Introduction to Graph Theory & Traversals

Algorithm Design & Analysis

Spring 2018
Outline

Announcements

Graph Traversals

Breadth-First Search: BFS

BFS: Extensions and Optimizations

Depth-First Search

Directed Graphs
Announcements

Problem Set 1 is online: Due Thursday, 11:00pm

Friday: Winter Carnival—no class meetings!
Priority-Based Traversals
Two popular methods: Breadth-First Search (BFS) and Depth-First Search. Given a connected graph, they both
Two popular methods: Breadth-First Search (BFS) and Depth-First Search. Given a connected graph, they both
• respect the local structure of the graph
Priority-Based Traversals

Two popular methods: Breadth-First Search (BFS) and Depth-First Search. Given a connected graph, they both

- respect the local structure of the graph
- visit every vertex and every edge
Priority-Based Traversals

Two popular methods: Breadth-First Search (BFS) and Depth-First Search. Given a connected graph, they both

- respect the local structure of the graph
- visit every vertex and every edge
- produce a spanning tree
Priority-Based Traversals

Two popular methods: Breadth-First Search (BFS) and Depth-First Search. Given a connected graph, they both

- respect the local structure of the graph
- visit every vertex and every edge
- produce a spanning tree
- can be used to determine basic graph properties such as connectedness
Priority-Based Traversals

Two popular methods: Breadth-First Search (BFS) and Depth-First Search. Given a connected graph, they both

- respect the local structure of the graph
- visit every vertex and every edge
- produce a spanning tree
- can be used to determine basic graph properties such as connectedness
- can be tweaked to work on directed graphs as well
Priority-Based Traversals

Two popular methods: Breadth-First Search (BFS) and Depth-First Search. Given a connected graph, they both

• respect the local structure of the graph
• visit every vertex and every edge
• produce a spanning tree
• can be used to determine basic graph properties such as connectedness
• can be tweaked to work on directed graphs as well

Both are special cases of priority-based traversal.
BFS: An Example

Three types of vertex: unvisited, visited, and explored.
BFS: An Example

Three types of vertex: unvisited, visited, and explored.
Three types of vertex: unvisited, visited, and explored.
BFS: An Example

Three types of vertex: unvisited, visited, and explored.
BFS: An Example

Three types of vertex: **unvisited**, **visited**, and **explored**.
BFS: An Example

Three types of vertex: unvisited, visited, and explored.
BFS: An Example

Three types of vertex: unvisited, visited, and explored.
What do we need to describe a BFS algorithm?
What do we need to describe a BFS algorithm?

- Know which vertex to explore next
What do we need to describe a BFS algorithm?

- Know which vertex to explore next
- Know which vertices we should not look at again
What do we need to describe a BFS algorithm?

- Know which vertex to explore next
- Know which vertices we should not look at again
- Identify three vertex states: unvisited, visited but not explored, explored
What do we need to describe a BFS algorithm?

- Know which vertex to explore next
- Know which vertices we should not look at again
- Identify three vertex states: unvisited, visited but not explored, explored
- Some graph operations are needed: getting the neighbors of a vertex, for example
What do we need to describe a BFS algorithm?

- Know which vertex to explore next
- Know which vertices we should not look at again
- Identify three vertex states: unvisited, visited but not explored, explored
- Some graph operations are needed: getting the neighbors of a vertex, for example
- What if G is not connected?
BFS Algorithm: Version 1

Algorithm 1 Build Breadth-First Search Tree of G from vertex r

procedure BFST(G, r) \quad $\triangleright G = (V, E)$
Mark all $v \in V$ as unvisited \quad \triangleright Initialization steps
Let T be an empty graph
Add r to T; mark r as visited; $r.level \leftarrow 0$
while There are visited vertices do
 current \leftarrow some visited vertex having minimum level
 Mark current as explored
 for all unvisited neighbors v of current do
 Add \{$current, v$\} to T
 Mark v as visited
 $v.level \leftarrow current.level + 1$
 end for
end while
end procedure
Properties of BFST
Properties of BFST

• After r is added to T, T remains a tree throughout run of algorithm
Properties of BFST

- After \(r \) is added to \(T \), \(T \) remains a tree throughout run of algorithm.
- The vertices with \(\text{level} = i \) are those of distance \(i \) from \(r \).
Properties of BFST

