Divide & Conquer

Observation 1. Often a problem \(P \) of size \(n \) can be solved by dividing it into several small problems of the same type and appropriately combining their solutions to solve the original problem.

These algorithms all have similar form

Pre-work (Divide): Transform problem \(P \) of size \(n \) into problems \(P_1, \ldots, P_a \) of sizes \(n_1, \ldots, n_a \) (each \(n_i < n \))

Work: Solve each of \(P_1, \ldots, P_a \)

Post-work (Conquer): Appropriately combine solutions of \(P_1, \ldots, P_a \) to construct solution of \(P \)

This structure suggests estimating the worst-case run time \(T(n) \) for a problem of size \(n \) by

\[
T(n) \leq \text{time to solve sub-problems} + \text{time to do pre- and post-work}
\]

\[
T(n) \leq \sum_{i=1}^{a} T(n_i) + f(n)
\]

Frequently all of the \(n_i \) are the same, say size \(n/b \), yielding

\[
T(n) \leq aT(n/b) + f(n)
\]

Last time we saw several examples

- **Huffman Encoding** \(T(n) \leq T(n-1) + c \log n \)
- **Selection Sort** \(T(n) \leq T(n-1) + cn \)
- **Merge Sort** \(T(n) \leq 2T(n/2) + cn \)
- **Binary Search** \(T(n) \leq T(n/2) + c \)
- **n-Digit Number Multiplication** \(T(n) \leq 4T(n/2) + cn \)

Solving Recurrences

All of the recurrences presented have one of the two forms

- \(T(n) \leq T(n-a) + f(n) \), where \(a \in \mathbb{N} \), or
- \(T(n) \leq aT(n^b) + f(n) \), where \(a, b \in \mathbb{N} \). [In fact, \(b = 2 \) in all of our examples so far.]

Thinking about Recurrence Relations: The Work Tree

Consider the Merge Sort recurrence \(T(n) \leq cn + 2T(n/2) \).

If we drew a tree of all of the calls to MergeSort, we might be able to count operations.

- **Level 0:** Initial call: at most \(cn \) steps to merge two sorted lists of length \(n/2 \) plus
- **Level 1:** at most \(c(n/2) + c(n/2) \) steps to merge 2 pairs of sorted lists of size \(n/4 \)
- **Level 2:** at most \(4cn/4 \) steps to merge 4 pairs of sorted lists of size \(n/8 \)
Level $(\log n) - 1$: at most $n/2c2$ steps to merge $n/2$ pairs of sorted lists of size 2.

The total amount of work at each level is cn and there are $\log n$ levels, giving $O(n \log n)$ steps in total.

We can rephrase the total amount of work as

$$T(n) \leq \sum_{i=0}^{k} \left(\text{number of recursive calls at level } i \right) \times \left(\text{number of steps performed} \right)$$

If we are splitting into a problems of size n/b at each recursive call and performing $f(n)$ steps of pre- and post-work with every call, we get

$$T(n) \leq \sum_{i=0}^{\log_b n} a^i \times f(n/b^i)$$

The behavior of this sum clearly depends upon the relation among a, b, and $f()$.

The Master Theorem

Theorem 1. If $T(n) \leq aT([n/b]) + O(n^d)$ for some positive constants a, b, d then

$$T(n) = \begin{cases}
O(n^d) & (a < b^d) \\
O(n^d \log n) & (a = b^d) \\
O(n^{\log_b a}) & (a > b^d)
\end{cases}$$

In fact:

$$T(n) = \begin{cases}
\Theta(n^d) & (a < b^d) \\
\Theta(n^d \log n) & (a = b^d) \\
\Theta(n^{\log_b a}) & (a > b^d)
\end{cases}$$

Proof. We will assume that n is a power of b. This does not influence the final bound and it allows us to ignore the ceiling. Imagine that we draw a tree expressing where the work is getting done.

Note: $a^{\log_b n} = n^{\log_b a}$.

- The size of the subproblems decrease by a factor of b with each level of the recursion, so the tree has height $\log_b(n)$.
- A node in the tree does $O((n/b^k)^d)$ work at level k.
- There are a^k nodes at level k, so the total work done at level k is $a^k \times O\left(\left(\frac{n}{b^k}\right)^d\right) = O(n^d) \times \left(\frac{a}{b^d}\right)^k$
- As k goes from 0 to $\log_b(n)$, the amount of work forms a geometric series with the ratio $\frac{a}{b^d}$.
- $T(n) \leq \sum_{i=0}^{\log_b n} a^i \times c(n/b^i)^d = cn^d \sum_{i=0}^{\log_b n} \frac{a^i}{(b^i)^d} = cn^d \sum_{i=0}^{\log_b n} (\frac{a}{b^d})^i = cn^d((\frac{a}{b^d})^{1+\log_b n} - 1)/(\frac{a}{b^d} - 1)$
- If this ratio is smaller than 1 then the first term $O(n^d)$ dominates. If the ratio is larger than 1, then the final term $n^d \left(\frac{a}{b^d}\right)^{\log_b n} = n^d \left(\frac{a^{\log_b n}}{(b^{\log_b n})^d}\right) = O(n^{\log_b a})$ dominates. If the ratio is one, then there are $O(\log n)$ terms, each with $O(n^d)$ work. These cases correspond to the theorem.
So, we have a useful theorem! If we had tried it on \(T(n) \leq cn + 4T\left(\frac{n}{2}\right) \), we would have seen that \(a = 4, \ b = 2, \ d = 1 \) gives \(a > b^d \), so \(T(n) = O(n^{\log_2 4}) = O(n^2) \) and we could have quit at that point.

