Introduction to Graph Theory & Traversals

Algorithm Design & Analysis

Fall 2018
Outline

Graph Data Structures

Graph Traversals

Breadth-First Search: BFS

BFS: Extensions and Optimizations

Depth-First Search

Directed Graphs
Aside: Graph Data Structure Review
(You should know this!)

Assume G has vertices $\{1, \ldots, n\}$ and m edges.
Aside: Graph Data Structure Review
(You should know this!)

Assume G has vertices $\{1, \ldots, n\}$ and m edges.

Two basic structures for graphs (directed or undirected)
Aside: Graph Data Structure Review (You should know this!)

Assume G has vertices $\{1, \ldots, n\}$ and m edges.

Two basic structures for graphs (directed or undirected)

- **The Adjacency Matrix:** An $n \times n$ array E, where $E[u, v] = 1$ if u, v form an edge and $E[u, v] = 0$ otherwise.
Aside: Graph Data Structure Review
(You should know this!)

Assume G has vertices $\{1, \ldots, n\}$ and m edges.

Two basic structures for graphs (directed or undirected)

- **The Adjacency Matrix**: An $n \times n$ array E, where $E[u, v] = 1$ if u, v form an edge and $E[u, v] = 0$ otherwise
- **The Adjacency List**: An array $E[1..n]$ of edge lists; elements in the edge list $E[u]$ identify neighbors of u
The Adjacency Matrix: An $n \times n$ array E, where $E[u, v] = 1$ if u, v form an edge and $E[u, v] = 0$ otherwise.
Adjacency Matrix

The Adjacency Matrix: An $n \times n$ array E, where $E[u, v] = 1$ if u, v form an edge and $E[u, v] = 0$ otherwise.

- If G is undirected, $E[u, v] = E[v, u]$ (or E is compacted by only having values when $u < v$).
Adjacency Matrix

The Adjacency Matrix: An $n \times n$ array E, where $E[u, v] = 1$ if u, v form an edge and $E[u, v] = 0$ otherwise

- If G is undirected, $E[u, v] = E[v, u]$ (or E is compacted by only having values when $u < v$).
- Uses $O(n^2)$ space regardless of number of edges
Adjacency Matrix

The Adjacency Matrix: An $n \times n$ array E, where $E[u, v] = 1$ if u, v form an edge and $E[u, v] = 0$ otherwise

- If G is undirected, $E[u, v] = E[v, u]$ (or E is compacted by only having values when $u < v$).
- Uses $O(n^2)$ space regardless of number of edges
- Edge queries can be answered in $O(1)$ time; "next neighbor of v" can take $O(n)$ time.
Adjacency Lists

The Adjacency List: An array $E[1..n]$ of edge lists; elements in the edge list $E[u]$ identify neighbors of u

Adjacency Lists

The Adjacency List: An array $E[1..n]$ of edge lists; elements in the edge list $E[u]$ identify neighbors of u

- If G is undirected, $v \in E[u]$ iff $u \in E[v]$ (or E is compacted by only having values when $u < v$).
The Adjacency List: An array $E[1..n]$ of edge lists; elements in the edge list $E[u]$ identify neighbors of u

- If G is undirected, $v \in E[u]$ iff $u \in E[v]$ (or E is compacted by only having values when $u < v$).
- Uses $O(n + m)$ space: better than Adjacency Array if $m \in o(n^2)$ (for example, when G is planar)
Adjacency Lists

The Adjacency List: An array $E[1..n]$ of edge lists; elements in the edge list $E[u]$ identify neighbors of u

- If G is undirected, $v \in E[u]$ iff $u \in E[v]$ (or E is compacted by only having values when $u < v$).
- Uses $O(n + m)$ space: better than Adjacency Array if $m \in o(n^2)$ (for example, when G is planar)

Note: $g(n) \in o(f(n))$ if $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$
Adjacency Lists

The Adjacency List: An array $E[1..n]$ of edge lists; elements in the edge list $E[u]$ identify neighbors of u

- If G is undirected, $v \in E[u]$ iff $u \in E[v]$ (or E is compacted by only having values when $u < v$).
- Uses $O(n + m)$ space: better than Adjacency Array if $m \in o(n^2)$ (for example, when G is planar)
 Note: $g(n) \in o(f(n))$ if $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$
- "Next neighbor of $v"$ takes $O(1)$ time; edge queries can take $O(n)$ time.
Priority-Based Traversals

