Flow-Augmenting Paths and Max-Flow Min-Cut Theorem

Algorithm Design & Analysis

Spring 2018
Outline
Our goal for today

Theorem

Let f be an (s, t)-flow on a network $G = (V, E, c)$ and let (A, B) be an (s, t)-cut of G. Then $\nu(f) = \text{cap}(A, B)$ if and only if f is a flow of maximum value and (A, B) is a cut of minimum value.
Residual Graph of a Flow on G

Build associated graph from G that includes \textit{backward} edges.
Residual Graph of a Flow on G

Build associated graph from G that includes \textit{backward} edges.

- $G_f = (V_f, E_f)$, the \textit{residual flow graph} of $G = (V, E)$ and f, has $V_f = V$ and E_f defined as follows:

 - For each $e \in E$ with $f(e) < c(e)$, e is in E_f, and e has capacity $c_f(e) = c(e) - f(e)$. e is a \textit{forward} edge of G_f.

 - For each $e = (u, v) \in E$ with $f(e) > 0$, $e_R = (v, u)$ is in E_f and e_R has capacity $c_f(e) = f(e)$. e is a \textit{backward} edge of G_f.

- G_f is a flow network built from G and an (s, t)-flow on G.

- G_f can be used to identify improvements or augmentations to f; that is, changes that will increase $v(f)$. Let’s do an example!
Residual Graph of a Flow on G

Build associated graph from G that includes \textit{backward} edges.

- $G_f = (V_f, E_f)$, the \textit{residual flow graph} of $G = (V, E)$ and f, has $V_f = V$ and E_f defined as follows:
 - For each $e \in E$ with $f(e) < c(e)$, e is in E_f, and e has capacity $c_f(e) = c(e) - f(e)$. e is a \textit{forward} edge of G_f.
Residual Graph of a Flow on G

Build associated graph from G that includes *backward* edges.

- $G_f = (V_f, E_f)$, the *residual flow graph* of $G = (V, E)$ and f, has $V_f = V$ and E_f defined as follows
 - For each $e \in E$ with $f(e) < c(e)$, e is in E_f, and e has capacity $c_f(e) = c(e) - f(e)$. e is a *forward* edge of G_f.
 - For each $e = (u, v) \in E$ with $f(e) > 0$, $e^R = (v, u)$ is in E_f and e^R has capacity $c_f(e^R) = f(e)$. e is a *backward* edge of G_f.

Let's do an example!
Residual Graph of a Flow on G

Build associated graph from G that includes backward edges.

- $G_f = (V_f, E_f)$, the residual flow graph of $G = (V, E)$ and f, has $V_f = V$ and E_f defined as follows
 - For each $e \in E$ with $f(e) < c(e)$, e is in E_f, and e has capacity $c_f(e) = c(e) - f(e)$. e is a forward edge of G_f.
 - For each $e = (u, v) \in E$ with $f(e) > 0$, $e^R = (v, u)$ is in E_f and e^R has capacity $c_f(e^R) = f(e)$. e is a backward edge of G_f.
- G_f is a flow network built from G and an (s, t)-flow on G.

Let's do an example!
Build associated graph from G that includes *backward* edges.

- $G_f = (V_f, E_f)$, the *residual flow graph* of $G = (V, E)$ and f, has $V_f = V$ and E_f defined as follows:
 - For each $e \in E$ with $f(e) < c(e)$, e is in E_f, and e has capacity $c_f(e) = c(e) - f(e)$. e is a *forward* edge of G_f.
 - For each $e = (u, v) \in E$ with $f(e) > 0$, $e^R = (v, u)$ is in E_f and e^R has capacity $c_f(e^R) = f(e)$. e is a *backward* edge of G_f.
- G_f is a flow network built from G and an (s, t)-flow on G.
- G_f can be used to identify improvements or *augmentations* to f; that is, changes that will increase $\nu(f)$.
Build associated graph from G that includes \textit{backward} edges.