- After r is added to T, T remains a tree throughout run of algorithm.
- The vertices with $level = i$ are those of distance i from r.
- Thus T consists of all vertices reachable from r: that is, T is a spanning tree of a component of G.
Properties of BFST

- After r is added to T, T remains a tree throughout run of algorithm
- The vertices with $\text{level} = i$ are those of distance i from r
- Thus T consists of all vertices \textit{reachable} from r: that is, T is a spanning tree of a component of G
- All edges of G not in T connect vertices at consecutive levels (or at the same level) of T
Properties of BFST

- After r is added to T, T remains a tree throughout run of algorithm.
- The vertices with $level = i$ are those of distance i from r.
- Thus T consists of all vertices reachable from r: that is, T is a spanning tree of a component of G.
- All edges of G not in T connect vertices at consecutive levels (or at the same level) of T.
- $BFST(G, r)$ can be used to find all connected components of G.
BFS Algorithm: Version 2

Algorithm 2 Breadth-First Search of G from vertex r

\begin{algorithm}
\begin{algorithmic}
\Procedure{BFS}{G, r} \Comment{$G = (V, E)$}
\State Mark all $v \in V$ as \emph{unvisited}
\State Mark r as \emph{visited}; $r.\text{level} \leftarrow 0$
\While {There are \emph{visited} vertices}
\State $current \leftarrow$ some \emph{visited} vertex having minimum level
\State Mark $current$ as \emph{explored}
\ForAll {unvisited neighbors v of $current$}
\State Mark v as \emph{visited}; $v.\text{level} \leftarrow current.\text{level} + 1$
\EndFor
\EndWhile
\EndProcedure
\end{algorithmic}
\end{algorithm}
BFS: Implementation and Complexity

Data Structure Requirements
BFS: Implementation and Complexity

Data Structure Requirements

- Assume $V = \{1, \ldots, n\}$ indexing an array of vertex adjacency lists.
BFS: Implementation and Complexity

Data Structure Requirements

- Assume $V = \{1, \ldots, n\}$ indexing an array of vertex adjacency lists.
- So getting the "next neighbor" of a vertex can be done in constant time.
BFS: Implementation and Complexity

Data Structure Requirements

- Assume $V = \{1, \ldots, n\}$ indexing an array of vertex adjacency lists.
- So getting the "next neighbor" of a vertex can be done in constant time.
- T can be stored as an edge list.
BFS: Implementation and Complexity

Data Structure Requirements

- Assume $V = \{1, \ldots, n\}$ indexing an array of vertex adjacency lists.
- So getting the "next neighbor" of a vertex can be done in constant time.
- T can be stored as an edge list
- Each vertex/edge stores a label.
BFS: Implementation and Complexity

Data Structure Requirements

- Assume $V = \{1, \ldots, n\}$ indexing an array of vertex adjacency lists.
- So getting the "next neighbor" of a vertex can be done in constant time.
- T can be stored as an edge list
- Each vertex/edge stores a label.
- Store a copy of each 'visited' vertex in a priority queue.
BFS: Implementation and Complexity

Data Structure Requirements

- Assume $V = \{1, \ldots, n\}$ indexing an array of vertex adjacency lists.
- So getting the "next neighbor" of a vertex can be done in constant time.
- T can be stored as an edge list
- Each vertex/edge stores a label.
- Store a copy of each 'visited' vertex in a priority queue.
- For connected G gives an $O(m + n)$ space and $O(m + n \log n)$ time algorithm, where $|V| = n$ and $|E| = m$
BFS: Implementation and Complexity

Data Structure Requirements

- Assume $V = \{1, \ldots, n\}$ indexing an array of vertex adjacency lists.
- So getting the "next neighbor" of a vertex can be done in constant time.
- T can be stored as an edge list
- Each vertex/edge stores a label.
- Store a copy of each 'visited' vertex in a priority queue.
- For connected G gives an $O(m + n)$ space and $O(m + n \log n)$ time algorithm, where $|V| = n$ and $|E| = m$
- Better: Use a queue instead of a priority queue. This reduces the run time to $O(m + n)$.
Algorithm 3 Better Breadth-First Search of \(G \) from vertex \(r \)

```
procedure BBFS(\( G, r \))
    Mark all \( v \in V \) and all \( e \in E \) as unvisited
    Initialize an empty queue \( Q \)
    Mark \( r \) as visited; \( Q\.enqueue(r) \)
    while There are visited vertices do
        \textit{current} \leftarrow Q\.dequeue()
        for all neighbors \( v \) of \textit{current} do
            if \( v \) is unvisited then
                Mark \( v \) as visited; \( Q\.enqueue(v) \)
            end if
            if \( \{\textit{current}, v\} \) is unvisited then
                Mark \( \{\textit{current}, v\} \) as visited
            end if
        end for
    end while
end procedure
```
Properties of BBFS