Two popular methods: Breadth-First Search (BFS) and Depth-First Search. Given a connected graph, they can both
• respect the local structure of the graph
• visit every vertex and every edge
• produce a spanning tree
• can be used to determine basic graph properties such as connectedness
• can be tweaked to work on directed graphs as well

Both are special cases of priority-based traversal.
Two popular methods: Breadth-First Search (BFS) and Depth-First Search. Given a connected graph, they can both
Two popular methods: Breadth-First Search (BFS) and Depth-First Search. Given a connected graph, they can both

- respect the local structure of the graph
Two popular methods: Breadth-First Search (BFS) and Depth-First Search. Given a connected graph, they can both

- respect the local structure of the graph
- visit every vertex and every edge
Two popular methods: Breadth-First Search (BFS) and Depth-First Search. Given a connected graph, they can both

- respect the local structure of the graph
- visit every vertex and every edge
- produce a spanning tree
Two popular methods: Breadth-First Search (BFS) and Depth-First Search. Given a connected graph, they can both

- respect the local structure of the graph
- visit every vertex and every edge
- produce a spanning tree
- can be used to determine basic graph properties such as connectedness
Two popular methods: Breadth-First Search (BFS) and Depth-First Search. Given a connected graph, they can both

- respect the local structure of the graph
- visit every vertex and every edge
- produce a spanning tree
- can be used to determine basic graph properties such as connectedness
- can be tweaked to work on directed graphs as well
Priority-Based Traversals

Two popular methods: Breadth-First Search (BFS) and Depth-First Search. Given a connected graph, they can both

- respect the local structure of the graph
- visit every vertex and every edge
- produce a spanning tree
- can be used to determine basic graph properties such as connectedness
- can be tweaked to work on directed graphs as well

Both are special cases of priority-based traversal.
BFS: An Example

Three types of vertex: unvisited, visited, and explored.
BFS: An Example

Three types of vertex: unvisited, visited, and explored.
BFS: An Example

Three types of vertex: **unvisited, visited, and explored.**
BFS: An Example

Three types of vertex: unvisited, visited, and explored.
BFS: An Example

Three types of vertex: unvisited, visited, and explored.
Three types of vertex: unvisited, visited, and explored.
BFS: An Example

Three types of vertex: unvisited, visited, and explored.
What do we need to describe a BFS algorithm?
What do we need to describe a BFS algorithm?

- Know which vertex to explore next
What do we need to describe a BFS algorithm?

- Know which vertex to explore next
- Know which vertices we should not look at again
What do we need to describe a BFS algorithm?

- Know which vertex to explore next
- Know which vertices we should not look at again
- Identify three vertex states: unvisited, visited but not explored, explored
What do we need to describe a BFS algorithm?

- Know which vertex to explore next
- Know which vertices we should not look at again
- Identify three vertex states: unvisited, visited but not explored, explored
- Some graph operations are needed: getting the neighbors of a vertex, for example
What do we need to describe a BFS algorithm?

- Know which vertex to explore next
- Know which vertices we should not look at again
- Identify three vertex states: unvisited, visited but not explored, explored
- Some graph operations are needed: getting the neighbors of a vertex, for example
- What if G is not connected?
BFS Algorithm: Version 1

Algorithm 1 Build Breadth-First Search Tree of G from vertex r

```
procedure BFST($G$, $r$) $\triangleright G = (V, E)$
Mark all $v \in V$ as unvisited $\triangleright$ Initialization steps
Let $T$ be an empty graph
Add $r$ to $T$; mark $r$ as visited; $r$.level $\leftarrow 0$
while There are visited vertices do
  $current \leftarrow$ some visited vertex having minimum level
  Mark $current$ as explored
  for all unvisited neighbors $v$ of $current$ do
    Add $\{current, v\}$ to $T$
    Mark $v$ as visited
    $v$.level $\leftarrow current$.level + 1
  end for
end while
end procedure
```
Properties of BFST