- $G_f = (V_f, E_f)$, the \textit{residual flow graph} of $G = (V, E)$ and f, has $V_f = V$ and E_f defined as follows
 - For each $e \in E$ with $f(e) < c(e)$, e is in E_f, and e has capacity $c_f(e) = c(e) - f(e)$. e is a \textit{forward} edge of G_f.
 - For each $e = (u, v) \in E$ with $f(e) > 0$, $e^R = (v, u)$ is in E_f and e^R has capacity $c_f(e^R) = f(e)$. e is a \textit{backward} edge of G_f.

- G_f is a flow network built from G and an (s, t)-flow on G.
- G_f can be used to identify improvements or \textit{augmentations} to f; that is, changes that will increase $\nu(f)$.

Let's do an example!
Take-aways from example

• The "middle edge" becomes two edges.
• The ad-hoc pushing back of flow in G preserves flow conservation at all nodes and corresponds to a directed (s, t)-path of positive flow in G_f.
• Such a path can be found by BFS from s in G_f.
• The smallest capacity edge (bottleneck) on the path determines increase in flow in G_f.
Take-aways from example

- The "middle edge" becomes two edges.
Take-aways from example

- The "middle edge" becomes two edges.
- The ad-hoc pushing back of flow in G preserves flow conservation at all nodes and corresponds to a directed (s, t)-path of positive flow in G_f.
Take-aways from example

- The "middle edge" becomes two edges.
- The ad-hoc pushing back of flow in G preserves flow conservation at all nodes and corresponds to a \textit{directed} (s, t)-path of positive flow in G_f.
- Such a path can be found by BFS from s in G_f.
Take-aways from example

- The "middle edge" becomes two edges.
- The ad-hoc pushing back of flow in G preserves flow conservation at all nodes and corresponds to a directed (s, t)-path of positive flow in G_f.
- Such a path can be found by BFS from s in G_f.
- The smallest capacity edge (bottleneck) on the path determines increase in flow in G.
Flow-Augmenting Paths

Inspired by the demo....
Inspired by the demo....

- Let f be an (s, t)-flow in G,
Flow-Augmenting Paths

Inspired by the demo....

- Let f be an (s, t)-flow in G,
- let G_f be the residual graph of f and G,

- Let b be the smallest capacity among the edges of P, called the bottleneck of P.
- So $b = c_f(\bar{e})$ for some $\bar{e} \in P$.
Flow-Augmenting Paths

Inspired by the demo....

- Let f be an (s, t)-flow in G,
- let G_f be the residual graph of f and G,
- let P be an (s, t)-path in G_f of positive capacity; that is, every edge of $e \in P$ has $c_f(e) > 0$.
Inspired by the demo....

- Let f be an (s, t)-flow in G,
- let G_f be the residual graph of f and G,
- let P be an (s, t)-path in G_f of positive capacity; that is, every edge of $e \in P$ has $c_f(e) > 0$.
- Let b be the smallest capacity among the edges of P, called the *bottleneck* of P
Inspired by the demo....

- Let f be an (s, t)-flow in G,
- let G_f be the residual graph of f and G,
- let P be an (s, t)-path in G_f of positive capacity; that is, every edge of $e \in P$ has $c_f(e) > 0$.
- Let b be the smallest capacity among the edges of P, called the bottleneck of P
- So $b = c_f(\bar{e})$ for some $\bar{e} \in P$.
Using P to Improve f
Using P to Improve f

- If $e \in E$ is a forward edge on P, then add b to $f(e)$ in G.
Using P to Improve f

- If $e \in E$ is a forward edge on P, then add b to $f(e)$ in G.
- Note that
 \[0 \leq f(e) + b \leq f(e) + c_f(e) = f(e) + (c(e) - f(e)) = c(e) \] (feasible)
Using P to Improve f

- If $e \in E$ is a forward edge on P, then add b to $f(e)$ in G.
- Note that
 \[0 \leq f(e) + b \leq f(e) + c_f(e) = f(e) + (c(e) - f(e)) = c(e) \]
 (feasible)
- If $e \in E$ is a backward edge on P, $(e^R = (v, u) \in P)$, subtract $c_f(e)$ from $f(e)$ in G.

