OKAPI: In Support of Application Correctness in Smart Home Environments

Themis Melissaris
Princeton University
themis @cs.princeton.edu

Abstract—Typical Internet of Things (IoT) and smart home
environments are composed of smart devices that are controlled
and orchestrated by applications developed and run in the cloud.
Correctness is important for these applications, since they control
the home’s physical security (i.e. door locks) and systems (i.e.
HVAC). Unfortunately, many smart home applications and sys-
tems exhibit poor security characteristics and insufficient system
support. Instead they force application developers to reason
about a combination of complicated scenarios—asynchronous
events and distributed devices. This paper demonstrates that
existing cloud-based smart home platforms provide insufficient
support for applications to correctly deal with concurrency
and data consistency issues. These weaknesses expose platform
vulnerabilities that affect system correctness and security (e.g. a
smart lock erroneously unlocked). To address this, we present
OKAPI, an application-level API that provides strict atomicity
and event ordering. We evaluate our work using the Samsung
SmartThings smart home devices, hub, and cloud infrastructure.
In addition to identifying shortfalls of cloud-based smart home
platforms, we propose design guidelines to make application
developers oblivious of smart home platforms’ consistency and
concurrency intricacies.

I. INTRODUCTION

Increasing focus on Internet of Things (IoT) approaches has
led to the development of many platforms, systems and ap-
plications to enable and connect IoT devices. As IoT systems
are used more broadly in more safety-critical environments,
their security and reliability are increasingly important. Un-
fortunately, current IoT devices and systems do not yet meet
these expectations, as can be seen in the frequent news reports
about their vulnerabilities, e.g. [1],[2],[3].

This paper focuses on smart home environments, although
most of the relevant system characteristics are common in
other IoT systems that perform monitoring and actuation as
well. Figure 1 depicts an example of a smart home system.
In smart home environments, “smart” embedded devices are
wirelessly connected to a hub. Typically the hub coordinates
interaction between devices and acts as a gateway to the
Internet, but devices can also be directly connected to the
Internet gateway. Via the Internet gateway, the Edge Home
Network connects to the cloud, where all the processing for the
devices will take place. In most current environments, smart
home device state is stored (solely) in the cloud. This includes
sensor/actuator transitions and application logic controlling or
interacting with these devices.

In order to design smart home systems with efficiency and
at scale, it is essential to leverage concurrency. However,
relying on concurrency can in itself be a challenge and provide
many opportunities for things to go wrong. For example,
Figure 1 shows that events for the same devices may be
transmitted concurrently, processed concurrently and update
cloud state concurrently. This concurrency offers convenience
in some ways but also exacerbates correctness challenges
regarding atomicity, data consistency, and event ordering. For
correct execution of applications that access or modify shared
resources, state accesses need to execute atomically and with
the correct consistency ordering in order to ensure that state
reads and updates reflect the expected and correct values.
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These correctness issues can be observed in existing IoT
platforms. Table I presents popular IoT platforms used for
home automation, control and orchestration. These platforms
are compared based on their programmability, system support
and the consistency guarantees they provide. The platforms
are presented in decreasing order of popularity; the number of
installations of the platforms’ mobile applications, as reported
by the Google Play Store [4], is used as an estimate of their
user base. Alexa [5] and Google Home Assistant [6] are
general purpose personal assistants that allow development of
applications with any choice of cloud storage systems from
Amazon Web Services [7] and Google Cloud Platform [8]
respectively, which allow development of applications with
both strong and weak consistency guarantees. Out of the smart
home platforms presented in Table I, only Apple Homekit
[9], Samsung SmartThings [10] and Vera Home [11] allow
development of applications. Homekit uses a mobile phone
to control smart home devices and stores their state in a
common database on the phone, whereas Vera performs home
automation using a programmable hub. We have demonstrated
correctness violations in two of these widely used platforms,
SmartThings and Vera. In particular, SmartThings lacks prim-
itives to allow applications to perform atomic code execution,
and it uses a weak consistency model for its event ordering.
Similarly, Vera allows creation of plugins for its programmable
hub using scripts that are not thread-safe and cannot guarantee
mutual exclusion while accessing smart home devices [12].