For a connected graph G
Properties of BBFS

For a connected graph G

- $BBFS(G, r)$ visits every vertex and edge of G
Properties of BBFS

For a connected graph G

- $BBFS(G, r)$ visits every vertex and edge of G
- The queue Q fulfills the role of the arrays $L[i]$ of levels in text.
Properties of BBFS

For a connected graph G

- $BBFS(G, r)$ visits every vertex and edge of G
- The queue Q fulfills the role of the arrays $L[i]$ of levels in text.
- Runs in optimal $O(n + m)$ time and space
Properties of BBFS

For a connected graph G

- $BBFS(G, r)$ visits every vertex and edge of G
- The queue Q fulfills the role of the arrays $L[i]$ of levels in text.
- Runs in optimal $O(n + m)$ time and space
- We can tweak $BBFS$ so that it
Properties of BBFS

For a connected graph G

- $BBFS(G, r)$ visits every vertex and edge of G
- The queue Q fulfills the role of the arrays $L[i]$ of levels in text.
- Runs in optimal $O(n + m)$ time and space
- We can tweak $BBFS$ so that it
 - Assigns each vertex a label (level) equal to its distance from r
Properties of BBFS

For a connected graph G

- $BBFS(G, r)$ visits every vertex and edge of G
- The queue Q fulfills the role of the arrays $L[i]$ of levels in text.
- Runs in optimal $O(n + m)$ time and space
- We can tweak $BBFS$ so that it
 - Assigns each vertex a label (level) equal to its distance from r
 - Labels each edge as a tree-edge or a non-tree-edge
Properties of BBFS

For a connected graph G

- $BBFS(G, r)$ visits every vertex and edge of G
- The queue Q fulfills the role of the arrays $L[i]$ of levels in text.
- Runs in optimal $O(n + m)$ time and space
- We can tweak $BBFS$ so that it
 - Assigns each vertex a label (level) equal to its distance from r
 - Labels each edge as a tree-edge or a non-tree-edge
 - Constructs all of the connected components of a non-connected graph
Properties of BBFS

For a connected graph G

- $BBFS(G, r)$ visits every vertex and edge of G
- The queue Q fulfills the role of the arrays $L[i]$ of levels in text.
- Runs in optimal $O(n + m)$ time and space
- We can tweak $BBFS$ so that it
 - Assigns each vertex a label (level) equal to its distance from r
 - Labels each edge as a tree-edge or a non-tree-edge
 - Constructs all of the connected components of a non-connected graph
 - Provides shortest paths from every vertex back to r
Application: Deciding Bipartiteness
Application: Deciding Bipartiteness

Definition

A *bipartition* of a set X is a pair of subsets X_1, X_2 of X such that

1. $X_1 \cup X_2 = X$, and
2. $X_1 \cap X_2 = \emptyset$
Application: Deciding Bipartiteness

Definition

A bipartition of a set X is a pair of subsets X_1, X_2 of X such that

1. $X_1 \cup X_2 = X$, and
2. $X_1 \cap X_2 = \emptyset$

A bipartition of X is also called a partition of X (into 2 parts) or a 2-coloring of X.
Application: Deciding Bipartiteness

Definition
A bipartition of a set X is a pair of subsets X_1, X_2 of X such that

1. $X_1 \cup X_2 = X$, and
2. $X_1 \cap X_2 = \emptyset$

A bipartition of X is also called a partition of X (into 2 parts) or a 2-coloring of X

Definition
A graph $G = (V, E)$ is bipartite if V can be partitioned into two sets V_1 and V_2 so that every edge $e \in E$ has a vertex in each of V_1 and V_2.

