Greedy Algorithms: Exchange Property

Algorithm Design & Analysis

Spring 2018
Outline

Greedy Algorithms: Exchange Property

Minimum-Cost Spanning Trees
 Maximum Greed: Kruskal’s Algorithm
 Analysis: Kruskal’s Algorithm
 Moderate Greed: Prim’s Algorithm
 Analysis: Prim’s Algorithm
 Reverse Greed: Reverse-Delete Algorithm
 Allowing Non-Unique Edge Costs
The Exchange Property

Exchange Property: Show that an optimal solution can be sequentially transformed into a greedy solution without compromising optimality.
Greedy Algorithms: Exchange Property

Outline

Greedy Algorithms: Exchange Property

Minimum-Cost Spanning Trees
 Maximum Greed: Kruskal’s Algorithm
 Analysis: Kruskal’s Algorithm
 Moderate Greed: Prim’s Algorithm
 Analysis: Prim’s Algorithm
 Reverse Greed: Reverse-Delete Algorithm
 Allowing Non-Unique Edge Costs
Minimum-Cost Spanning Trees

Figure: A Graph G with Positive Edge-Weights
Minimum-Cost Spanning Trees

Figure: A Min-Cost Spanning Tree for G
Minimum-Cost Spanning Trees

Computing a minimum-cost spanning tree for a graph has many applications
Minimum-Cost Spanning Trees

Computing a minimum-cost spanning tree for a graph has many applications

- Classic Application: Underground Cable (Power, Telecom, ...)

Minimum-Cost Spanning Trees

Computing a minimum-cost spanning tree for a graph has many applications:

- Classic Application: Underground Cable (Power, Telecom, ...)
- Efficient broadcasting on a computer network (Note: different from shortest paths)
Minimum-Cost Spanning Trees

Computing a minimum-cost spanning tree for a graph has many applications

- Classic Application: Underground Cable (Power, Telecom, ...)
- Efficient broadcasting on a computer network (Note: different from shortest paths)
- Taxonomy (mental maps)
Minimum-Cost Spanning Trees

Computing a minimum-cost spanning tree for a graph has many applications

- Classic Application: Underground Cable (Power, Telecom, ...)
- Efficient broadcasting on a computer network (Note: different from shortest paths)
- Taxonomy (mental maps)
- Reliable subnetwork
Computing a minimum-cost spanning tree for a graph has many applications

- Classic Application: Underground Cable (Power, Telecom, ...)
- Efficient broadcasting on a computer network (Note: different from shortest paths)
- Taxonomy (mental maps)
- Reliable subnetwork
- Approximate solutions to harder problems, such as TSP
The Problem
The Problem

Definition

The *cost* of a subgraph $G' = (V', E')$ of a graph $G = (V, E)$ with edge-costs is the sum of the costs of the edges of E'.
The Problem

Definition
The cost of a subgraph $G' = (V', E')$ of a graph $G = (V, E)$ with edge-costs is the sum of the costs of the edges of E'.

Observation
A minimum-cost connected spanning subgraph for a connected graph $G = (V, E)$ with positive edge costs $c()$ is a tree.
The Problem

Definition
The cost of a subgraph \(G' = (V', E') \) of a graph \(G = (V, E) \) with edge-costs is the sum of the costs of the edges of \(E' \).

Observation
A minimum-cost connected spanning subgraph for a connected graph \(G = (V, E) \) with positive edge costs \(c() \) is a tree.

Definition
A spanning tree \(T \) of a graph \(G = (V, E) \) with edge costs is minimum-cost if no other spanning tree has lower cost.
The Problem

Definition
The cost of a subgraph $G' = (V', E')$ of a graph $G = (V, E)$ with edge-costs is the sum of the costs of the edges of E'.

Observation
A minimum-cost connected spanning subgraph for a connected graph $G = (V, E)$ with positive edge costs $c()$ is a tree.

Definition
A spanning tree T of a graph $G = (V, E)$ with edge costs is minimum-cost if no other spanning tree has lower cost.