Suppose though, in our integer multiplication work, we could achieve \(T(n) \leq cn + 3T\left(\frac{n}{2}\right) \), that is, only 3 multiplications and a linear number of additions. Then we’d have \(a = 3, \ b = 2, \ d = 1 \) giving \(a > b^d \) and \(T(n) = O(n^{\log_2 3}) = O(n^{1.58}) \).

So, let’s see if we can do that!

Recall that we have two numbers \(A_1 = x_1 2^{n/2} + y_1 \) and \(A_2 = x_2 2^{n/2} + y_2 \).

So \(A_1 A_2 = (x_1 2^{n/2} + y_1)(x_2 2^{n/2} + y_2) = x_1 x_2 2^n + (x_1 y_2 + x_2 y_1) 2^{n/2} + y_1 y_2 \).

Consider \(x_1 y_2 + x_2 y_1 \).

Suppose I could replace it by an equivalent value of the form \(x_1 x_2 + y_1 y_2 - PQ \), where \(PQ \) is a single multiplication of \(n/2 \)-bit integers. Then we are only performing 3 such multiplication!

What would \(PQ \) be? Well \(PQ = x_1 y_2 + x_2 y_1 - x_1 x_2 - y_1 y_2 \). But \(x_1 y_2 + x_2 y_1 - x_1 x_2 - y_1 y_2 = (x_1 - y_1)(y_2 - x_2) \).

So, let \(P = x_1 - y_1 \) and \(Q = y_2 - x_2 \), then \(A_1 A_2 = x_1 x_2 2^n + PQ 2^{n/2} + y_1 y_2 \), requiring only three multiplications of \(n/2 \)-bit integers and \(O(n) \) steps of additional work to construct \(A_1 A_2 \) from these three components.

But this algorithm isn’t the end of the story on multiplying large integers....

Theorem 2 (Karatsuba 1962). *Any two \(n \)-bit integers can be multiplied in time \(O(n^{1.58}) \).*

Theorem 3 (Schnhage and Strassen 1971). *Any two \(n \)-bit integers can be multiplied in time \(O(n \log n \log \log n) \).*

More recently

Theorem 4 (Furer 2007). *Any two \(n \)-bit integers can be multiplied in time \(O(n \log n) 2^{O(\log^* n)} \).*

And, in late-breaking news

Theorem 5 (Harvey and van der Hoeven 2018). *Any two \(n \)-bit integers can be multiplied in time \(O(n \log n) 2^{2\log^* n} \).*

Matrix Multiplication

INPUT: Two \(n \times n \) matrices \(X \) and \(Y \) with real-valued entries.

OUTPUT: \(Z = X \times Y \)

Recall the standard matrix multiplication definition:

\[
Z_{ij} = \sum_{k=1}^{n} X_{ik} Y_{kj}
\]

A few notes:

- The definition gives a natural \(O(n^3) \) algorithm.
- \(\Omega(n^2) \) lower bound is natural because the size of the output is \(\Theta(n^2) \).
- A widely held belief was that \(\Theta(n^3) \) was the right complexity for matrix multiplication until Strassan “shocked the computing world.”
Strassan’s Amazing Algorithm

We break up the \(n \times n \) matrices into 4 blocks of \(n/2 \). You can assume here that \(n \) is always a power of 2.

\[
X = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \quad Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix}
\]

Now the product \(X \) and \(Y \) can be written in terms of the \(n/2 \) blocks:

\[
Z = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}
\]

Let’s write down the running time of this algorithm with a recurrence relation. Let \(T(n) \) be the number of scalar multiplications performed on two \(n \times n \) matrices. Then we can write \(T(n) \) as

\[
T(n) = 8T(n/2) + O(n^2)
\]

Where the first term corresponds to the 8 matrix multiplications we perform and the final term corresponds to the matrix additions. Using the master method, this yields an \(O(n^3) \)-time solution. Note that \(a = 8, b = 2 \) and \(d = 2 \) which means that \(a/b^d = 2 \) and \(n^\log_{b^d} a = n^3 \). However, we can pull a trick similar to integer multiplication:

\[
\begin{align*}
P_1 &= A(F - H) \\
P_2 &= (A + B)H \\
P_3 &= (C + D)E \\
P_4 &= D(G - E) \\
P_5 &= (A + D)(E + H) \\
P_6 &= (B - D)(G + H) \\
P_7 &= (A - C)(E + F)
\end{align*}
\]

Now we can write \(Z \) as

\[
Z = X \times Y = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_3 - P_5 - P_7 \end{bmatrix}
\]

Now we are only performing 7 matrix multiplications, each of size \(n/2 \) so we have:

\[
T(n) = 7T(n/2) + O(n^2) = n^{\log_2 7} \equiv O(n^{2.81})
\]

Some notes:

- Until very recently, the best current algorithm, which is due to Coppersmith and Winograd, yields \(O(n^{2.376}) \). Stothers and Williams recently improved this slightly.
- Strassan’s algorithm has poor numerical properties, so it is often not used.
- Also, the constant factor is much higher for Strassan’s algorithm due to the increased number of additions. Thus, it is typically only reasonable to use this on matrices with dimension \(n > 100 \).