Greedy Algorithms: Greedy Stays Ahead

Algorithm Design & Analysis

Spring 2018
Outline

Greedy Algorithms

Single Resource Scheduling

Shortest Path: Dijkstra’s Algorithm
Greedy algorithms build solutions by making locally optimal choices. For many problems an appropriate greedy approach yields a globally optimal solution.

Applications

- Resource scheduling
- Job scheduling with deadlines
- Caching
- Shortest paths in networks: including internet packet routing
- Minimum-cost spanning subgraphs
- Data compression
- Minimum-weight basis for vector space
Two Proof Techniques

Two fundamental approaches to proving correctness of greedy algorithms
Two Proof Techniques

Two fundamental approaches to proving correctness of greedy algorithms

- *Greedy Stays Ahead*: Partial greedy solution is, at all times, as good as an "equivalent" portion of any other solution.
Two Proof Techniques

Two fundamental approaches to proving correctness of greedy algorithms

- **Greedy Stays Ahead**: Partial greedy solution is, at all times, as good as an "equivalent" portion of any other solution.
- **Exchange Property**: An optimal solution can be transformed into a greedy solution without sacrificing optimality.
Single Resource Scheduling

The Problem: Given: A list of requests to use a single resource for specific time periods.
Single Resource Scheduling

The Problem: Given: A list of requests to use a single resource for specific time periods.

The input: A list \(L = \{r_1, \ldots, r_n\} \) of intervals, each with start time \(s(r_i) \) and finish time \(f(r_i) \)
Single Resource Scheduling

The Problem: Given: A list of requests to use a single resource for specific time periods.

The input: A list \(L = \{r_1, \ldots, r_n\} \) of intervals, each with start time \(s(r_i) \) and finish time \(f(r_i) \)

The Goal: Identify a subset of compatible intervals (no two intersect) of maximum size

Answer: Order by increasing \(f(r_i) \) (finish times)

Idea: Show that first \(k \) choices made by greedy are at least as good as \(k \) earliest ending intervals in any other solution.
Single Resource Scheduling

The Problem: Given: A list of requests to use a single resource for specific time periods.

The input: A list \(L = \{r_1, \ldots, r_n\} \) of intervals, each with start time \(s(r_i) \) and finish time \(f(r_i) \)

The Goal: Identify a subset of compatible intervals (no two intersect) of maximum size

Question: How to be greedy? Start times, interval lengths (short to long, long to short), fewest conflicts, finish times, ...?
Single Resource Scheduling

The Problem: Given: A list of requests to use a single resource for specific time periods.

The input: A list $L = \{r_1, \ldots, r_n\}$ of intervals, each with start time $s(r_i)$ and finish time $f(r_i)$

The Goal: Identify a subset of *compatible intervals* (no two intersect) of maximum size

Question: How to be greedy? Start times, interval lengths (short to long, long to short), fewest conflicts, finish times, ...?

Let’s play:
(11, 17), (3, 15), (5, 8), (14, 18), (7, 10), (2, 6), (12, 16), (9, 13), (1, 4)
Single Resource Scheduling

The Problem: Given: A list of requests to use a single resource for specific time periods.

The input: A list \(L = \{r_1, \ldots, r_n\} \) of intervals, each with start time \(s(r_i) \) and finish time \(f(r_i) \)

The Goal: Identify a subset of compatible intervals (no two intersect) of maximum size

Question: How to be greedy? Start times, interval lengths (short to long, long to short), fewest conflicts, finish times, ...?

Let’s play:
(11, 17), (3, 15), (5, 8), (14, 18), (7, 10), (2, 6), (12, 16), (9, 13), (1, 4)

Answer: Order by increasing \(f(r_i) \) (finish times)
Single Resource Scheduling

The Problem: Given: A list of requests to use a single resource for specific time periods.

The input: A list $L = \{r_1, \ldots, r_n\}$ of intervals, each with start time $s(r_i)$ and finish time $f(r_i)$

The Goal: Identify a subset of compatible intervals (no two intersect) of maximum size

Question: How to be greedy? Start times, interval lengths (short to long, long to short), fewest conflicts, finish times, ...?

