Measuring Complexity
Announcements

Problem Set 0

• Start now!
• Compile the SolutionTemplate.tex file
• Log into your CS unix account and run
 • ssh bull.cs.williams.edu
• Problems: See Mary Bailey in TCL 312
• TA Hours are in TPL 205
• Each solution is a separate file: E.G.: W1234567PS0P1.tex

Oh, and: non-crossing diagonals!
Measuring Complexity

• What constitutes an efficient algorithm?
 • Runs quickly on large, ‘real’ instances of problems
 • Qualitatively better than brute force
 • Scales well to large instances
Measuring Complexity: Brute Force

- Efficient: Qualitatively better than brute force
- Brute force: often exponentially large because
 - Might examine all subsets of a set: 2^n
 - Might examine all orderings of a list: $n!$
- But 2^n is still not efficient even though it’s qualitatively better than $n!$
Measuring Complexity: Scalability

- Defining Scalability
 - Doubling problem size increases resource use by a constant factor

- Examples
 - \(n^k : (2n)^k = 2^k n^k \) for any fixed \(k \)
 - \(\log n : \log 2n = \log 2 + \log n \leq c \log n \) (\(n \geq 2 \))

- But not
 - \(2^n : 2^{2n} = 2^n \cdot 2^n \)
 - \(n! : (2n)! \geq n^n \cdot n! \)
Functions that exhibit scalability can be bounded above by some polynomial function

This leads us to define an efficient algorithm as one having running time bounded above by a polynomial function

But how do we measure running time?
Worst Case Runtime

• Worst-case running time: the maximum number of steps needed to solve a problem instance of size n

 • Overestimates the typical run time

 • Can frequently be determined by algorithm analysis

 • Typically captures the runtime in practice
Average Case Runtime

- Average Case Runtime: The mean number of operations needed across all instances of size n
 - A much more nuanced, realistic measure
 - Very difficult to determine in practice
 - Are all instances equally likely?
 - If not, can we specify the probability distribution?
Growth of Functions

<table>
<thead>
<tr>
<th>n</th>
<th>n</th>
<th>$n \log_2 n$</th>
<th>n^2</th>
<th>n^3</th>
<th>1.5^n</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 10$</td>
<td>< 1 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>$n = 30$</td>
<td>< 1 sec</td>
<td>18 min</td>
<td>10^{25} years</td>
</tr>
<tr>
<td>$n = 50$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>11 min</td>
<td>36 years</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 100$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>12,892 years</td>
<td>10^{17} years</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 1,000$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>18 min</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 10,000$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 100,000$</td>
<td>< 1 sec</td>
<td>2 sec</td>
<td>3 hours</td>
<td>32 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 1,000,000$</td>
<td>1 sec</td>
<td>20 sec</td>
<td>12 days</td>
<td>31,710 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
</tbody>
</table>

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.
Asymptotic Order of Growth

What matters: How functions behave “as n gets large”
Asymptotic Upper Bounds

Def’n: $g(n)$ is eventually bounded above by $f(n)$ if for all sufficiently large n, $g(n) \leq f(n)$

Def’n: $O(f(n)) = \{g(n) : \text{for some constant } c > 0, g(n) \text{ is eventually bounded above by } c f(n)\}$

Examples

- $100 n^2 \in O(n^3) : 100 n^2 \leq c n^3$ for $c = 100$ and $n \geq 1$
- $3n \in O(n \log_2 n) : 3n \leq c n \log_2 n$ for $c = 1$ and $n \geq 8$
More Challenging Examples

• \(\log_2(\log_2(n)) \in O(\log_2(n)) \)

• Fact: For \(1 < a < b \), \(o < \log(a) < \log(b) \)

• For \(n > 2 \), \(1 < \log_2(n) < n \), so \(o < \log_2(\log_2(n)) < \log_2(n) \)

• \(3n^4 - n^3 + 10n^2 - 4n + 5 \in O(n^5) \)

• Yikes! We need some tools....
A Tool

Def’n: A function $f : \mathbb{N} \to \mathbb{R}$ is *eventually positive* if $f(n) > 0$ for all sufficiently large $n \in \mathbb{N}$

Thm: If $f(n)$ and $g(n)$ are eventually positive functions such that the limit, as $n \to \infty$, of $f(n)/g(n)$ equals 0, then $f(n) \in O(g(n))$

- Let $c > 0$. For all sufficiently large n, $f(n)/g(n) < c$
- So $f(n) < c \cdot g(n)$ (since $g(n)$ is positive for sufficiently large n)

Example: $3n^4 - n^3 + 10n^2 - 4n + 5 \in O(n^5)$

- $(3n^4 - n^3 + 10n^2 - 4n + 5)/n^5 = 3/n - 1/n^2 + 10/n^3 - 4/n^4 + 5/n^5$
- $3/n - 1/n^2 + 10/n^3 - 4/n^4 + 5/n^5 \to 0$ as $n \to \infty$
A (Much) Better Tool

Thm: L’Hôpital’s Rule If

• \(\lim_{n \to \infty} f(n) = \lim_{n \to \infty} g(n) = \infty \)

• \(\lim_{n \to \infty} \frac{f'(n)}{g'(n)} \) exists

then \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)} \)

Example: \(\log n \in O(n) \): Here \(f(n) = \log n \) and \(g(n) = n \)

• \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\log n}{n} = \lim_{n \to \infty} \frac{\ln n / \ln 2}{n} \)

• \(\lim_{n \to \infty} \frac{f'(n)}{g'(n)} = \lim_{n \to \infty} \frac{1/(n \ln 2)}{1} = 0 \)
Speaking of logs...

