Interactions between Application Write Performance and Compilation Techniques:
A Preliminary View

Margaret Martonosi
Dept. of Electrical Eng.
Princeton University

Princeton, NJ 08544

Abstract

Although write buffers are included in nearly every
current microprocessor architecture, little research has
focused on understanding how their design interacts
with common application memory referencing char-
acteristics. This paper describes a preliminary view
of the interactions between application write behavior
and write buffer performance for two case study ap-
plications. We find that compiler optimizations have
a larger relative impact on program performance after
a write buffer is introduced into the system. Further-
more, our more detailed views of application behavior
show that a sizable component of write-buffer-related
stalls are due to procedure call and return sequences in
these codes. Overall, this study’s preliminary results
motivate further study into how compiler techniques
can minimize buffer stalls, particularly at procedure
boundaries, in order to improve overall application
performance.

1 Introduction

As processor speeds have increased faster than
memory speeds, a number of tactics have been em-
ployed to help hide the processor-memory perfor-
mance gap. For example, write buffers have been in-
corporated into the memory hierarchy of most mod-
ern processors. Write buffers have two primary goals:
to reduce the program latency incurred on memory
references and to reduce the traffic that continues on
to subsequent levels of the memory hierarchy. While
write buffers are almost universally accepted, only a
handful of studies have quantified the tradeoffs in-
volved with write buffer design choices [2, 6].

This paper looks at write behavior for two bench-
marks, and ties performance details back to the code
itself. In particular, we make a first step towards
understanding how particular compiler details, such

Kelly Shaw
Dept. of Computer Science

Duke University
Durham, NC 27708

as register allocation and procedure call sequences,
impact program write behavior and overall program
performance. We find that compiler choices, particu-
larly those regarding procedure call/return sequences,
can have a large impact on write buffer stalls. Our
preliminary observations suggest that compiler writ-
ers should give potential write buffer impact ample
attention when designing and implementing optimiza-
tions.

2 The Basics of Write Policies and
Write Buffer Design

Before we describe our evaluations, we will first give
a brief discussion of the design parameters we have
explored in this paper. Since we are interested in ap-
plication write behavior, the cache’s write miss policy
is relevant. Jouppi has given an overview of different
write miss policy combinations in [4]. In particular,
there are three main decisions to be made, and these
are somewhat (but not entirely) orthogonal to each
other. First, we choose whether or not to allocate
a cache line when a write miss occurs. Second, we
choose whether to fetch the entire cache line when a
write miss occurs. Third, we choose whether to al-
low a write-before-hit optimization. Different com-
binations of these three choices lead to four differ-
ent write miss policies: fetch-on-write, write-validate,
write-invalidate, or write-around.

Fetch-on-write (FOW) means that on a write we
fetch the entire cache line corresponding to the ad-
dress of the write into the cache. In write-validate
(WYV), the system allocates a spot in the cache for the
accessed line, but does not fetch the line from memory.
It writes only the changed data to the cache line, and
uses sub-block valid bits to indicate that only part of
the cache line is currently valid. In the write-invalidate
policy (WI), we also do not fetch the accessed line. In
this policy, the system does a write to the correspond-

ing cache line while simultaneously checking to see if
the write is a cache hit or a cache miss. If the write
is a cache hit, then the simultaneous write was legal.
Otherwise, the cache line must be invalidated because
we have just written to a cache line that is not related
to the current write. In write-around (WA), we write
directly out to the remaining memory hierarchy and
do not write anything to the cache or evict any current
cache lines.

Data that is written to a cache is also written to the
write buffer. That data is held in the write buffer until
it is written to the next level of the memory hierarchy.
If another write occurs to data that is currently in the
write buffer, this new information alters the data in
the write buffer and results in only one write being
sent to the next level of the memory hierarchy. This
is called a coalescing hit. One complication with a
write buffer is that it could fill up. This would force
a “buffer full stall”, in which any further writes are
stalled until a slot in the buffer has been emptied.
A second complication is that a load may occur at a
point when the requested data is in the write buffer.
In this case, we assume that the load is stalled until
the write buffer has been flushed (load service stall).
Thus there are tradeoffs between (a) keeping data in
the write buffer longer to allow more coalescing hits
versus (b) sending data quickly to the next level in
order to minimize load service and buffer full stalls.
These tradeoffs are affected by the “high water mark”,
which indicates how many entries the write buffer will
contain before we begin to retire items from it. We
consider different “high water marks” in this study.