Application: Deciding Bipartiteness

Definition

A bipartition of a set X is a pair of subsets X_1, X_2 of X such that

1. $X_1 \cup X_2 = X$, and
2. $X_1 \cap X_2 = \emptyset$

A bipartition of X is also called a partition of X (into 2 parts) or a 2-coloring of X.

Definition

A graph $G = (V, E)$ is bipartite if V can be partitioned into two sets V_1 and V_2 so that every edge $e \in E$ has a vertex in each of V_1 and V_2.

Bipartite graphs are also called 2-colorable graphs.
Application: Deciding Bipartiteness
Application: Deciding Bipartiteness

Theorem

The following statements are equivalent for a connected graph G

(a) G is bipartite

(b) Every circuit in G has even length

(c) No BFS tree has edges between vertices at the same level

(d) Some BFS tree has no edges between two vertices at the same level

Note: Conditions (a) and (b) seem hard to check directly; but conditions (c) and (d) allow an easy check!
Application: Deciding Bipartiteness

Theorem
The following statements are equivalent for a connected graph G

(a) G is bipartite
Application: Deciding Bipartiteness

Theorem

The following statements are equivalent for a connected graph G

(a) G is bipartite

(b) Every circuit in G has even length
Application: Deciding Bipartiteness

Theorem

The following statements are equivalent for a connected graph G

(a) G is bipartite

(b) Every circuit in G has even length

(c) No BFS tree has edges between vertices at same level
Application: Deciding Bipartiteness

Theorem

The following statements are equivalent for a connected graph G

(a) G is bipartite

(b) Every circuit in G has even length

(c) No BFS tree has edges between vertices at same level

(d) Some BFS tree has no edges between two vertices at the same level
Application: Deciding Bipartiteness

Theorem

The following statements are equivalent for a connected graph \(G \)

(a) \(G \) is bipartite

(b) Every circuit in \(G \) has even length

(c) No BFS tree has edges between vertices at same level

(d) Some BFS tree has no edges between two vertices at the same level

Note: Conditions (a) and (b) seem hard to check directly; but conditions (c) and (d) allow an easy check!
Application: Deciding Bipartiteness

Theorem

The following statements are equivalent for a connected graph G

(a) G is bipartite
(b) Every circuit in G has even length
(c) No BFS tree has edges between vertices at same level
(d) Some BFS tree has no edges between two vertices at the same level

Proof.

(a) \Rightarrow (b) Vertices in circuit must alternate between V_1 and V_2.

(b) \Rightarrow (c) Contradiction: Such an edge implies an odd circuit.

(c) \Rightarrow (d) A rare, justified use of the term "obvious".

(d) \Rightarrow (a) Edges must span consecutive levels: levels provide bipartition of G.
Application: Deciding Bipartiteness

Theorem
The following statements are equivalent for a connected graph G

(a) G is bipartite
(b) Every circuit in G has even length
(c) No BFS tree has edges between vertices at same level
(d) Some BFS tree has no edges between two vertices at the same level

Proof.
Application: Deciding Bipartiteness

Theorem
The following statements are equivalent for a connected graph G

(a) G is bipartite
(b) Every circuit in G has even length
(c) No BFS tree has edges between vertices at same level
(d) Some BFS tree has no edges between two vertices at the same level

Proof.

(a) \implies (b) Vertices in circuit must alternate between V_1 and V_2.
Application: Deciding Bipartiteness

Theorem
The following statements are equivalent for a connected graph G

(a) G is bipartite
(b) Every circuit in G has even length
(c) No BFS tree has edges between vertices at same level
(d) Some BFS tree has no edges between two vertices at the same level

Proof.

(a) \implies (b) Vertices in circuit must alternate between V_1 and V_2.
(b) \implies (c) Contradiction: Such an edge implies an odd circuit.
Application: Deciding Bipartiteness

Theorem
The following statements are equivalent for a connected graph G

(a) G is bipartite
(b) Every circuit in G has even length
(c) No BFS tree has edges between vertices at same level
(d) Some BFS tree has no edges between two vertices at the same level

Proof.

(a) \Rightarrow (b) Vertices in circuit must alternate between V_1 and V_2.
(b) \Rightarrow (c) Contradiction: Such an edge implies an odd circuit.
(c) \Rightarrow (d) A rare, justified use of the term “obvious".
Application: Deciding Bipartiteness

Theorem
The following statements are equivalent for a connected graph G

(a) G is bipartite
(b) Every circuit in G has even length
(c) No BFS tree has edges between vertices at same level
(d) Some BFS tree has no edges between two vertices at the same level

Proof.