We will assume that all edge-costs are distinct; we’ll relax this assumption at the end of class.
Cuts and Cut-Edges
Cuts and Cut-Edges

A cut in a graph $G = (V, E)$ is a partition of V into two sets $\{S, V - S\}$. The edges $E(S, V - S)$ with one endpoint in each set are called cut edges.
Definition

A *cut* in a graph $G = (V, E)$ is a partition of V into two sets $\{S, V - S\}$. The edges $E(S, V - S)$ with one endpoint in each set are called *cut edges.*
Trees, Cycles, & Cuts

Trees, cycles, and cuts relate to one another in useful ways.
Trees, Cycles, & Cuts

Trees, cycles, and cuts relate to one another in useful ways.

Let $G = (V, E)$ be a graph and T be a spanning tree of G.
Trees, Cycles, & Cuts

Trees, cycles, and cuts relate to one another in useful ways.

Let $G = (V, E)$ be a graph and T be a spanning tree of G.

Observations:

• Every edge e of T defines a cut in G that has e as a cut edge.

• S and $V - S$ are the vertex sets of the (two) components of $T - \{e\}$.

• Adding an edge e of $G - T$ to T creates a unique cycle in $T + \{e\}$; the cycle contains e.

• For any cycle C and cut $\{S, V - S\}$, $|E(C) \setminus E(S, V - S)|$ is even.

• That is, any cycle and any cut share an even number of edges.

• So if a cycle intersects a cut, they share at least two edges.
Trees, Cycles, & Cuts

Trees, cycles, and cuts relate to one another in useful ways.

Let $G = (V, E)$ be a graph and T be a spanning tree of G.

Observations:

- Every edge e of T defines a cut in G that has e as a cut edge.
Trees, Cycles, & Cuts

Trees, cycles, and cuts relate to one another in useful ways.

Let $G = (V, E)$ be a graph and T be a spanning tree of G

Observations:

• Every edge e of T defines a cut in G that has e as a cut edge
 • S and $V - S$ are the vertex sets of the (two) components of $T - \{e\}$
Trees, Cycles, & Cuts

Trees, cycles, and cuts relate to one another in useful ways.

Let $G = (V, E)$ be a graph and T be a spanning tree of G

Observations:

• Every edge e of T defines a cut in G that has e as a cut edge
 • S and $V - S$ are the vertex sets of the (two) components of $T - \{e\}$
 • Adding an edge e of $G - T$ to T creates a unique cycle in $T + \{e\}$; the cycle contains e
Trees, Cycles, & Cuts

Trees, cycles, and cuts relate to one another in useful ways.

Let $G = (V, E)$ be a graph and T be a spanning tree of G.

Observations:

- Every edge e of T defines a cut in G that has e as a cut edge.
 - S and $V - S$ are the vertex sets of the (two) components of $T - \{e\}$.
- Adding an edge e of $G - T$ to T creates a unique cycle in $T + \{e\}$; the cycle contains e.
- For any cycle C and cut $\{S, V - S\}$, $|E(C) \cap E(S, V - S)|$ is even.
Trees, Cycles, & Cuts

Trees, cycles, and cuts relate to one another in useful ways.

Let $G = (V, E)$ be a graph and T be a spanning tree of G.

Observations:

- Every edge e of T defines a cut in G that has e as a cut edge.
 - S and $V - S$ are the vertex sets of the (two) components of $T - \{e\}$.
- Adding an edge e of $G - T$ to T creates a unique cycle in $T + \{e\}$; the cycle contains e.
- For any cycle C and cut $\{S, V - S\}$, $|E(C) \cap E(S, V - S)|$ is even.
 - That is, any cycle and any cut share an even number of edges.
Trees, Cycles, & Cuts

Trees, cycles, and cuts relate to one another in useful ways.

Let $G = (V, E)$ be a graph and T be a spanning tree of G.

Observations:

- Every edge e of T defines a cut in G that has e as a cut edge.
 - S and $V - S$ are the vertex sets of the (two) components of $T - \{e\}$

- Adding an edge e of $G - T$ to T creates a unique cycle in $T + \{e\}$; the cycle contains e.