3 Methodology

3.1 Simulation Platform

In order to examine the effects of different program,
compiler, and architecture interactions, we have a con-
structed a memory system simulator using MINT [7].
MINT is a software package that provides an inter-
face between programs (both sequential and parallel)
and event-driven memory hierarchy simulators. MINT
uses a mixture of direct execution techniques and soft-
ware emulation to minimize the simulation overhead.
In this study, we primarily focus on sequential applica-
tion behavior, although our simulator and experiments
could be extended to parallel execution in the future.

3.2 Architectural Parameters

Our simulator focuses on the data cache and write
buffer effects of sequential programs. We assume ideal
instruction cache behavior, and simulate only the data
cache. The capacity and line size of this cache are
parameterized, but by default are set to 8KB and 32
bytes respectively.

We have implemented a simulator which allows for
all logical combinations of write-through vs. write-
back caches with the four possible write miss policies.
Our default cache is write-through and its write-miss
policy is fetch-on-write.

Finally, our simulator allows different choices re-
garding the write buffer design and policies as well.
The main architectural choices regarding the write
buffer include its depth (number of entries) and width
(size of each entry). Our default write buffer has 8
entries, each of which is a cache line wide.

The write buffer stalls either when it is full or when
a load requests data currently in the write buffer. For
this reason, there are policy decisions to be made in-
cluding when to retire write buffer entries and how to
service loads that request data currently in the write
buffer. Our write buffer retirement policy is based
upon the number of entries in it; when the number of
entries in the write buffer is greater than or equal to
the high water mark, the write buffer schedules the
oldest entry to be written out to the next level of the
memory hierarchy. The high water mark can be varied
from one to the number of entries in the write buffer.
Our load service policy is a simple one; we require the
load to wait until the entire write buffer is flushed.
Future work could examine the impact of other load
service policies on performance and compiler interac-
tions.

3.3 Applications Studied

Our study focuses on the memory behavior of two
programs. The first of these is a sequential imple-
mentation of the Travelling Salesman Problem (TSP)
from the Olden benchmark suite [1]. This implementa-
tion creates a binary tree to represent possible paths,
and then uses a modified version of Karp’s divide-and-
conquer algorithm [5] to find a solution. The applica-
tion has three main stages: tree-building, list-making,
and conquer.

The second benchmark, xlisp, is a lisp interpreter
solving the n-queens problem, and is one of the
SPEC92 benchmarks [3]. The standard SPEC input is
for solving the nine-queens problem. We have exam-

ined both the eight-queens and nine-queens problem
sizes.

4 Application Memory Performance:
An Overview

The main goal of this paper is
application-specific performance details that note the
interactions between compiler characteristics and ar-
chitectural decisions. Before we present results at that
detail, however, we will first give an overview of the
general cache and write buffer behavior of the appli-
cations being studied.

Figure 1 gives an overview of the application over-
all performance. This graph shows data from the
two applications, xlisp and tsp. For each application,
the graph shows execution times for the four different
write miss policies considered. Normalization is used
so that the two applications, with their very different
runtimes, can be shown on the same graph. The exe-
cution times are normalized to that for the fetch-on-
write policy in both cases (These base times are 644
million simulation cycles for TSP and 37,500 million
simulation cycles for xlisp.)

to present

100 @ -

38

S i

5‘ 80] m Fetch-on-write
g 60 O Write-invalidate
N 1 @ Write-validate
g 40 m Write-around

z 1k i

xlisp TSP
Effect of Write Miss Policies

Figure 1: Effect of write miss policy in a system with
no write buffer.

The addition of a write buffer into the system has
a dramatic effect on the execution time. For xlisp,
adding an 8-entry, cache-line-wide write buffer into the
system reduces the execution time by roughly a factor
of three. For tsp, the reduction is slightly larger, a fac-
tor of 3.7. Figure 2 shows a similar plot as Figure 1,
except this time for a system including a write buffer
of the size just described, with a high water mark of
4. The times in this plot are renormalized, to allow
closer comparison between the different write policies.
One can see that in addition to greatly improving ap-
plication performance, write buffers also increase the

sensitivity of application performance to a particular
write policy. While the write policy makes essentially
no difference in these applications when no write buffer
is present, it can make a roughly 5% difference in the
performance of the codes once a write buffer is added.

¢ 1004 g N _
g -
O 80 7] m Fetch-on-write
B 60— O Write-invalidate
N 40 1 @ Write-validate
g 7 @ Write-around

0 - | | | |

xlisp TSP
Effect of Write Miss Policies

Figure 2: Effect of Write Miss Policy in a system with
a write buffer. The write buffer has 8 entries, each a
cache line wide, and has a high water mark of 4.