- After \(r \) is added to \(T \), \(T \) remains a tree throughout the run of the algorithm.
- The vertices with level \(i \) are those of distance \(i \) from \(r \).
- Thus, \(T \) consists of all vertices reachable from \(r \), that is, \(T \) is a spanning tree of a component of \(G \).
- All edges of \(G \) not in \(T \) connect vertices at consecutive levels (or at the same level) of \(T \).
- BFST \((G, r)\) can be used to find all connected components of \(G \).
Properties of BFST

- After r is added to T, T remains a tree throughout run of algorithm
Properties of BFST

- After r is added to T, T remains a tree throughout run of algorithm
- The vertices with $level = i$ are those of distance i from r
Properties of BFST

- After r is added to T, T remains a tree throughout run of algorithm
- The vertices with $level = i$ are those of distance i from r
- Thus T consists of all vertices reachable from r: that is, T is a spanning tree of a component of G
Properties of BFST

- After r is added to T, T remains a tree throughout run of algorithm.
- The vertices with $\text{level} = i$ are those of distance i from r.
- Thus T consists of all vertices reachable from r: that is, T is a spanning tree of a component of G.
- All edges of G not in T connect vertices at consecutive levels (or at the same level) of T.
Properties of BFST

- After r is added to T, T remains a tree throughout run of algorithm.
- The vertices with level i are those of distance i from r.
- Thus T consists of all vertices reachable from r: that is, T is a spanning tree of a component of G.
- All edges of G not in T connect vertices at consecutive levels (or at the same level) of T.
- $BFST(G, r)$ can be used to find all connected components of G.
BFS Algorithm: Version 2

Algorithm 2 Breadth-First Search of G from vertex r

procedure BFS(G, r) \> $G = (V, E)$

Mark all $v \in V$ as unvisited \> Initialization steps
Mark r as visited; r.level $\leftarrow 0$

while There are visited vertices do

 current \leftarrow some visited vertex having minimum level
 Mark current as explored

 for all unvisited neighbors v of current do

 Mark v as visited; v.level \leftarrow current.level + 1

 end for

end while

end procedure
BFS: Implementation and Complexity

Data Structure Requirements
BFS: Implementation and Complexity

Data Structure Requirements

- Assume \(V = \{1, \ldots, n\} \) indexing an array of vertex adjacency lists.
BFS: Implementation and Complexity

Data Structure Requirements

- Assume $V = \{1, \ldots, n\}$ indexing an array of vertex adjacency lists.
- So getting the "next neighbor" of a vertex can be done in constant time.
Data Structure Requirements

- Assume $V = \{1, \ldots, n\}$ indexing an array of vertex adjacency lists.
- So getting the "next neighbor" of a vertex can be done in constant time.
- T can be stored as an edge list.
BFS: Implementation and Complexity

Data Structure Requirements

- Assume $V = \{1, \ldots, n\}$ indexing an array of vertex adjacency lists.
- So getting the "next neighbor" of a vertex can be done in constant time.
- T can be stored as an edge list
- Each vertex/edge stores a label.
BFS: Implementation and Complexity

Data Structure Requirements

• Assume $V = \{1, \ldots, n\}$ indexing an array of vertex adjacency lists.

• So getting the "next neighbor" of a vertex can be done in constant time.

• T can be stored as an edge list

• Each vertex/edge stores a label.

• Store a copy of each 'visited' vertex in a priority queue.
BFS: Implementation and Complexity

Data Structure Requirements

- Assume $V = \{1, \ldots, n\}$ indexing an array of vertex adjacency lists.
- So getting the "next neighbor" of a vertex can be done in constant time.
- T can be stored as an edge list
- Each vertex/edge stores a label.
- Store a copy of each 'visited' vertex in a priority queue.
- For connected G gives an $O(m + n)$ space and $O(m + n\log n)$ time algorithm, where $|V| = n$ and $|E| = m$
BFS: Implementation and Complexity

Data Structure Requirements

• Assume $V = \{1, \ldots, n\}$ indexing an array of vertex adjacency lists.
• So getting the "next neighbor" of a vertex can be done in constant time.
• T can be stored as an edge list
• Each vertex/edge stores a label.
• Store a copy of each 'visited' vertex in a priority queue.
• For connected G gives an $O(m + n)$ space and $O(m + n \log n)$ time algorithm, where $|V| = n$ and $|E| = m$
• Better: Use a queue instead of a priority queue. This reduces the run time to $O(m + n)$.
Algorithm 3 Better Breadth-First Search of G from vertex r

procedure BBFS(G, r)