- For any cycle C and cut $\{S, V - S\}$, $|E(C) \cap E(S, V - S)|$ is even.
 - That is, any cycle and any cut share an even number of edges.
 - So if a cycle intersects a cut, they share at least two edges.
Observations:

• If T is a MCST of G and $e \in E(G) - E(T)$, then e is the highest cost edge on the unique cycle in $T + \{e\}$.

• For any cut in G, its lowest-cost edge is in every MCST of G.

• For any cycle in G, its highest-cost edge is in no MCST of G.
Observations:

- If T is a MCST of G and $e \in E(G) - E(T)$, then e is the highest cost edge on the unique cycle in $T + \{e\}$.
Observations:

- If T is a MCST of G and $e \in E(G) - E(T)$, then e is the highest cost edge on the unique cycle in $T + \{e\}$.
- For any cut in G, its lowest-cost edge is in every MCST of G.
Properties of Min-Cost Spanning Trees

Observations:

- If \(T \) is a MCST of \(G \) and \(e \in E(G) - E(T) \), then \(e \) is the highest cost edge on the unique cycle in \(T + \{ e \} \).
- For any cut in \(G \), its lowest-cost edge is in every MCST of \(G \).
- For any cycle in \(G \), its highest-cost edge is in no MCST of \(G \).
Proof of Cut Property

For any cut in G, its lowest-cost edge is in every MCST of G.

Proof.
Proof of Cut Property

For any cut in G, its lowest-cost edge is in every MCST of G.

Proof.

• Let T be any MCST of G, let $\{S, V - S\}$ be any cut of G, and let e be the cheapest edge of the cut.
Proof of Cut Property

For any cut in G, its lowest-cost edge is in every MCST of G.

Proof.

- Let T be any MCST of G, let $\{S, V - S\}$ be any cut of G, and let e be the cheapest edge of the cut.
- If $e \not\in T$, then $T + \{e\}$ contains a unique cycle C, and $e \in C$.
Proof of Cut Property

For any cut in G, its lowest-cost edge is in every MCST of G.

Proof.

- Let T be any MCST of G, let $\{S, V - S\}$ be any cut of G, and let e be the cheapest edge of the cut.
- If $e \not\in T$, then $T + \{e\}$ contains a unique cycle C, and $e \in C$.
- So C contains another edge $e' \in E(S, V - S)$.

\[\square\]
Proof of Cut Property

For any cut in G, its lowest-cost edge is in every MCST of G.

Proof.

- Let T be any MCST of G, let $\{S, V - S\}$ be any cut of G, and let e be the cheapest edge of the cut.
- If $e \notin T$, then $T + \{e\}$ contains a unique cycle C, and $e \in C$.
- So C contains another edge $e' \in E(S, V - S)$.
- But $T + \{e\} - \{e'\}$ is a tree with lower cost than $T \Rightarrow \Leftarrow$.

Proof of Cycle Property

For any cycle in G, its highest-cost edge is in no MCST of G.

Proof.
Proof of Cycle Property

For any cycle in G, its highest-cost edge is in no MCST of G.

Proof.

• Suppose tree T contains the highest-cost edge e of cycle C.
Proof of Cycle Property

For any cycle in G, its highest-cost edge is in no MCST of G.

Proof.

- Suppose tree T contains the highest-cost edge e of cycle C.
- Let $\{S, V - S\}$ be the cut obtained by removing e from T.
Proof of Cycle Property

For any cycle in G, its highest-cost edge is in no MCST of G.

Proof.

- Suppose tree T contains the highest-cost edge e of cycle C.
- Let $\{S, V - S\}$ be the cut obtained by removing e from T.
- $e \in C \cap E(S, V \setminus S)$, so $|C \cap E(S, V \setminus S)| > 0$.

Proof of Cycle Property

For any cycle in G, its highest-cost edge is in no MCST of G.

Proof.