Def’n: For any \(b > 1\), \(\log_b n\) is the number \(x\) such that \(b^x = n\).

Facts

- For every \(b > 1\) and \(\varepsilon > 0\), \(\log_b n \in O(n^\varepsilon)\) (logs grow slowly!)
 - Because as \(n \to \infty\), \((\log_b n)/n^\varepsilon \to 0\) (by L’Hôpital’s Rule)
- \(\log_a n = \log_b n / \log_b a\)
 - Example: \(\log_2 n = \log_{10} n / \log_2 10 \approx 0.3 \log_{10} n\)
Fact

- For every $r > 1$ and $d > 0$, $n^d \in O(r^n)$ (exponentials grow fast)
 - Because as $n \to \infty$, $n^d/r^n \to o$ (by L’Hôpital’s Rule)
 - Restated: Every exponential function grows faster than every power of n (in fact, faster than every polynomial)
Asymptotic Lower Bounds

Def’n: \(g(n) \) is eventually bounded below by \(f(n) \) if for all sufficiently large \(n \), \(f(n) \leq g(n) \)

Def’n: \(\Omega(f(n)) = \{ g(n) : \text{for some constant } c > 0, \text{ g(n) is eventually bounded below by } c f(n) \} \)

Examples

- \(100 \ n^3 \in \Omega(n^2) : c \ n^2 \leq 100 \ n^3 \text{ for } c = 1 \text{ and } n \geq 1 \)

- \(n \log_2 n \in \Omega(n) : c \ n \leq n \log_2 n \text{ for } c = 1 \text{ and } n \geq 2 \)
Why Lower Bounds?

Show that an algorithm performs at least so many steps

- Searching an unordered list of n items takes $\Omega(n)$ steps in the worst case
- Quicksort (and selection/insertion/bubble sorts) take $\Omega(n^2)$ steps in the worst case
- Mergesort takes $\Omega(n \log(n))$ steps in the worst case
Another Tool

Thm: Let $f(n)$ and $g(n)$ be eventually positive functions such that the limit, as $n \to \infty$, of $f(n)/g(n)$ also $\to \infty$, then $f(n) \in \Omega(g(n))$

Example: $5n^3 + n^2 - 10 \in \Omega(n \log_2 n)$

- $(5n^3 + n^2 - 10)/n \log_2 n = 5n^2/\log_2 n - n/\log_2 n - 10/n \log_2 n$
- $(5n - 1) \, n/\log_2 n - 10/n \log_2 n \to \infty$ as $n \to \infty$
Asymptotically Tight Bounds

Def’n: \(\Theta(f(n)) = O(f(n)) \cap \Omega(f(n)) \)

That is: \(\Theta(f(n)) = \{ g(n) : g(n) \in O(f(n)) \text{ and } g(n) \in \Omega(f(n)) \} \)

If \(g(n) \in \Theta(f(n)) \), then \(f \) is an asymptotically tight bound on \(g \)

Example

- \(n^3 - 4n^2 + 2 \in \Theta(n^3) \)
 - \(n^3 - 4n^2 + 2 \in O(n^3) : n^3 - 4n^2 + 2 \leq cn^3 \text{ for } n \geq 1 \text{ & } c=1 \)
 - \(n^3 - 4n^2 + 2 \in \Omega(n^3) : c'n^3 \leq n^3 - 4n^2 + 2 \text{ for } n \geq 8 \text{ & } c' = 1/2 \)
Yet Another Tool

Thm: Let $f(n)$ and $g(n)$ be eventually positive functions such that the limit as $n \to \infty$ of $f(n)/g(n) \to c > 0$, then $f(n) \in \Theta(g(n))$

Example: $5n^3 + n^2 - 10 \in \Theta(n^3)$

- $(5n^3 + n^2 - 10)/n^3 = 5 + 1/n - 10/n^3$

- $5 + 1/n - 10/n^3 \to 5$ as $n \to \infty$

Cor: $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n + a_0 \in \Theta(n^k)$ if $a_k > 0$
And a Few More

Thm: Let f, g, and h be eventually positive functions

Transitivity of O, Ω, and Θ

If $f \in O(g)$ and $g \in O(h)$, then $f \in O(h)$ (same for Ω, Θ)

Sum Rule

If $f \in O(h)$ and $g \in O(h)$, then $f + g \in O(h)$ (same for Ω, Θ)

Careful: This assumes that f and g are eventually positive!
In the Wild

Sample Usage: Quicksorting an n-element array

• Thm: The number of operations performed is $O(n^2)$

• Thm: The average number of operations performed is $O(n \log (n))$

• Thm: Quicksort will always execute $\Omega(n \log(n))$ steps

Sample Usage: Basic Bubblesort runs in time $\Theta(n^2)$
\(\Theta(f) \) and Operation Count

Which operations should count when analyzing run time?

- All of them?

 - Can be difficult and/or tedious

- Better: A *representative sample*

 - If the algorithm performs \(f(n) \) operations, it suffices to count \(g(n) \) of them, where \(g(n) \in \Theta(f(n)) \)