4.1 Write Buffer Parameters

Having presented some overview statistics that
demonstrate the importance of write buffers on over-
all performance and their impact on other memory-
related design choices, we now move on to other de-
sign choices that arise when considering write buffers.
This section examines the impact of different high wa-
ter marks on performance. Recall that the high water
mark determines how full a write buffer will be before
it begins to retire entries to memory.

As Figures 3 and 4 show, the number of buffer full
and load service stalls increases dramatically as the
high water mark increases. Increasing the high water
mark means that we will not be retiring data out of
the write buffer as quickly; thus, it is more likely that
we will fill the buffer. Likewise, data is staying in the
write buffer longer, so it is more likely that a load to
the cache line will occur during its stay. Thus, we also
expect more load service stalls.

Although increasing the high water mark increases
the likelihood of buffer full and load service stalls, it
also increases the likelihood that subsequent writes to
the same line will result in references being coalesced.
These coalescing hits in the write buffer can improve
program performance by reducing the number of op-
erations that continue on to subsequent levels of the
memory hierarchy. Thus, they reduce contention for
resources at those levels. As Figure 5 shows, coalesc-
ing hits in these two applications increase by about 20

¥

o

& 3000
23
55 2
9 .= 2000 a
== 04
L = 16
s > 1000 08
| U S[H

B FOW Wi WV WA

S TSP

:2)

o}
= 800
v =2 .
555.-5,600— 12
— 1
= | 04
L:'L>§ 400_ 16
g; 200 "8
S alll ol alll]
VA 110 A0 1
B FOW Wi WV WA
Q -
< Xlisp

Figure 3: Frequency of write buffer stalls as a function of high water mark. A count of write buffer stalls is shown
for each miss policy and high water mark. Each is normalized such that Fetch-on-Write with a high water mark

of 4 is 100%.

¥
o}
» 5 800
Tz 1
7B <, 600
cu'f_-—j) | 2
2 04
S £ 400
8; | 16
08
5 = 200- Hl
®©
c O -
- L O I n
B FOW Wi WV WA
S TSP

¥

o}
o T 800
T = 1
7B <, 600
cu'f_-—j) | 2
2 04
S £ 400 ‘e
(aﬁ- s i 08
< = 200 H
®©
c O -
—w 0 IHI

B FOW Wi WV WA

Q -

< Xlisp

Figure 4: Frequency of load service stalls as a function of high water mark. A count of load service stalls is shown
for each miss policy and high water mark. Each is normalized such that Fetch-on-Write with a high water mark

of 4 is 100%.

to 40% as one increases the write buffer’s high water
mark.

As the previous figures have demonstrated, the dis-
advantages of a large high water mark (write buffer
and load service stalls) trade off against its advantage
(reduced memory traffic due to coalescing hits). The
performance impact of these opposing effects also de-
pends on the overall frequency of loads and stores in
the code. As Figure 6 shows, the overall effect of high
water mark on performance is small for these appli-
cations, but not insignificant. In both applications,
the total execution time decreases as high water mark
increases until it reaches the value five for tsp and six
for xlisp. At this point, the effects of buffer full and
load service stalls begin to outweigh the benefits of co-
alescing, and execution time increases again. Overall,

different choices of high water mark lead to a 6% per-
formance range for tsp and a 15% performance range
for xlisp.

5 Write Buffer Behavior,
Compiler Optimizations and Appli-
cation Characteristics

In this section we look in more detail at case studies
that highlight compiler interaction with write behav-
ior and write buffer design.

N
I
150
100 4 B2
] 04
] 16
08

FOW W WV WA
TSP

Coalescing Hits
(% of FOW with high-water
()
|

:2)

o}
= 150—_
0n 3 -
5 0])
2 100 0
22 ™ 04
= 1 16
ﬁ = 5o
< 08
8=]
[ON©) E
LL 0 1
B FOW Wi WV WA
o
S XLISP

Figure 5: Frequency of coalescing write buffer hits as a function of high water mark. A count of coalescing hits is
shown for each miss policy and high water mark. Each is normalized such that Fetch-on-Write with a high water

mark of 4 is 100%.

@ 100y _

g .

e 80—_ g2
3 60 04
N 1 16
< 40—+ 08
E .

Z 0

FOW W WV WA
TSP

¢ 100y

g .

8 80—_ g2
3 60 04
N 1 16
o 404 08
E .

Z 9

FOW Wi WV WA

Xlisp

Figure 6: Effect of write miss policy and high water mark on overall application performance.