- Suppose tree T contains the highest-cost edge e of cycle C.
- Let $\{S, V - S\}$ be the cut obtained by removing e from T.
- $e \in C \cap E(S, V \setminus S)$, so $|C \cap E(S, V \setminus S)| > 0$.
- So C contains another cut edge e' of $\{S, V - S\}$.

Proof of Cycle Property

For any cycle in G, its highest-cost edge is in *no* MCST of G.

Proof.

- Suppose tree T contains the highest-cost edge e of cycle C.
- Let $\{S, V - S\}$ be the cut obtained by removing e from T.
- $e \in C \cap E(S, V \setminus S)$, so $|C \cap E(S, V \setminus S)| > 0$.
- So C contains another cut edge e' of $\{S, V - S\}$.
- And $c(e') < c(e)$.

Proof of Cycle Property

For any cycle in G, its highest-cost edge is in no MCST of G.

Proof.

- Suppose tree T contains the highest-cost edge e of cycle C.
- Let $\{S, V - S\}$ be the cut obtained by removing e from T.
- $e \in C \cap E(S, V \setminus S)$, so $|C \cap E(S, V \setminus S)| > 0$.
- So C contains another cut edge e' of $\{S, V - S\}$.
- And $c(e') < c(e)$.
- So, $T - \{e\} + \{e'\}$ is a spanning tree cheaper than T.
Proof of Cycle Property

For any cycle in G, its highest-cost edge is in no MCST of G.

Proof.

- Suppose tree T contains the highest-cost edge e of cycle C.
- Let $\{S, V - S\}$ be the cut obtained by removing e from T.
- $e \in C \cap E(S, V \setminus S)$, so $|C \cap E(S, V \setminus S)| > 0$.
- So C contains another cut edge e' of $\{S, V - S\}$.
- And $c(e') < c(e)$.
- So, $T - \{e\} + \{e'\}$ is a spanning tree cheaper than T.
- So T is not a MCST of G.

\[\square\]
Proof of Cycle Property

For any cycle in G, its highest-cost edge is in no MCST of G.

Proof.

- Suppose tree T contains the highest-cost edge e of cycle C.
- Let $\{S, V - S\}$ be the cut obtained by removing e from T.
- $e \in C \cap E(S, V \setminus S)$, so $|C \cap E(S, V \setminus S)| > 0$.
- So C contains another cut edge e' of $\{S, V - S\}$.
- And $c(e') < c(e)$.
- So, $T - \{e\} + \{e'\}$ is a spanning tree cheaper than T.
- So T is not a MCST of G.

\[\square\]

Exchange Property!
Maximum Greed: Kruskal’s Algorithm

Idea: Add cheapest remaining edge that don’t create a cycle
Maximum Greed: Kruskal’s Algorithm

Idea: Add cheapest remaining edge that don’t create a cycle

Algorithm 2 Kruskal’s Algorithm

procedure Kruskal(G, c())
 ⊲ G = (V, E) is connected
 T ← (V, ∅) ⊲ The eventual MCST
 F ← E
 while |E(T)| < |V| − 1 do
 Remove cheapest edge e ∈ F from F
 if T + {e} does not contain a cycle then
 Add e to T
 end procedure
Proof of Correctness of Kruskal

Theorem

Kruskal produces a minimum-cost spanning tree of G.
Proof of Correctness of Kruskal

Theorem

Kruskal produces a minimum-cost spanning tree of G.

The proof has two parts

1. Show T is a tree by showing it has no cycles and is connected
2. Show T is minimum-cost by showing each of its edges is contained in every MCST

T has no cycles and is connected:

- T is a forest at all times: new edges don't create cycles
- If T is not connected at top of loop, then $|E(T)| < |V| - 1$, so loop repeats
- If S is the vertex set of a connected component of T then $\{S, V - S\}$ is a cut of G.
- G is connected, so $E(S, V - S) \neq \emptyset$, so $F \neq \emptyset$
- But $|F|$ decreases at each iteration, so loop must stop repeating, so T is a tree
Proof of Correctness of Kruskal

Theorem

Kruskal produces a minimum-cost spanning tree of G.