Mark all $v \in V$ and all $e \in E$ as unvisited
Initialize an empty queue Q
Mark r as visited; Q.enqueue(r)

while There are visited vertices do

 $current \leftarrow Q$.dequeue()

 for all neighbors v of $current$ do

 if v is unvisited then

 Mark v as visited; Q.enqueue(v)

 end if

 if $\{current, v\}$ is unvisited then

 Mark $\{current, v\}$ as visited

 end if

 end for

end while

end procedure
Properties of BBFS

For a connected graph G
Properties of BBFS

For a connected graph G

- $BBFS(G, r)$ visits every vertex and edge of G
Properties of BBFS

For a connected graph G

- $BBFS(G, r)$ visits every vertex and edge of G
- The queue Q fulfills the role of the arrays $L[i]$ of levels in text.
Properties of BBFS

For a connected graph G

- $BBFS(G, r)$ visits every vertex and edge of G
- The queue Q fulfills the role of the arrays $L[i]$ of levels in text.
- Runs in optimal $O(n + m)$ time and space
Properties of BBFS

For a connected graph G

- $BBFS(G, r)$ visits every vertex and edge of G
- The queue Q fulfills the role of the arrays $L[i]$ of levels in text.
- Runs in optimal $O(n + m)$ time and space
- We can tweak $BBFS$ so that it
Properties of BBFS

For a connected graph G

- $BBFS(G, r)$ visits every vertex and edge of G
- The queue Q fulfills the role of the arrays $L[i]$ of levels in text.
- Runs in optimal $O(n + m)$ time and space
- We can tweak $BBFS$ so that it
 - Assigns each vertex a label (level) equal to its distance from r
Properties of BBFS

For a connected graph G

- $BBFS(G, r)$ visits every vertex and edge of G
- The queue Q fulfills the role of the arrays $L[i]$ of levels in text.
- Runs in optimal $O(n + m)$ time and space
- We can tweak $BBFS$ so that it
 - Assigns each vertex a label (level) equal to its distance from r
 - Labels each edge as a tree-edge or a non-tree-edge
Properties of BBFS

For a connected graph G

- $BBFS(G, r)$ visits every vertex and edge of G
- The queue Q fulfills the role of the arrays $L[i]$ of levels in text.
- Runs in optimal $O(n + m)$ time and space
- We can tweak $BBFS$ so that it
 - Assigns each vertex a label (level) equal to its distance from r
 - Labels each edge as a tree-edge or a non-tree-edge
 - Constructs all of the connected components of a non-connected graph
Properties of BBFS

For a connected graph G

- $BBFS(G, r)$ visits every vertex and edge of G
- The queue Q fulfills the role of the arrays $L[i]$ of levels in text.
- Runs in optimal $O(n + m)$ time and space
- We can tweak $BBFS$ so that it
 - Assigns each vertex a label (level) equal to its distance from r
 - Labels each edge as a tree-edge or a non-tree-edge
 - Constructs all of the connected components of a non-connected graph
 - Provides shortest paths from every vertex back to r
Application: Deciding Bipartiteness
Application: Deciding Bipartiteness

Definition

A bipartition of a set X is a pair of subsets X_1, X_2 of X such that

1. $X_1 \cup X_2 = X$, and
2. $X_1 \cap X_2 = \emptyset$
Application: Deciding Bipartiteness

Definition

A bipartition of a set X is a pair of subsets X_1, X_2 of X such that

1. $X_1 \cup X_2 = X$, and
2. $X_1 \cap X_2 = \emptyset$

A bipartition of X is also called a partition of X (into 2 parts) or a 2-coloring of X
Application: Deciding Bipartiteness

Definition
A bipartition of a set X is a pair of subsets X_1, X_2 of X such that

1. $X_1 \cup X_2 = X$, and
2. $X_1 \cap X_2 = \emptyset$

A bipartition of X is also called a partition of X (into 2 parts) or a 2-coloring of X