5.1 Compiler Optimization Levels

One initial goal of this research was to understand
whether certain compiler optimizations would lessen
the impact of write buffers, by reducing the mem-
ory operations that make write buffers important in
the first place. A converse question also arose: would
write buffers muffle the impact of compiler optimiza-
tions by making the memory operations (which might
be optimized away by some compiler techniques) less
costly in the first place? Figure 7 shows the normal-
ized execution versus optimization level for xlisp and
tsp. The left hand side graph shows the normalized
performance when no write buffer is used. The graph
on the right hand side shows performance with an 8
deep write buffer. Recall that, as in the previous sec-
tion, performance with a write buffer (RHS) is about
3X better than without a write buffer (LHS).

As the graph on the left hand side shows, execution
time in the no-write-buffer case is fairly flat. The three
optimization levels show less than a 1% difference in

performance. This is largely because the code is fairly
resistant to optimization, and the bulk of the overhead
is in memory latencies for this case. When we consider
a system with a write buffer, the picture looks some-
what different. The graph on the right hand side of
Figure 7 shows that TSP is still largely resistant to op-
timization. Xlisp, however, improves by roughly 5%
as the optimization level is increased. Most of this im-
provement comes when moving from no optimization
to the moderate optimization of -O2.

5.2 Procedure Calls and Returns

Based on original results such as those shown
in Figure 7, we explored compiler/application/write
buffer interactions in more detail. In particular, we
instrumented our simulator to keep statistics on the
program counter of the references that encountered
buffer full stalls. From this data, we found that more
than 50% of the time, buffer full stalls were associated
with procedure entry or exit. That is, these stalls typ-

100 @ _

8

S

o . m-00
8 60 o -02
= 40 m-04
£

o}

z

x_lisp TSP
Effect of Optimization Levels

100 -

i? _

S

o . m-00
8 60 o -02
= 40 m-04
£

o}

z

x_lisp TSP
Effect of Optimization Levels

Figure 7: Effect of compiler optimization levels.

ically occurred within the stream of writes required to
save out the caller-saved or callee-saved registers at a
procedure call, or to pass in function arguments.

Similarly, load service stalls frequently occur at pro-
cedure entry and exit points as well. One reason for
this is that if the parameter being passed was just
stored in the calling procedure, a load service stall
will likely occur as the location is read back in by the
callee. If a function has relatively little computation,
load service stalls may also occur when the return ad-
dress is loaded. This is because the return address is
stored upon entering the function and is loaded right
before exiting the function. If there are few inter-
vening instructions between entering and leaving the
function (or if the high water mark is large) the re-
turn address may still be in the write buffer causing
a load service stall. We found that between 13 and
18% of the load service stalls occurring for xlisp can
be attributed to these reasons.

6 Conclusions

This work offers a preliminary view of the inter-
actions between application characteristics, compiler
characteristics, and write buffer behavior. We have
found that the inclusion of a write buffer in a memory
hierarchy tends to slightly magnify the importance of
compiler optimizations and cache write policy. That
is, application performance varies more widely with
these parameters in systems with write buffers. In
addition, we have found an important component of
write buffer stalls (roughly 50% of buffer full stalls and
roughly 15% of load service stalls) are related to pro-
cedure calls and returns in these applications. Based
on these initial findings, we hope to continue this work
by investigating the effect of procedure inlining tech-
niques on write buffer performance in these codes, and
by expanding our measurements to include a broader

set of applications.

7 Acknowledgments

The bulk of this work was performed during the
summer of 1996 when Kelly Shaw was at Princeton
University. Her summer research stipend was funded
through the NSF/CRA Distributed Mentoring Pro-
gram. Margaret Martonosi is supported in part by an
NSF Career Award (CCR-9502516).

References

[1] M. C. Carlisle and A. Rogers. Software Caching and
Migration in Olden. In Fifth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Program-
ming, pages 29-38, July 1995.

[2] P. P. Chu and R. Gottipati. Write Buffer Design for
On-chip Cache. In International Conference on Com-
puter Design, pages 311-316, 1994.

[3] K. M. Dixit. New CPU Benchmark Suites from SPEC.
In Proc. COMPCON, Spring 1992.

[4] N.P. Jouppi. Cache Write Policies and Performance. In
Proc. 20th Annual International Symposium on Com-
puter Architecture, May 1993.

[5] R. Karp. Probabilistic Analysis of Partitioning Al-
gorithms for the Traveling-Salesman Problem in the
Plane. Mathematics of Operations Research, 2(3):209-
224, Aug. 1977.

[6] K. Skadron and D. W. Clark. Design Issues and Trade-
offs for Write Buffers. In Proceedings of the Third Inter-
national Symposium on High-Performance Computer
Architecture, Feb. 1997.

[7] J. E. Veenstra and R. J. Fowler. MINT Tutorial
and User Manual. Technical Report Technical Re-

port 452, Univ. of Rochester Computer Science De-
partment, June 1993. Revised August 1994.

