Reminders

- Shortest Paths with Negative Edge Costs

Negative Edge Costs

- Allowing negative edge costs in Dijkstra’s algorithm can yield incorrect result. DO EXAMPLE
- Attempts to massage data (add large value to every edge) don’t help. DO EXAMPLE

Worse, a directed graph might have negative cost cycles, suggesting there is no shortest path!

Why might we care?

- Vertices could represent one’s position in the stock market, with edges representing possible trades, and edge weights a profit or loss.
- Vertices could represent state of a chemical system, with edges being reaction pathways and edge weights representing energy loss or gain.

Dynamic Programming To the Rescue

We’ll describe an algorithm, the Bellman-Ford Algorithm, that can compute shortest paths even with negative edge costs as long as there are no negative cost cycles.

Finding a good quantity to optimize takes a little work, but the idea is pretty reasonable once you see it.

We’ll let $opt(i, v)$ represent the optimal (minimum) cost of a path from v to t that uses at most i edges.

- Clearly $opt(i, t) = 0$ and $opt(0, v) = -\infty$ if $v \neq t$.
- And clearly $opt(1, v) = c(v, t)$ if $(v, t) \in E$ and $-\infty$ otherwise.

Now let P be a minimum-cost path from v to t using at most i edges.

- If P has length less than i, then $opt(i, v) = opt(i - 1, v)$.
- Otherwise, P consists of some edge (v, u) and a path of length $i - 1$ from u to t, so

$$opt(i, v) = c(v, u) + opt(i - 1, u).$$

- Therefore,

$$opt(i, v) = \min_{(v, u) \in E} \{opt(i - 1, v), c(v, u) + opt(i - 1, u)\}$$

How big does i need to get before we can be sure $opt(i, s)$ is the cost of a minimum-cost path from s to t?

Well, since there are no negative cycles, there is a shortest path with no more than n vertices, so $i \leq n - 1$.

proof A path of length greater than n contains a cycle and the cycle has length at least 0. Removing it gives a path at least as short.
Complexity Analysis

Time Complexity

- The table is of size \(n^2 \).
- It appears as if it could take \(O(n^3) \) time to construct, since a vertex \(v \) of large degree may have \(O(n) \) neighbors.
- Let’s be more careful:
 - Computing \(\text{opt}[i,v] \) requires looking at each neighbor of \(v \), so it requires, \(\text{outDegree}(v) \) table accesses of \(\text{opt}[\cdot] \).
 - So, for each \(i \), filling in row \(i \) requires \(\sum_{v \in V \setminus \{i\}} \text{outDegree}(v) \) accesses.
 - This sum is at most \(m \), since each edge is used at most once.
 - Since there are \(n \) rows to the table, we get a more accurate \(O(mn) \) running time.

Space Complexity

- The \(i \)th row of \(\text{opt}[\cdot] \) depends only on the previous row, so we could use an array \(\text{opt}[v] \) which begins by holding row 1 and then uses those values (and a second temporary array \(\text{next} \)) to compute the next row from the current row.
- This gives \(O(n) \) space complexity beyond the storing of the graph.
- Add an array \(\text{next}(v) \) which holds the next vertex after \(v \) on the current shortest path from \(v \) to \(t \).
 - \(\text{next}(v) \) is initialized to \(\text{null} \) for all \(v \)
 - Whenever \(\text{opt}[i,v] \) changes, we change \(\text{next}[v] \) to hold the next vertex on the new (shorter) path from \(v \) to \(t \).
 - Let \(T \) be the graph containing all edges \((v, \text{next}(v))\). \(T \) is dynamically changing.
 - Claim: \(T \) is a tree. We show that \(T \) doesn’t contain cycles and that \(|V(T)| - 1 = |E(T)| \).
 * First, show \(|V(T)| - 1 = |E(T)| \).
 * Well, \(T \) begins by containing \(\{t\} \) and no edges, so the condition holds.
 * Consider a point at which \(\text{opt}[v] \) is being changed. Then \(\text{opt}[v] > c(v,u) + \text{opt}[u] \) for some neighbor \(u \) of \(v \). So \(u \) is in \(T \) (or else \(\text{opt}[u] = \infty \)). If \(v \) is in \(T \), then \(\text{next}[v] = w \neq \text{null} \) so we are just replacing \((v,w)\) in \(T \) with \((v,u)\), so condition still holds. If \(v \) is not in \(T \), then we are adding a new vertex and a new edge to \(T \) so condition still holds.
 * Second, show that \(T \) contains no cycles\(^1\).
 * If updating \(\text{opt}[v] \) creates a cycle in \(T \), then the cycle looks like \(v = v_0, v_1, \ldots, v_n = v \), where, for each \(i < n \), \(v_{i+1} = \text{next}[v_i] \). So, by definition of \(\text{next}[\cdot] \),
 \[
 \text{opt}[v_0] > c(v_0, v_1) + \text{opt}[v_1] \quad \text{and} \quad \text{opt}[v_i] = c(v_i, v_{i+1}) + \text{opt}[v_{i+1}], \forall i < n.
 \]
 * Thus
 \[
 \text{opt}[v_0] > \left(\sum_{i=0}^{n-1} c(v_i, v_{i+1}) \right) + \text{opt}[v_n] = \left(\sum_{i=0}^{n-1} c(v_i, v_{i+1}) \right) + \text{opt}[v_0]
 \]
 since \(v_0 = v_n \). But this is a negative weight cycle!

\(^1\)Instead, and more easily, one could show that \(T \) is connected. That fact along with \(|V(T)| - 1 = |E(T)| \) imply that the edges of \(T \) form a tree.