Definition
A graph $G = (V, E)$ is bipartite if V can be partitioned into two sets V_1 and V_2 so that every edge $e \in E$ has a vertex in each of V_1 and V_2.
Application: Deciding Bipartiteness

Definition
A bipartition of a set X is a pair of subsets X_1, X_2 of X such that

1. $X_1 \cup X_2 = X$, and
2. $X_1 \cap X_2 = \emptyset$

A bipartition of X is also called a partition of X (into 2 parts) or a 2-coloring of X

Definition
A graph $G = (V, E)$ is bipartite if V can be partitioned into two sets V_1 and V_2 so that every edge $e \in E$ has a vertex in each of V_1 and V_2.

Bipartite graphs are also called 2-colorable graphs.
Application: Deciding Bipartiteness

Theorem

The following statements are equivalent for a connected graph G:

1. G is bipartite
2. Every circuit in G has even length
3. No BFS tree has edges between vertices at the same level
4. Some BFS tree has no edges between two vertices at the same level

Note: Conditions (a) and (b) seem hard to check directly; but conditions (c) and (d) allow an easy check!
Application: Deciding Bipartiteness

Theorem

The following statements are equivalent for a connected graph G
Application: Deciding Bipartiteness

Theorem

The following statements are equivalent for a connected graph G

(a) G is bipartite
Application: Deciding Bipartiteness

Theorem
The following statements are equivalent for a connected graph G

(a) G is bipartite
(b) Every circuit in G has even length
Application: Deciding Bipartiteness

Theorem

The following statements are equivalent for a connected graph G

(a) G is bipartite

(b) Every circuit in G has even length

(c) No BFS tree has edges between vertices at same level
Application: Deciding Bipartiteness

Theorem
The following statements are equivalent for a connected graph G

(a) G is bipartite
(b) Every circuit in G has even length
(c) No BFS tree has edges between vertices at same level
(d) Some BFS tree has no edges between two vertices at the same level
Application: Deciding Bipartiteness

Theorem

The following statements are equivalent for a connected graph G

(a) G is bipartite

(b) Every circuit in G has even length

(c) No BFS tree has edges between vertices at same level

(d) Some BFS tree has no edges between two vertices at the same level

Note: Conditions (a) and (b) seem hard to check directly; but conditions (c) and (d) allow an easy check!
Application: Deciding Bipartiteness

Theorem
The following statements are equivalent for a connected graph G

(a) G is bipartite
(b) Every circuit in G has even length
(c) No BFS tree has edges between vertices at same level
(d) Some BFS tree has no edges between two vertices at the same level
Application: Deciding Bipartiteness

Theorem
The following statements are equivalent for a connected graph G

(a) G is bipartite
(b) Every circuit in G has even length
(c) No BFS tree has edges between vertices at same level
(d) Some BFS tree has no edges between two vertices at the same level

Proof.
Application: Deciding Bipartiteness

Theorem
The following statements are equivalent for a connected graph G

(a) G is bipartite
(b) Every circuit in G has even length
(c) No BFS tree has edges between vertices at same level
(d) Some BFS tree has no edges between two vertices at the same level

Proof.

(a) \implies (b) Vertices in circuit must alternate between V_1 and V_2.
Application: Deciding Bipartiteness

Theorem
The following statements are equivalent for a connected graph G

(a) G is bipartite
(b) Every circuit in G has even length
(c) No BFS tree has edges between vertices at same level
(d) Some BFS tree has no edges between two vertices at the same level

Proof.

(a) \implies (b) Vertices in circuit must alternate between V_1 and V_2.
(b) \implies (c) Contradiction: Such an edge implies an odd circuit.
Application: Deciding Bipartiteness

Theorem
The following statements are equivalent for a connected graph G

(a) G is bipartite
(b) Every circuit in G has even length
(c) No BFS tree has edges between vertices at same level
(d) Some BFS tree has no edges between two vertices at the same level

Proof.

(a) \implies (b) Vertices in circuit must alternate between V_1 and V_2.
(b) \implies (c) Contradiction: Such an edge implies an odd circuit.
(c) \implies (d) A rare, justified use of the term “obvious".
Application: Deciding Bipartiteness

Theorem
The following statements are equivalent for a connected graph G

(a) G is bipartite
(b) Every circuit in G has even length
(c) No BFS tree has edges between vertices at same level
(d) Some BFS tree has no edges between two vertices at the same level

Proof.