(a) \implies (b) Vertices in circuit must alternate between V_1 and V_2.
(b) \implies (c) Contradiction: Such an edge implies an odd circuit.
(c) \implies (d) A rare, justified use of the term “obvious”.
(d) \implies (a) Edges must span consecutive levels: levels provide bipartition of G.
Implications of the Theorem
Implications of the Theorem

So G is bipartite iff no BFS tree for G has two vertices at the same level that form an edge in G.
Implications of the Theorem

So G is bipartite iff no BFS tree for G has two vertices at the same level that form an edge in G.

- When the BBFS algorithm visits an edge, we know the level of both of its endpoints.
Implications of the Theorem

So G is bipartite iff no BFS tree for G has two vertices at the same level that form an edge in G.

- When the BBFS algorithm visits an edge, we know the level of both of its endpoints.
- So when that edge is visited, if both ends have the same level, then STOP! G is not bipartite.
Implications of the Theorem

So G is bipartite iff no BFS tree for G has two vertices at the same level that form an edge in G.

- When the BBFS algorithm visits an edge, we know the level of both of its endpoints.
- So when that edge is visited, if both ends have the same level, then STOP! G is not bipartite.
- If the algorithm never discovers such an edge, G is bipartite.
Implications of the Theorem

So G is bipartite iff no BFS tree for G has two vertices at the same level that form an edge in G.

- When the BBFS algorithm visits an edge, we know the level of both of its endpoints.
- So when that edge is visited, if both ends have the same level, then STOP! G is not bipartite.
- If the algorithm never discovers such an edge, G is bipartite.
- This modified BFS still runs in $O(n + m)$ time.
Implications of the Theorem

So G is bipartite iff no BFS tree for G has two vertices at the same level that form an edge in G.

- When the BBFS algorithm visits an edge, we know the level of both of its endpoints.
- So when that edge is visited, if both ends have the same level, then STOP! G is not bipartite.
- If the algorithm never discovers such an edge, G is bipartite.
- This modified BFS still runs in $O(n + m)$ time.
- G not connected? Run on each component: $O(|V| + E|$) time
Implications of the Theorem

So G is bipartite iff no BFS tree for G has two vertices at the same level that form an edge in G.

- When the BBFS algorithm visits an edge, we know the level of both of its endpoints.
- So when that edge is visited, if both ends have the same level, then STOP! G is not bipartite.
- If the algorithm never discovers such an edge, G is bipartite.
- This modified BFS still runs in $O(n + m)$ time.
- G not connected? Run on each component: $O(|V| + E|)$ time
- Moreover, if G is not bipartite, we can produce an odd circuit in G as proof [Admire the awesomeness!]
Implications of the Theorem

So \(G \) is bipartite iff no BFS tree for \(G \) has two vertices at the same level that form an edge in \(G \).

- When the BBFS algorithm visits an edge, we know the level of both of its endpoints.
- So when that edge is visited, if both ends have the same level, then STOP! \(G \) is not bipartite.
- If the algorithm never discovers such an edge, \(G \) is bipartite.
- This modified BFS still runs in \(O(n + m) \) time.
- \(G \) not connected? Run on each component: \(O(|V| + E|) \) time
- Moreover, if \(G \) is not bipartite, we can produce an odd circuit in \(G \) as proof [Admire the awesomeness!]

Principle: Prefer algorithms that provide certificate of correctness!
DFS: An Example

Two types of vertex: **unvisited**, **visited**. Green is just for emphasis!
DFS: An Example

Two types of vertex: unvisited, visited. Green is just for emphasis!
DFS: An Example

Two types of vertex: *unvisited*, *visited*. *Green* is just for emphasis!
DFS: An Example

Two types of vertex: unvisited, visited. Green is just for emphasis!
DFS: An Example

Two types of vertex: *unvisited*, *visited*. *Green* is just for emphasis!
DFS: An Example

Two types of vertex: *unvisited*, *visited*. *Green* is just for emphasis!
DFS: An Example

Two types of vertex: unvisited, visited. Green is just for emphasis!
DFS: An Example