The proof has two parts

- Show T is a tree by showing it has no cycles and is connected

• If T is not connected at top of loop, then $|E(T)| < |V| - 1$, so loop repeats

• G is connected, so $E(S, V - S) \neq \emptyset$, so $F \neq \emptyset$

• But $|F|$ decreases at each iteration, so loop must stop repeating, so T is a tree
Proof of Correctness of Kruskal

Theorem
Kruskal produces a minimum-cost spanning tree of G.

The proof has two parts

- Show T is a tree by showing it has no cycles and is connected
- Show T is minimum-cost by showing each of its edges is contained in every MCST
Proof of Correctness of Kruskal

Theorem
Kruskal produces a minimum-cost spanning tree of G.

The proof has two parts
- Show T is a tree by showing it has no cycles and is connected
- Show T is minimum-cost by showing each of its edges is contained in every MCST

T has no cycles and is connected:
Proof of Correctness of Kruskal

Theorem
Kruskal produces a minimum-cost spanning tree of G.

The proof has two parts
- Show T is a tree by showing it has no cycles and is connected
- Show T is minimum-cost by showing each of its edges is contained in every MCST

T has no cycles and is connected:
- T is a forest at all times: new edges don’t create cycles
Proof of Correctness of Kruskal

Theorem

Kruskal produces a minimum-cost spanning tree of G.

The proof has two parts

- Show T is a tree by showing it has no cycles and is connected
- Show T is minimum-cost by showing each of its edges is contained in every MCST

T has no cycles and is connected:

- T is a forest at all times: new edges don’t create cycles
- If T is not connected at top of loop, then $|E(T)| < |V| - 1$, so loop repeats
Proof of Correctness of Kruskal

Theorem

Kruskal produces a minimum-cost spanning tree of G.

The proof has two parts

- Show T is a tree by showing it has no cycles and is connected
- Show T is minimum-cost by showing each of its edges is contained in every MCST

T has no cycles and is connected:

- T is a forest at all times: new edges don’t create cycles
- If T is not connected at top of loop, then $|E(T)| < |V| - 1$, so loop repeats
- If S is the vertex set of a connected component of T then \(\{S, V - S\} \) is a cut of G.

Proof of Correctness of Kruskal

Theorem
Kruskal produces a minimum-cost spanning tree of G.

The proof has two parts
• Show T is a tree by showing it has no cycles and is connected
• Show T is minimum-cost by showing each of its edges is contained in every MCST

T has no cycles and is connected:
• T is a forest at all times: new edges don’t create cycles
• If T is not connected at top of loop, then |E(T)| < |V| − 1, so loop repeats
• If S is the vertex set of a connected component of T then {S, V − S} is a cut of G.
• G is connected, so E(S, V − S) ≠ ∅, so F ≠ ∅
Proof of Correctness of Kruskal

Theorem
Kruskal produces a minimum-cost spanning tree of G.

The proof has two parts

- Show T is a tree by showing it has no cycles and is connected
- Show T is minimum-cost by showing each of its edges is contained in every MCST

T has no cycles and is connected:

- T is a forest at all times: new edges don’t create cycles
- If T is not connected at top of loop, then $|E(T)| < |V| - 1$, so loop repeats
- If S is the vertex set of a connected component of T then \{$S, V - S$\} is a cut of G.
- G is connected, so $E(S, V - S) \neq \emptyset$, so $F \neq \emptyset$
- But $|F|$ decreases at each iteration, so loop must stop repeating, so T is a tree
Proof of Correctness of Kruskal

T is an MCST:
Proof of Correctness of Kruskal

T is an MCST:

- Let $e = \{u, v\}$ be an edge selected by Kruskal.
Proof of Correctness of Kruskal

T is an MCST:

- Let $e = \{u, v\}$ be an edge selected by Kruskal.
- Let $S \subseteq V$ be the set of vertices reachable from u in T just before e was added to T.
Proof of Correctness of Kruskal