(a) \implies (b) Vertices in circuit must alternate between V_1 and V_2.
(b) \implies (c) Contradiction: Such an edge implies an odd circuit.
(c) \implies (d) A rare, justified use of the term “obvious”.
(d) \implies (a) Edges must span consecutive levels: levels provide bipartition of G.
Implications of the Theorem

\(G \) is bipartite iff no BFS tree for \(G \) has two vertices at the same level that form an edge in \(G \).

- When the BBFS algorithm visits an edge, we know the level of both of its endpoints.
- So when that edge is visited, if both ends have the same level, then STOP! \(G \) is not bipartite.
- If the algorithm never discovers such an edge, \(G \) is bipartite.
- This modified BFS still runs in \(O(n + m) \) time.
- \(G \) not connected? Run on each component: \(O(|V| + |E|) \) time.
- Moreover, if \(G \) is not bipartite, we can produce an odd circuit in \(G \) as proof [Admire the awesomeness!]

Principle: Prefer algorithms that provide certificate of correctness!
Implications of the Theorem

So G is bipartite iff no BFS tree for G has two vertices at the same level that form an edge in G.
Implications of the Theorem

So G is bipartite iff no BFS tree for G has two vertices at the same level that form an edge in G.

- When the BBFS algorithm visits an edge, we know the level of both of its endpoints.
Implications of the Theorem

So G is bipartite iff no BFS tree for G has two vertices at the same level that form an edge in G.

- When the BBFS algorithm visits an edge, we know the level of both of its endpoints.
- So when that edge is visited, if both ends have the same level, then STOP! G is not bipartite.
Implications of the Theorem

So G is bipartite iff no BFS tree for G has two vertices at the same level that form an edge in G.

- When the BBFS algorithm visits an edge, we know the level of both of its endpoints.
- So when that edge is visited, if both ends have the same level, then STOP! G is not bipartite.
- If the algorithm never discovers such an edge, G is bipartite.
Implications of the Theorem

So G is bipartite iff no BFS tree for G has two vertices at the same level that form an edge in G.

- When the BBFS algorithm visits an edge, we know the level of both of its endpoints.
- So when that edge is visited, if both ends have the same level, then STOP! G is not bipartite.
- If the algorithm never discovers such an edge, G is bipartite.
- This modified BFS still runs in $O(n + m)$ time.
Implications of the Theorem

So G is bipartite iff no BFS tree for G has two vertices at the same level that form an edge in G.

- When the BBFS algorithm visits an edge, we know the level of both of its endpoints.
- So when that edge is visited, if both ends have the same level, then STOP! G is not bipartite.
- If the algorithm never discovers such an edge, G is bipartite.
- This modified BFS still runs in $O(n + m)$ time.
- G not connected? Run on each component: $O(|V| + E)$ time.
Implications of the Theorem

So G is bipartite iff no BFS tree for G has two vertices at the same level that form an edge in G.

- When the BBFS algorithm visits an edge, we know the level of both of its endpoints.
- So when that edge is visited, if both ends have the same level, then STOP! G is not bipartite.
- If the algorithm never discovers such an edge, G is bipartite.
- This modified BFS still runs in $O(n + m)$ time.
- G not connected? Run on each component: $O(|V| + E|$) time.
- Moreover, if G is not bipartite, we can produce an odd circuit in G as proof [Admire the awesomeness!]
Implications of the Theorem

So G is bipartite iff no BFS tree for G has two vertices at the same level that form an edge in G.

- When the BBFS algorithm visits an edge, we know the level of both of its endpoints.
- So when that edge is visited, if both ends have the same level, then STOP! G is not bipartite.
- If the algorithm never discovers such an edge, G is bipartite.
- This modified BFS still runs in $O(n + m)$ time.
- G not connected? Run on each component: $O(|V| + E)$ time
- Moreover, if G is not bipartite, we can produce an odd circuit in G as proof [Admire the awesomeness!]