Let's play:
$(11, 17), (3, 15), (5, 8), (14, 18), (7, 10), (2, 6), (12, 16), (9, 13), (1, 4)$

Answer: Order by increasing $f(r_i)$ (finish times)

Idea: Show that first k choices made by greedy are at least as good as k earliest ending intervals in any other solution.
Single Resource Scheduling: The Details

Lemma Let g_1, \ldots, g_k be the intervals selected by the greedy algorithm in the order selected; let o_1, \ldots, o_m be any other set of compatible intervals, ordered by increasing finish time.
Single Resource Scheduling: The Details

Lemma Let g_1, \ldots, g_k be the intervals selected by the greedy algorithm in the order selected; let o_1, \ldots, o_m be any other set of compatible intervals, ordered by increasing finish time.

Then, for any $i \leq \min\{k, m\}$, $f(g_i) \leq f(o_i)$
Single Resource Scheduling: The Details

Lemma Let g_1, \ldots, g_k be the intervals selected by the greedy algorithm in the order selected; let o_1, \ldots, o_m be any other set of compatible intervals, ordered by increasing finish time.

Then, for any $i \leq \min\{k, m\}$, $f(g_i) \leq f(o_i)$

Proof
Single Resource Scheduling: The Details

Lemma Let \(g_1, \ldots, g_k \) be the intervals selected by the greedy algorithm in the order selected; let \(o_1, \ldots, o_m \) be any other set of compatible intervals, ordered by increasing finish time.

Then, for any \(i \leq \min\{k, m\} \), \(f(g_i) \leq f(o_i) \)

Proof

Base Case: True for \(i = 1 \): \(g_1 \) has left-most finish time of all
Lemma Let g_1, \ldots, g_k be the intervals selected by the greedy algorithm in the order selected; let o_1, \ldots, o_m be any other set of compatible intervals, ordered by increasing finish time.

Then, for any $i \leq \min\{k, m\}$, $f(g_i) \leq f(o_i)$

Proof

Base Case: True for $i = 1$: g_1 has left-most finish time of all

Induction: Assume true for all $j < i$, and now consider i.
Single Resource Scheduling: The Details

Lemma Let \(g_1, \ldots, g_k \) be the intervals selected by the greedy algorithm in the order selected; let \(o_1, \ldots, o_m \) be any other set of compatible intervals, ordered by increasing finish time.

Then, for any \(i \leq \min\{k, m\} \), \(f(g_i) \leq f(o_i) \)

Proof

Base Case: True for \(i = 1 \): \(g_1 \) has left-most finish time of all

Induction: Assume true for all \(j < i \), and now consider \(i \).

- \(f(g_{i-1}) \leq f(o_{i-1}) \), (induction)
Single Resource Scheduling: The Details

Lemma Let \(g_1, \ldots, g_k \) be the intervals selected by the greedy algorithm in the order selected; let \(o_1, \ldots, o_m \) be any other set of compatible intervals, ordered by increasing finish time.

Then, for any \(i \leq \min\{k, m\}, f(g_i) \leq f(o_i) \)

Proof

Base Case: True for \(i = 1 \): \(g_1 \) has left-most finish time of all

Induction: Assume true for all \(j < i \), and now consider \(i \).

- \(f(g_{i-1}) \leq f(o_{i-1}) \), (induction)
- So, \(f(g_{i-1}) \leq f(o_{i-1}) \leq s(o_i) \)
Single Resource Scheduling: The Details

Lemma Let g_1, \ldots, g_k be the intervals selected by the greedy algorithm in the order selected; let o_1, \ldots, o_m be any other set of compatible intervals, ordered by increasing finish time.

Then, for any $i \leq \min\{k, m\}$, $f(g_i) \leq f(o_i)$

Proof

Base Case: True for $i = 1$: g_1 has left-most finish time of all

Induction: Assume true for all $j < i$, and now consider i.

- $f(g_{i-1}) \leq f(o_{i-1})$, (induction)
- So, $f(g_{i-1}) \leq f(o_{i-1}) \leq s(o_i)$
- So, o_i is compatible with $g_1, \ldots g_{i-1}$
Single Resource Scheduling: The Details

Lemma Let \(g_1, \ldots, g_k \) be the intervals selected by the greedy algorithm in the order selected; let \(o_1, \ldots, o_m \) be any other set of compatible intervals, ordered by increasing finish time.

Then, for any \(i \leq \min\{k, m\} \), \(f(g_i) \leq f(o_i) \)

Proof

Base Case: True for \(i = 1 \): \(g_1 \) has left-most finish time of all

Induction: Assume true for all \(j < i \), and now consider \(i \).