T is an MCST:

- Let $e = \{u, v\}$ be an edge selected by Kruskal.
- Let $S \subseteq V$ be the set of vertices reachable from u in T just before e was added to T.
- At this point T contains no edge from S to $V - S$
Proof of Correctness of Kruskal

T is an MCST:

- Let $e = \{u, v\}$ be an edge selected by Kruskal.
- Let $S \subset V$ be the set of vertices reachable from u in T just before e was added to T.
- At this point T contains no edge from S to $V - S$.
- So, e is the cheapest cut edge of $E(S, V - S)$ in G.
Proof of Correctness of Kruskal

T is an MCST:

- Let $e = \{u, v\}$ be an edge selected by Kruskal.
- Let $S \subset V$ be the set of vertices reachable from u in T just before e was added to T.
- At this point T contains no edge from S to $V - S$.
- So, e is the cheapest cut edge of $E(S, V - S)$ in G.
- So e is part of every MCST of G.
Proof of Correctness of Kruskal

T is an MCST:

- Let $e = \{u, v\}$ be an edge selected by Kruskal.
- Let $S \subseteq V$ be the set of vertices reachable from u in T just before e was added to T.
- At this point T contains no edge from S to $V - S$.
- So, e is the cheapest cut edge of $E(S, V - S)$ in G.
- So e is part of every MCST of G.
- So every edge of T is in every MCST of G.
Proof of Correctness of Kruskal

T is an MCST:

- Let $e = \{u, v\}$ be an edge selected by Kruskal.
- Let $S \subseteq V$ be the set of vertices reachable from u in T just before e was added to T.
- At this point T contains no edge from S to $V - S$.
- So, e is the cheapest cut edge of $E(S, V - S)$ in G.
- So e is part of every MCST of G.
- So every edge of T is in every MCST of G.
- So T is the only MCST of G!
Proof of Correctness of Kruskal

T is an MCST:
- Let $e = \{u, v\}$ be an edge selected by Kruskal.
- Let $S \subseteq V$ be the set of vertices reachable from u in T just before e was added to T.
- At this point T contains no edge from S to $V - S$.
- So, e is the cheapest cut edge of $E(S, V - S)$ in G.
- So e is part of every MCST of G.
- So every edge of T is in every MCST of G.
- So T is the only MCST of G!

Corollary

A graph without repeated edge lengths has a unique MCST.
Moderate Greed: Prim’s Algorithm

Here T is at tree at all times—the cheapest tree on the subgraph of G that is spans.
Moderate Greed: Prim’s Algorithm

Here T is at tree at all times—the cheapest tree on the subgraph of G that is spans.
Prim maintains a subtree $T = (V', E')$ of G and adds the cheapest cut edge of $E(V', V - V')$ (in G) to T.
Moderate Greed: Prim’s Algorithm

Here \(T \) is at tree at all times—the cheapest tree on the subgraph of \(G \) that is spans.
Prim maintains a subtree \(T = (V', E') \) of \(G \) and adds the cheapest cut edge of \(E(V', V - V') \) (in \(G \)) to \(T \).

Algorithm 5 Prim’s Algorithm

\[
\text{procedure } \text{Prim}(G, c()) \quad \triangleright \ G = (V, E) \text{ is connected}
\]
Select some \(v \in V; \ V' \leftarrow \{v\}; \ T \leftarrow (V', \emptyset) \quad \triangleright \text{The eventual MCST}

\[
\text{while } |E(T)| < |V| - 1 \text{ do}
\]
Select cheapest edge \(e \in E(V', V - V') \)
Add \(e \) to \(T \) \quad \triangleright \text{This adds a new vertex to } T

end procedure
Analysis of Prim’s Algorithm

Theorem
Prim produces a minimum-cost spanning tree of G.

Proof.
Analysis of Prim’s Algorithm

Theorem

Prim produces a minimum-cost spanning tree of G.

Proof.

• T is a tree at all times, and T eventually must span G, since G is connected.
Theorem

Prim produces a minimum-cost spanning tree of G.