Principle: Prefer algorithms that provide certificate of correctness!
DFS: An Example

Two types of vertex: unvisited, visited. Green is just for emphasis!
DFS: An Example

Two types of vertex: *unvisited, visited*. *Green* is just for emphasis!
DFS: An Example

Two types of vertex: unvisited, visited. Green is just for emphasis!
DFS: An Example

Two types of vertex: unvisited, visited. Green is just for emphasis!
DFS: An Example

Two types of vertex: unvisited, visited. Green is just for emphasis!
DFS: An Example

Two types of vertex: unvisited, visited. Green is just for emphasis!
DFS: An Example

Two types of vertex: unvisited, visited. Green is just for emphasis!
DFS: An Example

Two types of vertex: unvisited, visited. Green is just for emphasis!
Recursive Depth-First Search

Algorithm 4 Depth-First Search of G from vertex r

Require: all vertices are *unvisited*; $T = \{r\}$ is a 1-vertex tree

procedure DFS(G, r, T) \quad $\triangledown G = (V, E)$

Mark r as *visited*

for all neighbors v of r do

if v is unvisited then

Add $\{r, v\}$ to T

DFS(G, v, T)

end if

end for

end procedure

Ensure: T is a spanning tree for the component of G containing r
Properties of DFS
Properties of DFS

- When algorithm terminates, T forms a spanning tree of the component of G containing r.
Properties of DFS

- When algorithm terminates, T forms a spanning tree of the component of G containing r.
- T is a tree because (i) it is connected and (ii) it has one more vertex than edge (see theorem from text)
Properties of DFS

- When algorithm terminates, T forms a spanning tree of the component of G containing r.
 - T is a tree because (i) it is connected and (ii) it has one more vertex than edge (see theorem from text)
 - T contains every vertex reachable from r
Properties of DFS

- When algorithm terminates, T forms a spanning tree of the component of G containing r.
 - T is a tree because (i) it is connected and (ii) it has one more vertex than edge (see theorem from text)
 - T contains every vertex reachable from r
 - Induction on distance of reachable vertex from r
Properties of DFS

- When algorithm terminates, T forms a spanning tree of the component of G containing r.
 - T is a tree because (i) it is connected and (ii) it has one more vertex than edge (see theorem from text)
 - T contains every vertex reachable from r
 - Induction on distance of reachable vertex from r
 - If v is visited, so are its neighbors
Properties of DFS

• When algorithm terminates, T forms a spanning tree of the component of G containing r.
 • T is a tree because (i) it is connected and (ii) it has one more vertex than edge (see theorem from text)
 • T contains every vertex reachable from r
 • Induction on distance of reachable vertex from r
 • If v is visited, so are its neighbors
• Now consider T as a rooted tree with root r
Properties of DFS

- When algorithm terminates, T forms a spanning tree of the component of G containing r.
 - T is a tree because (i) it is connected and (ii) it has one more vertex than edge (see theorem from text)
 - T contains every vertex reachable from r
 - Induction on distance of reachable vertex from r
 - If v is visited, so are its neighbors
- Now consider T as a rooted tree with root r
 - Every vertex visited during a call to $DFS(G, v)$ is a descendent of v in T
Properties of DFS

- When algorithm terminates, T forms a spanning tree of the component of G containing r.
 - T is a tree because (i) it is connected and (ii) it has one more vertex than edge (see theorem from text)
 - T contains every vertex reachable from r
 - Induction on distance of reachable vertex from r
 - If v is visited, so are its neighbors
- Now consider T as a rooted tree with root r
 - Every vertex visited during a call to $DFS(G, v)$ is a descendent of v in T
 - We consider any vertex to be (trivially) a descendent of itself
Properties of DFS

- When algorithm terminates, \(T \) forms a spanning tree of the component of \(G \) containing \(r \).
 - \(T \) is a tree because (i) it is connected and (ii) it has one more vertex than edge (see theorem from text)
 - \(T \) contains every vertex reachable from \(r \)
 - Induction on distance of reachable vertex from \(r \)
 - If \(v \) is visited, so are its neighbors
- Now consider \(T \) as a rooted tree with root \(r \)
 - Every vertex visited during a call to \(DFS(G, v) \) is a descendent of \(v \) in \(T \)
 - We consider any vertex to be (trivially) a descendent of itself
 - For every edge \(e = \{u, v\} \) in \(G \), one of \(u \) or \(v \) is an ancestor of the other in \(T \).
The proof

For every edge $e = \{u, v\}$ in G, one of u or v is an ancestor of the other in T.