Using P to Improve f

- If $e \in E$ is a forward edge on P, then add b to $f(e)$ in G.
- Note that

 \[0 \leq f(e) + b \leq f(e) + c_f(e) = f(e) + (c(e) - f(e)) = c(e) \]
 (feasible)

- If $e \in E$ is a backward edge on P, $(e^R = (v, u) \in P)$, subtract $c_f(e)$ from $f(e)$ in G.
- Note that

 \[c(e) \geq f(e) > f(e) - b \geq f(e) - c_f(e) = f(e) - f(e) = 0 \]
 (feasible)
Using P to Improve f
Using P to Improve f

- At every vertex $v \neq \{s, t\}$ of P, considering v in G, the flows of exactly 2 edges incident with v have been changed. No other internal vertices of G have had flow changed.
Using P to Improve f

- At every vertex $v \neq \{s, t\}$ of P, considering v in G, the flows of exactly 2 edges incident with v have been changed. No other internal vertices of G have had flow changed.
- Consider the portion $v_{i-1}, e_i, v_i, e_{i+1}, v_{i+1}$ of P in G_f. There are 4 cases
Using P to Improve f

- At every vertex $v \neq \{s, t\}$ of P, considering v in G, the flows of exactly 2 edges incident with v have been changed. No other internal vertices of G have had flow changed.
- Consider the portion $v_{i-1}, e_i, v_i, e_{i+1}, v_{i+1}$ of P in G_f. There are 4 cases
 - Both e_i, e_{i+1} are forward edges: So, b additional units of flow enter v_i from e_i and then leave v_i via e_{i+1}.
 - Both e_i, e_{i+1} are backward edges: Similar to previous case, but flow is subtracted.
 - e_i is forward, e_{i+1} is backward: So, b additional units of flow enter v_i from e_i and b fewer units of flow enter v_i via e_{i+1}.
 - e_i is backward, e_{i+1} is forward: Similar to previous case.
- Thus flow is conserved at every vertex of G.

Flows in Networks
Using P to Improve f

- At every vertex $\nu \neq \{s, t\}$ of P, considering ν in G, the flows of exactly 2 edges incident with ν have been changed. No other internal vertices of G have had flow changed.
- Consider the portion $\nu_{i-1}, e_i, \nu_i, e_{i+1}, \nu_{i+1}$ of P in G_f. There are 4 cases
 - Both e_i, e_{i+1} are forward edges: So, b additional units of flow enter ν_i from e_i and then leave ν_i via e_{i+1}.
 - Both e_i, e_{i+1} are backward edges: Similar to previous case, but flow is subtracted.
Using P to Improve f

- At every vertex $v \neq \{s, t\}$ of P, considering v in G, the flows of exactly 2 edges incident with v have been changed. No other internal vertices of G have had flow changed.
- Consider the portion $v_{i-1}, e_i, v_i, e_{i+1}, v_{i+1}$ of P in G_f. There are 4 cases
 - Both e_i, e_{i+1} are forward edges: So, b additional units of flow enter v_i from e_i and then leave v_i via e_{i+1}.
 - Both e_i, e_{i+1} are backward edges: Similar to previous case, but flow is subtracted.
 - e_i is forward, e_{i+1} is backward: So, b additional units of flow enter v_i from e_i and b fewer units of flow enter v_i via e_{i+1}^R.

Thus flow is conserved at every vertex of G.
Using P to Improve f

- At every vertex $v \neq \{s, t\}$ of P, considering v in G, the flows of exactly 2 edges incident with v have been changed. No other internal vertices of G have had flow changed.
- Consider the portion $v_{i-1}, e_i, v_i, e_{i+1}, v_{i+1}$ of P in G_f. There are 4 cases
 - Both e_i, e_{i+1} are forward edges: So, b additional units of flow enter v_i from e_i and then leave v_i via e_{i+1}.
 - Both e_i, e_{i+1} are backward edges: Similar to previous case, but flow is subtracted.
 - e_i is forward, e_{i+1} is backward: So, b additional units of flow enter v_i from e_i and b fewer units of flow enter v_i via e_{i+1}^R.
 - e_i is backward, e_{i+1} is forward: Similar to previous case.
Using P to Improve f