- \(f(g_{i-1}) \leq f(o_{i-1}) \), (induction)
- So, \(f(g_{i-1}) \leq f(o_{i-1}) \leq s(o_i) \)
- So, \(o_i \) is compatible with \(g_1, \ldots g_{i-1} \)
- But \(g_i \) is the interval compatible with \(g_1, \ldots g_{i-1} \) and having left-most finishing time.
Single Resource Scheduling: The Details

Lemma Let g_1, \ldots, g_k be the intervals selected by the greedy algorithm in the order selected; let o_1, \ldots, o_m be any other set of compatible intervals, ordered by increasing finish time.

Then, for any $i \leq \min\{k, m\}$, $f(g_i) \leq f(o_i)$

Proof

Base Case: True for $i = 1$: g_1 has left-most finish time of all

Induction: Assume true for all $j < i$, and now consider i.

- $f(g_{i-1}) \leq f(o_{i-1})$, (induction)
- So, $f(g_{i-1}) \leq f(o_{i-1}) \leq s(o_i)$
- So, o_i is compatible with $g_1, \ldots g_{i-1}$
- But g_i is the interval compatible with $g_1, \ldots g_{i-1}$ and having left-most finishing time.
- So $f(g_i) \leq f(o_i)$.

Corollary It cannot be, in above Lemma, that $m > k$.
Single Resource Scheduling: The Details

Lemma Let g_1, \ldots, g_k be the intervals selected by the greedy algorithm in the order selected; let o_1, \ldots, o_m be any other set of compatible intervals, ordered by increasing finish time.

Then, for any $i \leq \min\{k, m\}$, $f(g_i) \leq f(o_i)$

Proof

Base Case: True for $i = 1$: g_1 has left-most finish time of all

Induction: Assume true for all $j < i$, and now consider i.

- $f(g_{i-1}) \leq f(o_{i-1})$, (induction)
- So, $f(g_{i-1}) \leq f(o_{i-1}) \leq s(o_i)$
- So, o_i is compatible with $g_1, \ldots g_{i-1}$
- But g_i is the interval compatible with $g_1, \ldots g_{i-1}$ and having left-most finishing time.
- So $f(g_i) \leq f(o_i)$.

Corollary It cannot be, in above Lemma, that $m > k$.
Shortest \(s \rightarrow t \) Path in a Weighted Graph

Given: A graph \(G = (V, E) \) with positive edge weights: that is, each edge \(e \in E \) has a value \(w(e) > 0 \)
Shortest \(s \rightarrow t \) Path in a Weighted Graph

Given: A graph \(G = (V, E) \) with positive edge weights: that is, each edge \(e \in E \) has a value \(w(e) > 0 \)

Definition

Given a graph with positive edge weights, the *weighted path length* of a path \(P \) is the sum of the weights of the edges in the path.
Shortest $s - t$ Path in a Weighted Graph

Given: A graph $G = (V, E)$ with positive edge weights: that is, each edge $e \in E$ has a value $w(e) > 0$

Definition

Given a graph with positive edge weights, the *weighted path length* of a path P is the sum of the weights of the edges in the path.

That is, $w(P) = \sum_{e \in P} w(e)$. We call this the *path length* of P
Shortest $s-t$ Path in a Weighted Graph

Given: A graph $G = (V, E)$ with positive edge weights: that is, each edge $e \in E$ has a value $w(e) > 0$

Definition

Given a graph with positive edge weights, the *weighted path length* of a path P is the sum of the weights of the edges in the path.

That is, $w(P) = \sum_{e \in P} w(e)$. We call this the *path length* of P

The Problem: Given a graph $G = (V, E)$ with positive edge weights $w()$, and vertices $s, t \in V$, find the minimum-weight (shortest) path from s to t.
Dijkstra’s Algorithm finds the shortest paths from s to all other vertices in G.
The Design

Dijkstra’s Algorithm finds the shortest paths from s to all other vertices in G.

The Idea: Dijkstra’s algorithm has the following key components
Dijkstra’s Algorithm finds the shortest paths from s to all other vertices in G.

The Idea: Dijkstra’s algorithm has the following key components

- It evolves a tree, rooted at s, of shortest paths to the vertices closest to s
Dijkstra’s Algorithm finds the shortest paths from \(s \) to \textit{all} other vertices in \(G \).