Proof.
The proof

For every edge $e = \{u, v\}$ in G, one of u or v is an ancestor of the other in T.

Proof.

• Clear if e is in T, so assume not.
The proof

For every edge $e = \{u, v\}$ in G, one of u or v is an ancestor of the other in T.

Proof.

- Clear if e is in T, so assume not.
- Assume DFS is called on u before v. When the For loop inspected v, v must have been already visited.
The proof

For every edge $e = \{u, v\}$ in G, one of u or v is an ancestor of the other in T.

Proof.

- Clear if e is in T, so assume not.
- Assume DFS is called on u before v. When the For loop inspected v, v must have been already visited.
 - Or else v becomes a descendent of u
The proof

For every edge $e = \{u, v\}$ in G, one of u or v is an ancestor of the other in T.

Proof.

• Clear if e is in T, so assume not.
• Assume DFS is called on u before v. When the For loop inspected v, v must have been already visited.
 • Or else v becomes a descendent of u
• But v wasn’t visited when DFS was called on u.
The proof

For every edge \(e = \{u, v\} \) in \(G \), one of \(u \) or \(v \) is an ancestor of the other in \(T \).

Proof.

- Clear if \(e \) is in \(T \), so assume not.
- Assume DFS is called on \(u \) before \(v \). When the For loop inspected \(v \), \(v \) must have been already visited.
 - Or else \(v \) becomes a descendent of \(u \)
- But \(v \) wasn’t visited when DFS was called on \(u \).
- Thus \(v \) was visited during the call \(DFS(G, u) \) and so it’s a descendent of \(u \).
Definition

An directed graph $G = (V, E)$ consists of two sets
Directed Graphs

Definition

An *directed graph* $G = (V, E)$ consists of two sets

- A set V called the *vertices* of G
Directed Graphs

Definition

An *directed graph* $G = (V, E)$ consists of two sets

- A set V called the *vertices* of G
- A set E of ordered pairs of *distinct* vertices of V called the *edges* of G
Directed Graphs

Definition

An directed graph $G = (V, E)$ consists of two sets

- A set V called the vertices of G
- A set E of ordered pairs of distinct vertices of V called the edges of G

Note: No loops or multiple edges. Why?
Directed Graphs

Definition

An directed graph $G = (V, E)$ consists of two sets

- A set V called the vertices of G
- A set E of ordered pairs of distinct vertices of V called the edges of G

Note: No loops or multiple edges. Why?

Properties of undirected graphs have counterparts in directed graphs, with some differences.
Directed Graphs

Definition
An directed graph $G = (V, E)$ consists of two sets
- A set V called the vertices of G
- A set E of ordered pairs of distinct vertices of V called the edges of G

Note: No loops or multiple edges. Why?

Properties of undirected graphs have counterparts in directed graphs, with some differences.
Example: A directed walk in G is a sequence $P = u = v_0, e_0, v_1, \ldots, e_n, v_n = v$ in which each $e_i = (v_{i-1}, v_i)$
Directed Graphs

Definition

An directed graph $G = (V, E)$ consists of two sets

- A set V called the vertices of G
- A set E of ordered pairs of distinct vertices of V called the edges of G

Note: No loops or multiple edges. Why?

Properties of undirected graphs have counterparts in directed graphs, with some differences.

Example: A directed walk in G is a sequence $P = u = v_0, e_0, v_1, \ldots, e_n, v_n = v$ in which each $e_i = (v_{i-1}, v_i)$

Now v is reachable from u if there is a directed path from u to v
Reachability in Directed Graphs: An Example
Reachability in Directed Graphs: An Example

BFS and DFS both work on directed graphs
Reachability in Directed Graphs: An Example

BFS and DFS both work on directed graphs
Both visit exactly the nodes reachable from the start vertex
Reachability in Directed Graphs: An Example

BFS and DFS both work on directed graphs
Both visit exactly the nodes reachable from the start vertex
Reachability in Directed Graphs: An Example

BFS and DFS both work on directed graphs
Both visit exactly the nodes reachable from the start vertex