- At every vertex $v \neq \{s, t\}$ of P, considering v in G, the flows of exactly 2 edges incident with v have been changed. No other internal vertices of G have had flow changed.
- Consider the portion $v_{i-1}, e_i, v_i, e_{i+1}, v_{i+1}$ of P in G_f. There are 4 cases
 - Both e_i, e_{i+1} are forward edges: So, b additional units of flow enter v_i from e_i and then leave v_i via e_{i+1}.
 - Both e_i, e_{i+1} are backward edges: Similar to previous case, but flow is subtracted.
 - e_i is forward, e_{i+1} is backward: So, b additional units of flow enter v_i from e_i and b fewer units of flow enter v_i via e_{i+1}^R.
 - e_i is backward, e_{i+1} is forward: Similar to previous case.
- Thus flow is conserved at every vertex of G
Cuts Defined by Flows

Summarizing
Cuts Defined by Flows

Summarizing

Theorem

If G_f contains an (s, t)-path P then f is not a maximum flow.
Cuts Defined by Flows

Summarizing

Theorem

If G_f contains an (s, t)-path P then f is not a maximum flow.

P is called a *flow-augmenting path*. Put another way
Cuts Defined by Flows

Summarizing

Theorem
If G_f contains an (s, t)-path P then f is not a maximum flow.

P is called a *flow-augmenting path*. Put another way

Theorem
If f is a maximum flow then G_f contains no flow-augmenting path.
Cuts Defined by Flows

Summarizing

Theorem
If G_f contains an (s, t)-path P then f is not a maximum flow.

P is called a flow-augmenting path. Put another way

Theorem
If f is a maximum flow then G_f contains no flow-augmenting path.

A flow f creates a natural partition $[A, B]$ in G where A consists of all vertices reachable from s by a directed path in G_f. If $t \notin A$ then $[A, B]$ is a cut, called the cut induced by f.
Cuts Defined by Flows

Summarizing

Theorem

If G_f contains an (s, t)-path P then f is not a maximum flow.

P is called a *flow-augmenting path*. Put another way

Theorem

If f is a maximum flow then G_f contains no flow-augmenting path.

A flow f creates a natural partition $[A, B]$ in G where A consists of all vertices reachable from s by a directed path in G_f. If $t \notin A$ then $[A, B]$ is a cut, called the *cut induced by f*.

No flow-augmenting path in G_f implies $t \notin A$, so $[A, B]$ is a cut.
Induced Cuts are Minimum Capacity

Theorem

Suppose flow f on G has no flow-augmenting path and let $[A, B]$ be the cut induced by f. Then

- for every $e = (u, v) \in [A, B]$, $f(e) = c(e)$,
- for every $e \in [B, A]$, $f(e) = 0$.

So by the Flow Value Lemma, $\nu(f) = \operatorname{cap}(A, B)$: f is a maximum flow & $[A, B]$ is a minimum capacity cut.
Induced Cuts are Minimum Capacity

Theorem

Suppose flow f on G has no flow-augmenting path and let $[A, B]$ be the cut induced by f. Then

- for every $e = (u, v) \in [A, B]$, $f(e) = c(e)$

Proof.

- for $e = (u, v) \in [A, B]$, if $f(e) < c(e)$, u is reachable from s in G since $c(e) = c(e) - f(e) > 0$

- for $e \in [B, A]$, if $f(e) > 0$, u is reachable from s in G since e is in G and $c(e) = f(e) > 0$
Induced Cuts are Minimum Capacity

Theorem
Suppose flow f on G has no flow-augmenting path and let $[A, B]$ be the cut induced by f. Then

- for every $e = (u, v) \in [A, B]$, $f(e) = c(e)$
- for every $e \in [B, A]$, $f(e) = 0$
Induced Cuts are Minimum Capacity

Theorem

Suppose flow f on G has no flow-augmenting path and let $[A, B]$ be the cut induced by f. Then

- for every $e = (u, v) \in [A, B]$, $f(e) = c(e)$
- for every $e \in [B, A]$, $f(e) = 0$