The Idea: Dijkstra’s algorithm has the following key components

- It evolves a tree, rooted at \(s \), of shortest paths to the vertices closest to \(s \).
- It keeps a \textit{conservative estimate} (that is, over-estimate) \(\text{dist}(v) \) of the shortest path length to vertices not yet in the tree.
The Design

Dijkstra’s Algorithm finds the shortest paths from s to all other vertices in G.

The Idea: Dijkstra’s algorithm has the following key components

- It evolves a tree, rooted at s, of shortest paths to the vertices closest to s
- It keeps a conservative estimate (that is, over-estimate) $\text{dist}()$ of the shortest path length to vertices not yet in the tree
- It selects the next vertex to add to the tree based on lowest estimate (Greedy: choose locally best next move)
The Design

Dijkstra’s Algorithm finds the shortest paths from s to all other vertices in G.

The Idea: Dijkstra’s algorithm has the following key components

- It evolves a tree, rooted at s, of shortest paths to the vertices closest to s
- It keeps a conservative estimate (that is, over-estimate) $dist()$ of the shortest path length to vertices not yet in the tree
- It selects the next vertex to add to the tree based on lowest estimate (Greedy: choose locally best next move)

Let’s see an example....
The Algorithm

Algorithm 1 Single Source Shortest Paths

1. procedure `Dijkstra(G, s)` \(\triangleright G = (V, E)\) is connected
2. \(T = \emptyset; S = \{s\}; \text{dist}[s] \leftarrow 0\)
3. for all neighbors \(v\) of \(s\) do
4. \(\text{dist}[v] \leftarrow w(s, v); \text{prior}[v] \leftarrow s\)
5. for all non-neighbors \(v\) of \(s\) do
6. \(\text{dist}[v] \leftarrow \infty\)
7. while \(S \neq V\) do
8. Select \(v \in V - S\) with minimum \(\text{dist}[v]\)
9. Add \(v\) to \(S\); add \(\{v, \text{prior}[v]\}\) to \(T\)
10. for each neighbor \(u \in V - S\) of \(v\) do
11. if \(\text{dist}[v] + w(v, u) < \text{dist}[u]\) then
12. \(\text{dist}[u] = \text{dist}[v] + w(v, u)\)
13. \(\text{prior}[u] \leftarrow v\)
Correctness Analysis

Note: The edges \(\{v, \text{prior}[v]\} \) form \(T \); \(\text{prior}[v] \) is the vertex last used to update the value \(\text{dist}[v] \).
Correctness Analysis

Note: The edges \(\{ v, \text{prior}[v] \} \) form \(T \); \(\text{prior}[v] \) is the vertex last used to update the value \(\text{dist}[v] \).

That is, current value of \(\text{dist}[v] = \text{dist}[\text{prior}[v]] + w(v, \text{prior}[v]) \)
Correctness Analysis

Note: The edges \{v, prior[v]\} form \(T\); \(prior[v]\) is the vertex last used to update the value \(dist[v]\).

That is, current value of \(dist[v] = dist[prior[v]] + w(v, prior[v])\)

Theorem
After each iteration of the while loop, the set of marked edges form a tree \(T\) with root \(s\)
Correctness Analysis

Note: The edges \(\{v, prior[v]\} \) form \(T \); \(prior[v] \) is the vertex last used to update the value \(dist[v] \).

That is, current value of \(dist[v] = dist[prior[v]] + w(v, prior[v]) \)

Theorem

After each iteration of the while loop, the set of marked edges form a tree \(T \) with root \(s \)

Theorem

After each iteration of the while loop, \(T \) contains shortest paths (in \(G \)) from \(s \) to every other vertex of \(T \)
The Proof

Proof.

By induction on $|V(T)|$. Clear when $|V(T)| = 1$. Suppose the result holds for some $k = |V(T)| \geq 1$, then loop iterates again
The Proof

Proof.
By induction on $|V(T)|$. Clear when $|V(T)| = 1$. Suppose the result holds for some $k = |V(T)| \geq 1$, then loop iterates again.