Two types of vertex: unvisited, visited. Green is just for emphasis!
Recursive Depth-First Search

Algorithm 4 Depth-First Search of G from vertex r

Require: all vertices are *unvisited*; $T = \{r\}$ is a 1-vertex tree

```
procedure DFS(G, r, T)
    Mark $r$ as *visited*
    for all neighbors $v$ of $r$ do
        if $v$ is unvisited then
            Add $\{r, v\}$ to $T$
            DFS($G, v, T$)
        end if
    end for
end procedure
```

Ensure: T is a spanning tree for the component of G containing r
Properties of DFS

• When algorithm terminates, \(T \) forms a spanning tree of the component of \(G \) containing \(r \).
• \(T \) is a tree because (i) it is connected and (ii) it has one more vertex than edge (see theorem from text).
• \(T \) contains every vertex reachable from \(r \).
• If \(v \) is visited, so are its neighbors.
• Now consider \(T \) as a rooted tree with root \(r \).
• Every vertex visited during a call to \(\text{DFS}(G, v) \) is a descendent of \(v \) in \(T \).
• We consider any vertex to be (trivially) a descendent of itself.
• For every edge \(e = \{u, v\} \) in \(G \), one of \(u \) or \(v \) is an ancestor of the other in \(T \).
Properties of DFS

- When algorithm terminates, T forms a spanning tree of the component of G containing r.
Properties of DFS

- When algorithm terminates, T forms a spanning tree of the component of G containing r.
 - T is a tree because (i) it is connected and (ii) it has one more vertex than edge (see theorem from text)
Properties of DFS

• When algorithm terminates, T forms a spanning tree of the component of G containing r.
 • T is a tree because (i) it is connected and (ii) it has one more vertex than edge (see theorem from text)
 • T contains every vertex reachable from r
Properties of DFS

- When algorithm terminates, \(T \) forms a spanning tree of the component of \(G \) containing \(r \).
 - \(T \) is a tree because (i) it is connected and (ii) it has one more vertex than edge (see theorem from text)
 - \(T \) contains every vertex reachable from \(r \)
 - If \(v \) is visited, so are its neighbors
Properties of DFS

- When algorithm terminates, \(T \) forms a spanning tree of the component of \(G \) containing \(r \).
 - \(T \) is a tree because (i) it is connected and (ii) it has one more vertex than edge (see theorem from text)
 - \(T \) contains every vertex reachable from \(r \)
 - If \(v \) is visited, so are its neighbors
- Now consider \(T \) as a rooted tree with root \(r \)
Properties of DFS

- When algorithm terminates, T forms a spanning tree of the component of G containing r.
 - T is a tree because (i) it is connected and (ii) it has one more vertex than edge (see theorem from text)
 - T contains every vertex reachable from r
 - If v is visited, so are its neighbors
- Now consider T as a rooted tree with root r
 - Every vertex visited during a call to $DFS(G, v)$ is a descendent of v in T
Properties of DFS

• When algorithm terminates, T forms a spanning tree of the component of G containing r.
 • T is a tree because (i) it is connected and (ii) it has one more vertex than edge (see theorem from text)
 • T contains every vertex reachable from r
 • If v is visited, so are its neighbors
• Now consider T as a rooted tree with root r
 • Every vertex visited during a call to $DFS(G, v)$ is a descendent of v in T
 • We consider any vertex to be (trivially) a descendent of itself
Properties of DFS

- When algorithm terminates, T forms a spanning tree of the component of G containing r.
 - T is a tree because (i) it is connected and (ii) it has one more vertex than edge (see theorem from text)
 - T contains every vertex reachable from r
 - If v is visited, so are its neighbors
- Now consider T as a rooted tree with root r
 - Every vertex visited during a call to $DFS(G, v)$ is a descendent of v in T
 - We consider any vertex to be (trivially) a descendent of itself
 - For every edge $e = \{u, v\}$ in G, one of u or v is an ancestor of the other in T.
The proof

For every edge $e = \{u, v\}$ in G, one of u or v is an ancestor of the other in T.

Proof.
The proof

For every edge $e = \{u, v\}$ in G, one of u or v is an ancestor of the other in T.

Proof.

• Clear if e is in T, so assume not.
The proof

For every edge \(e = \{u, v\} \) in \(G \), one of \(u \) or \(v \) is an ancestor of the other in \(T \).