So by the Flow Value Lemma, $v(f) = \text{cap}(A, B)$: f is a maximum flow & $[A, B]$ is a minimum capacity cut.
Induced Cuts are Minimum Capacity

Theorem
Suppose flow f on G has no flow-augmenting path and let $[A, B]$ be the cut induced by f. Then

- for every $e = (u, v) \in [A, B]$, $f(e) = c(e)$
- for every $e \in [B, A]$, $f(e) = 0$

So by the Flow Value Lemma, $v(f) = \text{cap}(A, B)$: f is a maximum flow & $[A, B]$ is a minimum capacity cut.

Proof.
Induced Cuts are Minimum Capacity

Theorem
Suppose flow f on G has no flow-augmenting path and let $[A, B]$ be the cut induced by f. Then

- for every $e = (u, v) \in [A, B]$, $f(e) = c(e)$
- for every $e \in [B, A]$, $f(e) = 0$

So by the Flow Value Lemma, $\nu(f) = \text{cap}(A, B)$: f is a maximum flow & $[A, B]$ is a minimum capacity cut.

Proof.

- for $e = (u, v) \in [A, B]$, if $f(e) < c(e)$, u is reachable from s in G_f since $c_f(e) = c(e) - f(e) > 0$
Induced Cuts are Minimum Capacity

Theorem
Suppose flow f on G has no flow-augmenting path and let $[A, B]$ be the cut induced by f. Then

- for every $e = (u, v) \in [A, B]$, $f(e) = c(e)$
- for every $e \in [B, A]$, $f(e) = 0$

So by the Flow Value Lemma, $v(f) = \text{cap}(A, B)$: f is a maximum flow & $[A, B]$ is a minimum capacity cut.

Proof.

- for $e = (u, v) \in [A, B]$, if $f(e) < c(e)$, u is reachable from s in G_f since $c_f(e) = c(e) - f(e) > 0$
- for $e \in [B, A]$, if $f(e) > 0$, u is reachable from s in G_f since e^R is in G_f and $c_f(e^R) = f(e) > 0$
Pulling It All Together

To summarize

- If G_f contains no flow-augmenting path, then there is a cut $[A, B]$ with $\nu(f) = \text{cap}(A, B)$.
- If there is a cut $[A, B]$ with $\nu(f) = \text{cap}(A, B)$, then f is a maximum flow (and $[A, B]$ is a minimum capacity cut).
- If f is a maximum flow, then G_f has no flow-augmenting path.

Thus f is a maximum flow if and only if G_f has no flow-augmenting path if and only if $\nu(f) = \text{cap}(A, B)$ for some cut $[A, B]$.
Flows in Networks

Pulling It All Together

To summarize

• If G_f contains no flow-augmenting path, then there is a cut $[A, B]$ with $v(f) = \text{cap}(A, B)$.
To summarize

• If G_f contains no flow-augmenting path, then there is a cut $[A, B]$ with $v(f) = \text{cap}(A, B)$.

• If there is a cut $[A, B]$ with $v(f) = \text{cap}(A, B)$ then f is a maximum flow (and $[A, B]$ is a minimum capacity cut).
Pulling It All Together

To summarize

• If G_f contains no flow-augmenting path, then there is a cut $[A, B]$ with $v(f) = \text{cap}(A, B)$.

• If there is a cut $[A, B]$ with $v(f) = \text{cap}(A, B)$ then f is a maximum flow (and $[A, B]$ is a minimum capacity cut).

• If f is a maximum flow, then G_f has no flow-augmenting path.
To summarize

- If G_f contains no flow-augmenting path, then there is a cut $[A, B]$ with $v(f) = \text{cap}(A, B)$.
- If there is a cut $[A, B]$ with $v(f) = \text{cap}(A, B)$ then f is a maximum flow (and $[A, B]$ is a minimum capacity cut).
- If f is a maximum flow, then G_f has no flow-augmenting path.

Thus f is a maximum flow if and only if G_f has no flow-augmenting path if and only if $v(f) = \text{cap}[A, B]$ for some cut $[A, B]$.