- Let v be the vertex added to S and $\{v, x = \text{prior}[v]\}$ the edge added to T.

\[\square\]
The Proof

Proof.
By induction on $|V(T)|$. Clear when $|V(T)| = 1$. Suppose the result holds for some $k = |V(T)| \geq 1$, then loop iterates again

- Let v be the vertex added to S and $\{v, x = prior[v]\}$ the edge added to T
- Let P be the unique $s - x$ path in T, followed by the edge $\{x, v\}$
The Proof

Proof.
By induction on $|V(T)|$. Clear when $|V(T)| = 1$. Suppose the result holds for some $k = |V(T)| \geq 1$, then loop iterates again

- Let v be the vertex added to S and $\{v, x = prior[v]\}$ the edge added to T
- Let P be the unique $s - x$ path in T, followed by the edge $\{x, v\}$
- Suppose some $s - v$ path P' in G is shorter (lower weight)
The Proof

Proof.
By induction on $|V(T)|$. Clear when $|V(T)| = 1$. Suppose the result holds for some $k = |V(T)| \geq 1$, then loop iterates again

- Let v be the vertex added to S and $\{v, x = prior[v]\}$ the edge added to T
- Let P be the unique $s - x$ path in T, followed by the edge $\{x, v\}$
- Suppose some $s - v$ path P' in G is shorter (lower weight)
 - Let $e = \{x', v'\}$ be the first edge along P' such that $x' \in S$ and $v' \notin S$.

□
The Proof

Proof.

By induction on $|V(T)|$. Clear when $|V(T)| = 1$. Suppose the result holds for some $k = |V(T)| \geq 1$, then loop iterates again

- Let v be the vertex added to S and $\{v, x = prior[v]\}$ the edge added to T
- Let P be the unique $s - x$ path in T, followed by the edge $\{x, v\}$
- Suppose some $s - v$ path P' in G is shorter (lower weight)
 - Let $e = \{x', v'\}$ be the first edge along P' such that $x' \in S$ and $v' \notin S$.
 - Claim: The initial portion of P' from s to v' has lower weight than P
The Proof

Proof.

By induction on \(|V(T)| \). Clear when \(|V(T)| = 1 \). Suppose the result holds for some \(k = |V(T)| \geq 1 \), then loop iterates again

- Let \(v \) be the vertex added to \(S \) and \(\{v, x = prior[v]\} \) the edge added to \(T \)

- Let \(P \) be the unique \(s - x \) path in \(T \), followed by the edge \(\{x, v\} \)

- Suppose some \(s - v \) path \(P' \) in \(G \) is shorter (lower weight)
 - Let \(e = \{x', v'\} \) be the first edge along \(P' \) such that \(x' \in S \) and \(v' \not\in S \).
 - Claim: The initial portion of \(P' \) from \(s \) to \(v' \) has lower weight than \(P \)
 - Contradiction: \(v' \) should have been chosen instead of \(v \)
Resource Analysis

How can we efficiently implement Dijkstra’s Algorithm? We need to be able to

- Visit every neighbor of a vertex.
- Maintain sets of visited (S) and unvisited vertices; mark certain edges.
- Select the unvisited vertex that minimizes $dist()$.
- Update $dist()$ values for unvisited vertices.
How can we efficiently implement Dijkstra’s Algorithm? We need to be able to

- Visit every neighbor of a vertex.
Resource Analysis

How can we efficiently implement Dijkstra’s Algorithm? We need to be able to

- Visit every neighbor of a vertex.
- Maintain sets of visited (S) and unvisited vertices; mark certain edges.
Resource Analysis

How can we efficiently implement Dijkstra’s Algorithm? We need to be able to

- Visit every neighbor of a vertex.
- Maintain sets of visited \((S)\) and unvisited vertices; mark certain edges
- Select the unvisited vertex that minimizes \(dist()\)
Resource Analysis

How can we efficiently implement Dijkstra’s Algorithm? We need to be able to

- Visit every neighbor of a vertex.
- Maintain sets of visited \((S)\) and unvisited vertices; mark certain edges
- Select the unvisited vertex that minimizes \(\text{dist}()\)
- Update \(\text{dist}()\) values for unvisited vertices
The Structures

We use the following structures
The Structures

We use the following structures

- an adjacency list graph structure for G
The Structures

We use the following structures

- an adjacency list graph structure for G
- similar structure for T (or just use prior[])
We use the following structures

- an adjacency list graph structure for G
- similar structure for T (or just use $prior[]$)
- A priority queue to store unvisited vertices
How to update priorities in the priority queue efficiently.
Updating the PQ

How to update priorities in the priority queue efficiently.

- Recall vertices are represented by 1, \ldots, n
Updating the PQ

How to update priorities in the priority queue efficiently.

- Recall vertices are represented by $1, \ldots, n$
- Maintain an array $PQIndex[1..n]$ that holds the index of each vertex v in the priority queue
Updating the PQ

How to update priorities in the priority queue efficiently.