Proof.

- Clear if \(e \) is in \(T \), so assume not.
- Assume DFS is called on \(u \) before \(v \). When the For loop inspected \(v \), \(v \) must have been already visited.
The proof

For every edge $e = \{u, v\}$ in G, one of u or v is an ancestor of the other in T.

Proof.

- Clear if e is in T, so assume not.
- Assume DFS is called on u before v. When the For loop inspected v, v must have been already visited.
 - Or else v becomes a descendent of u
The proof

For every edge $e = \{u, v\}$ in G, one of u or v is an ancestor of the other in T.

Proof.

- Clear if e is in T, so assume not.
- Assume DFS is called on u before v. When the For loop inspected v, v must have been already visited.
 - Or else v becomes a descendent of u.
- But v wasn’t visited when DFS was called on u.
The proof

For every edge $e = \{u, v\}$ in G, one of u or v is an ancestor of the other in T.

Proof.

- Clear if e is in T, so assume not.
- Assume DFS is called on u before v. When the For loop inspected v, v must have been already visited.
 - Or else v becomes a descendent of u
- But v wasn’t visited when DFS was called on u.
- Thus v was visited during the call $DFS(G, u)$ and so it’s a descendent of u.

\[\square\]
Directed Graphs

Definition

An directed graph $G = (V, E)$ consists of two sets
Directed Graphs

Definition

An *directed graph* \(G = (V, E) \) consists of two sets

- A set \(V \) called the *vertices* of \(G \)
Definition

An directed graph $G = (V, E)$ consists of two sets

- A set V called the vertices of G
- A set E of ordered pairs of distinct vertices of V called the edges of G
Directed Graphs

Definition

An *directed graph* $G = (V, E)$ consists of two sets

- A set V called the *vertices* of G
- A set E of ordered pairs of distinct vertices of V called the *edges* of G

Note: No loops or multiple edges. Why?
Directed Graphs

Definition
An *directed graph* $G = (V, E)$ consists of two sets

- A set V called the *vertices* of G
- A set E of ordered pairs of distinct vertices of V called the *edges* of G

Note: No loops or multiple edges. Why?

Properties of undirected graphs have counterparts in directed graphs, with some differences.
Directed Graphs

Definition

An *directed graph* $G = (V, E)$ consists of two sets

- A set V called the *vertices* of G
- A set E of ordered pairs of distinct vertices of V called the *edges* of G

Note: No loops or multiple edges. Why?

Properties of undirected graphs have counterparts in directed graphs, with some differences.

Example: A *directed walk* in G is a sequence $P = u = v_0, e_0, v_1, \ldots, e_n, v_n = v$ in which each $e_i = (v_{i-1}, v_i)$
Directed Graphs

Definition

An directed graph \(G = (V, E) \) consists of two sets

- A set \(V \) called the vertices of \(G \)
- A set \(E \) of ordered pairs of distinct vertices of \(V \) called the edges of \(G \)

Note: No loops or multiple edges. Why?

Properties of undirected graphs have counterparts in directed graphs, with some differences.

Example: A directed walk in \(G \) is a sequence

\[P = u = v_0, e_0, v_1, \ldots, e_n, v_n = v \]

in which each \(e_i = (v_{i-1}, v_i) \)

Now \(v \) is reachable from \(u \) if there is a directed path from \(u \) to \(v \).
Reachability in Directed Graphs: An Example
Reachability in Directed Graphs: An Example

BFS and DFS both work on directed graphs
BFS and DFS both work on directed graphs
Both visit exactly the nodes reachable from the start vertex
Reachability in Directed Graphs: An Example

BFS and DFS both work on directed graphs
Both visit exactly the nodes reachable from the start vertex
Reachability in Directed Graphs: An Example

BFS and DFS both work on directed graphs
Both visit exactly the nodes reachable from the start vertex
Reachability in Directed Graphs: An Example

BFS and DFS both work on directed graphs
Both visit exactly the nodes reachable from the start vertex
Reachability in Directed Graphs: An Example

BFS and DFS both work on directed graphs
Both visit exactly the nodes reachable from the start vertex
Reachability in Directed Graphs: An Example

BFS and DFS both work on directed graphs
Both visit exactly the nodes reachable from the start vertex