((S, T)\)-flow network \(G = (V, E)\), create a new flow network \(G' = (V', E')\) where

- \(V' = V \cup \{s', t'\}\)
Multiple Sources & Multiple Sinks

An \((S, T)\)-cut on an \((S, T)\)-flow network is a partition of the vertices \((A, B)\) such that \(S \subseteq A\) and \(T \subseteq B\)

All of the facts established for single source/sink flows have obvious analogs for \((S, T)\)-flow networks. Here’s the trick to seeing this.

Given an \((S, T)\)-flow network \(G = (V, E)\), create a new flow network \(G' = (V', E')\) where

- \(V' = V \cup \{s', t'\}\)
- \(E' = E \cup \{(s', s) : s \in S\} \cup \{(t, t') : t \in T\}\)
Multiple Sources & Multiple Sinks

An \((S, T)\)-cut on an \((S, T)\)-flow network is a partition of the vertices \((A, B)\) such that \(S \subseteq A\) and \(T \subseteq B\).

All of the facts established for single source/sink flows have obvious analogs for \((S, T)\)-flow networks. Here’s the trick to seeing this.

Given an \((S, T)\)-flow network \(G = (V, E)\), create a new flow network \(G' = (V', E')\) where

- \(V' = V \cup \{s', t'\}\)
- \(E' = E \cup \{(s', s) : s \in S\} \cup \{(t, t') : t \in T\}\)
- For each \(s \in S\), \(\text{cap}(s', s) = 1 + \sum_{(s,u) \in E} \text{cap}(s, u)\)

 The "+1" ensures that residual capacity is always positive.
Multiple Sources & Multiple Sinks

An \((S, T)\)-cut on an \((S, T)\)-flow network is a partition of the vertices \((A, B)\) such that \(S \subseteq A\) and \(T \subseteq B\).

All of the facts established for single source/sink flows have obvious analogs for \((S, T)\)-flow networks. Here’s the trick to seeing this.

Given an \((S, T)\)-flow network \(G = (V, E)\), create a new flow network \(G' = (V', E')\) where

- \(V' = V \cup \{s', t'\}\)
- \(E' = E \cup \{(s', s) : s \in S\} \cup \{(t, t') : t \in T\}\)
- For each \(s \in S\), \(\text{cap}(s', s) = 1 + \sum_{(s, u) \in E} \text{cap}(s, u)\)
 The "+1" ensures that residual capacity is always positive.
- For each \(t \in T\), \(\text{cap}(t, t') = \sum_{(u, t) \in E} \text{cap}(u, t)\)
Multiple Sources & Multiple Sinks

Lemma

The \((S, T)\)-flow network \(G\) has a flow \(f\) of value \(a\) if and only if the \((s', t')\)-flow network \(G'\) has a flow \(f'\) of value \(a\).
Multiple Sources & Multiple Sinks

Lemma
The (S, T)-flow network G has a flow f of value a if and only if the (s', t')-flow network G' has a flow f' of value a.

Lemma
Given an (S, T)-flow network G and a flow f, if the cut (A, B) induced by f' in G' is an (s', t')-cut, then (A, B) is an (S, T)-cut in G with the same capacity.
Multiple Sources & Multiple Sinks

Lemma
The \((S, T)\)-flow network \(G\) has a flow \(f\) of value \(a\) if and only if the \((s', t')\)-flow network \(G'\) has a flow \(f'\) of value \(a\).

Lemma
Given an \((S, T)\)-flow network \(G\) and a flow \(f\), if the cut \((A, B)\) induced by \(f'\) in \(G'\) is an \((s', t')\)-cut, then \((A, B)\) is an \((S, T)\)-cut in \(G\) with the same capacity.

Proof.
If not, some \(t \in T\) is reachable from \(s'\) in \(G'_{f'}\). Let \(e' = (t, t')\)
Multiple Sources & Multiple Sinks

Lemma
The \((S, T)\)-flow network \(G\) has a flow \(f\) of value \(a\) if and only if the \((s', t')\)-flow network \(G'\) has a flow \(f'\) of value \(a\).

Lemma
Given an \((S, T)\)-flow network \(G\) and a flow \(f\), if the cut \((A, B)\) induced by \(f'\) in \(G'\) is an \((s', t')\)-cut, then \((A, B)\) is an \((S, T)\)-cut in \(G\) with the same capacity.

Proof.
If not, some \(t \in T\) is reachable from \(s'\) in \(G'_{f'}\). Let \(e' = (t, t')\)
- Then \(f'(e') = f^{in}(t) < \sum_{e \text{ into } t} \text{cap}(e) = \text{cap}(e')\)
Multiple Sources & Multiple Sinks

Lemma
The \((S, T)\)-flow network \(G\) has a flow \(f\) of value \(a\) if and only if the \((s', t')\)-flow network \(G'\) has a flow \(f'\) of value \(a\).

Lemma
Given an \((S, T)\)-flow network \(G\) and a flow \(f\), if the cut \((A, B)\) induced by \(f'\) in \(G'\) is an \((s', t')\)-cut, then \((A, B)\) is an \((S, T)\)-cut in \(G\) with the same capacity.

Proof.
If not, some \(t \in T\) is reachable from \(s'\) in \(G'\). Let \(e' = (t, t')\)

- Then \(f'(e') = f^\text{in}(t) < \sum_{e \text{ into } t} \text{cap}(e) = \text{cap}(e')\)
- So \(t'\) is reachable from \(s'\), so \((A, B)\) isn’t an \((s', t')\)-cut
Multiple Sources & Multiple Sinks

Lemma
The \((S, T)\)-flow network \(G\) has a flow \(f\) of value \(a\) if and only if the \((s', t')\)-flow network \(G'\) has a flow \(f'\) of value \(a\).

Lemma
Given an \((S, T)\)-flow network \(G\) and a flow \(f\), if the cut \((A, B)\) induced by \(f'\) in \(G'\) is an \((s', t')\)-cut, then \((A, B)\) is an \((S, T)\)-cut in \(G\) with the same capacity.

Proof.
If not, some \(t \in T\) is reachable from \(s'\) in \(G'\). Let \(e' = (t, t')\)

- Then \(f'(e') = f^\text{in}(t) < \sum_{e \text{ into } t} \text{cap}(e) = \text{cap}(e')\)
- So \(t'\) is reachable from \(s'\), so \((A, B)\) isn’t an \((s', t')\)-cut
- So no \(t \in T\) is reachable from \(s'\), making \((A, B)\) an \((S, T)\)-cut in \(G\).
Multiple Sources & Multiple Sinks

Theorem
Running Ford-Fulkerson on the \((s', t')\)-flow network \(G'\) will produce a maximum flow, minimum-cut pair which corresponds to a maximum-flow, minimum-cut pair for the \((S, T)\)-flow network \(G\) with the same flow value and cut capacity.