Proof.

- T is a tree at all times, and T eventually must span G, since G is connected.
- The next edge added to T is, in G, the cheapest cut edge for some cut.
Analysis of Prim’s Algorithm

Theorem

Prim produces a minimum-cost spanning tree of G.

Proof.

- T is a tree at all times, and T eventually must span G, since G is connected.
- The next edge added to T is, in G, the cheapest cut edge for some cut.
- That edge, therefore, must be in every MCST.
Analysis of Prim’s Algorithm

Theorem
Prim produces a minimum-cost spanning tree of G.

Proof.

• \(T \) is a tree at all times, and \(T \) eventually must span \(G \), since \(G \) is connected.
• The next edge added to \(T \) is, in \(G \), the cheapest cut edge for some cut.
• That edge, therefore, must be in every MCST
• As in Kruskal proof, \(T \) is the only MCST of \(G \)
Reverse-Delete Algorithm

We can also construct an MCST by throwing away all of the most expensive edges.
We can also construct an MCST by throwing away all of the most expensive edges.

Algorithm 7 Reverse-Delete Algorithm

\begin{algorithm}
\begin{algorithmic}
\Procedure{ReverseDelete}{G, c()} \Comment{G = (V, E) is connected}
\While{|E(G)| > |V| - 1}
\State Select most expensive edge $e \in G$ that does not disconnect G
\State Remove e from G
\EndWhile
\EndProcedure
\end{algorithmic}
\end{algorithm}
We can also construct an MCST by throwing away all of the most expensive edges.

Algorithm 8 Reverse-Delete Algorithm

```plaintext
procedure REVERSEDELETE(G, c())

▷ G = (V, E) is connected

while |E(G)| > |V| − 1 do

    Select most expensive edge e ∈ G that does not disconnect G

    Remove e from G

end procedure
```

When might you ever want to use this algorithm?
Relaxing Assumption of Distinct Edge-Costs

Suppose G does not have distinct edge costs.
Relaxing Assumption of Distinct Edge-Costs

Suppose G does not have distinct edge costs.

Idea: Perturbation
Relaxing Assumption of Distinct Edge-Costs

Suppose G does not have distinct edge costs.

Idea: Perturbation

- For each set of edges having identical costs, perturb their costs by distinct positive values.
Relaxing Assumption of Distinct Edge-Costs

Suppose G does not have distinct edge costs.

Idea: Perturbation

- For each set of edges having identical costs, perturb their costs by distinct positive values
- Ensure that the sum of all of the perturbations is tiny compared to the actual edge costs.
Suppose G does not have distinct edge costs.

Idea: Perturbation

- For each set of edges having identical costs, perturb their costs by distinct positive values
- Ensure that the sum of all of the perturbations is tiny compared to the actual edge costs.
- Every spanning tree T^* of perturbed graph G^* corresponds to a spanning tree T of G
Relaxing Assumption of Distinct Edge-Costs

Suppose G does not have distinct edge costs.

Idea: Perturbation

- For each set of edges having identical costs, perturb their costs by distinct positive values.
- Ensure that the sum of all of the perturbations is tiny compared to the actual edge costs.
- Every spanning tree T^* of perturbed graph G^* corresponds to a spanning tree T of G.
- Correspondence preserves relative cost: $c(T_1^*) \leq c(T_2^*)$ iff $c(T_1) \leq c(T_2)$.
Suppose G does not have distinct edge costs.

Idea: Perturbation

- For each set of edges having identical costs, perturb their costs by distinct positive values.
- Ensure that the sum of all of the perturbations is tiny compared to the actual edge costs.
- Every spanning tree T^* of perturbed graph G^* corresponds to a spanning tree T of G.
- Correspondence preserves relative cost: $c(T_1^*) \leq c(T_2^*)$ iff $c(T_1) \leq c(T_2)$.
- So T^* is an MCST of G^* iff T is an MCST of G.

Relaxing Assumption of Distinct Edge-Costs