- Recall vertices are represented by 1, \ldots, n
- Maintain an array $PQIndex[1..n]$ that holds the index of each vertex v in the priority queue
- If we update $dist[u]$ for some u, we then heapify-up from u’s location in the priority queue to restore heap property
How to update priorities in the priority queue efficiently.

- Recall vertices are represented by 1, \ldots, n
- Maintain an array $PQIndex[1..n]$ that holds the index of each vertex v in the priority queue
- If we update $dist[u]$ for some u, we then heapify-up from u’s location in the priority queue to restore heap property
- Every time we swap two heap elements, we update $PQIndex$ for the two vertices
Time and Space Complexity

We use $O(n + m)$ space: storage of G, T, the priority queue, and $dist[]$, $prior[]$ and $PQIndex[]$
Time and Space Complexity

We use $O(n + m)$ space: storage of G, T, the priority queue, and \textit{dist}[], \textit{prior}[] and \textit{PQIndex}[]

Time Complexity
Time and Space Complexity

We use $O(n + m)$ space: storage of G, T, the priority queue, and $\text{dist}[]$, $\text{prior}[]$ and $\text{PQIndex}[]$

Time Complexity

- A traversal of G (every edge of G is visited at most once): $O(n \log n + m)$
Time and Space Complexity

We use $O(n + m)$ space: storage of G, T, the priority queue, and $dist[]$, $prior[]$ and $PQIndex[]$

Time Complexity

- A traversal of G (every edge of G is visited at most once): $O(n \log n + m)$
 - The log n is because next vertex selection takes $O(\log n)$ time
Time and Space Complexity

We use $O(n + m)$ space: storage of G, T, the priority queue, and $\text{dist}[]$, $\text{prior}[]$ and $\text{PQIndex}[]$

Time Complexity

- A traversal of G (every edge of G is visited at most once): $O(n \log n + m)$
 - The $\log n$ is because next vertex selection takes $O(\log n)$ time
- Construction of T: time proportional to its size: $O(n)$
Time and Space Complexity

We use $O(n + m)$ space: storage of G, T, the priority queue, and $\text{dist}[]$, $\text{prior}[]$ and $\text{PQIndex}[]$

Time Complexity

- A traversal of G (every edge of G is visited at most once): $O(n \log n + m)$
 - The $\log n$ is because next vertex selection takes $O(\log n)$ time
- Construction of T: time proportional to its size: $O(n)$
- Creation of priority queue: $O(n)$
Time and Space Complexity

We use \(O(n + m) \) space: storage of \(G \), \(T \), the priority queue, and \(\text{dist}[] \), \(\text{prior}[] \) and \(\text{PQIndex}[] \)

Time Complexity

- A traversal of \(G \) (every edge of \(G \) is visited at most once): \(O(n \log n + m) \)
 - The \(\log n \) is because next vertex selection takes \(O(\log n) \) time
- Construction of \(T \): time proportional to its size: \(O(n) \)
- Creation of priority queue: \(O(n) \)
- \(n \) deleteMin operations from priority queue: \(O(n \log n) \)
Time and Space Complexity

We use $O(n + m)$ space: storage of G, T, the priority queue, and $dist[]$, $prior[]$ and $PQIndex[]$.

Time Complexity

- A traversal of G (every edge of G is visited at most once): $O(n \log n + m)$
 - The log n is because next vertex selection takes $O(\log n)$ time
- Construction of T: time proportional to its size: $O(n)$
- Creation of priority queue: $O(n)$
- n deleteMin operations from priority queue: $O(n \log n)$
- At most one heapify-up or -down for each edge of G: $O(m \log n)$
Time and Space Complexity

We use $O(n + m)$ space: storage of G, T, the priority queue, and $\text{dist}[]$, $\text{prior}[]$ and $\text{PQIndex}[]$

Time Complexity

- A traversal of G (every edge of G is visited at most once): $O(n \log n + m)$
 - The log n is because next vertex selection takes $O(\log n)$ time
- Construction of T: time proportional to its size: $O(n)$
- Creation of priority queue: $O(n)$
- n deleteMin operations from priority queue: $O(n \log n)$
- At most one heapify-up or -down for each edge of G: $O(m \log n)$

Total time:

$O(n + m) + O(n) + O(n) + O(n \log n) + O(m \log n) = O((n + m) \log n)$;

$O(m \log n)$ if $n \in O(m)$