As Table I notes, smart home platform implementations of-
ten do not provide application developers with the atomic
operations and predictable consistency ordering required for
correct concurrent executions. Even when such mechanisms
are provided, it is complex for application developers to know
when and how to use them. This paper proposes the OKAPI
system which offers atomicity and strict event ordering as an
external add-on functionality in support of correctness. The
paper first focuses on understanding unexpected behavior of
smart home applications by studying and measuring the impact
of weak data consistency, lack of atomic execution and out of
order event delivery in popular smart home architectures. All
observations, experiments and measurements are carried out
using a realistic smart some setup. We specifically analyze and
diagnose consistency and ordering problems in the Samsung
SmartThings platform [10], but our techniques and observa-
tions apply to other cloud enabled smart home platforms as
well. We use these empirical measurements and experiences
to motivate the need for OKAPI. Our specific contributions
are as follows:

e Foremost, our work demonstrates the serious correctness
concerns of programmer scenarios where application
logic breaks due to i) use of weak consistency in the
cloud storage, ii) race conditions caused by the absence
of guarantees for atomic execution on shared resources
and iii) insufficient support for in-order event delivery.
We measure and analyze smart home applications and
systems and present our findings.

o Furthermore, we propose OKAPI, a synchronization ser-
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Fig. 1. Presentation of a typical smart home architecture. Events are generated in the smart home network by smart home devices and home controllers (e.g.
smartphone app). Each event triggers the execution of an application in the cloud, potentially changing device state. Concurrent events are processed by the
application runtime and data is persistently stored in a distributed key-value store.

TABLE I
10T PLATFORM COMPARISON.

ToT Platform Installations| Generality [Programmable|Atomic Primitives|Consistency Model
Google Home Assistant| 50-100M General Yes Yes Configurable
Amazon Alexa 5-10M General Yes Yes Configurable
Apple HomeKit - Smart Home Yes Yes Strong(phone)
Logitech Harmony 500-T000K" [Smart Home No Not available Not available
Samsung SmartThings [ 100-500K [Smart Home Yes No Eventual
August Home 100-500K" [Smart Home No Not available Not available
Vera Home 50-100K  |[Smart Home Yes No Strong

vice that provides atomicity and ordering guarantees to
smart home applications. OKAPI can be implemented on
a server external to the smart home platform provider. We
evaluate OKAPI on the Samsung SmartThings platform
by investigating its latency and throughput penalties.

« Finally, we discuss the impact of our approach on smart
home applications and propose guidelines for designing
smart home architectures with respect to correctness.

Section II identifies atomicity, ordering and consistency prob-
lems in smart home platforms using SmartThings as an
example. Section III explains how these problems manifest
themselves in the SmartThings platform and presents exam-
ples. Section IV presents the OKAPI solution for providing
ordering and atomicity. Section V describes our evaluation
methodology. Finally, Section VI presents the evaluation of
OKAPI, and Section VII discusses related work, and Section
VIII concludes.

II. ORDERING, ATOMICITY AND CONSISTENCY IN SMART
HOME SYSTEMS

A. Smart Home Architectures

Figure 1 presents a typical smart home architecture, split
between the Edge Home Network and the Cloud. In the
Edge Home Network, “smart” embedded devices that can
range from motion and light sensors to smart door locks and
smart bulbs are wirelessly connected to a hub. These devices
communicate via wireless protocols such as Zigbee [13],
ZWave [14] or BLE [15] to a hub that coordinates interaction
between devices and acts as a gateway to the Internet. Devices
such as smart phones can be connected to the Internet gateway
as well, serving as endpoints for the users’ home control and
orchestration. Any event generated by the smart home devices
or the Home Control devices reaches the Internet gateway
and is managed by the cloud component of the smart home

architecture. In cases when actuation is required, events for
control of devices reach the Edge Home Network.

In order to control the behavior of devices in the Edge Home
Network and manage the influx of events, a smart home
architecture features applications that run on a supporting
cloud infrastructure. Smart home applications contain the logic
behind home automation and are initiated by external triggers,
events that are sent from smart home and Home Control
devices. The types of events and the order in which they
arrive affect the action that smart home applications perform.
As most of the smart home architectures are event driven,
the runtime system maintains a thread for each event received
by an application, called Cloud Threads. The Cloud Threads
execute the application logic, access and modify device state
in the distributed storage layer and actuate physical devices
within the Edge Home Network.

The distributed storage layer is an important component of
cloud-based smart home architectures, responsible for appli-
cations’ persistent storage and data consistency. Typically, a
distributed Key-Value Store is in the core of the cloud storage
layer. Key-Value Stores allow representation of data in key-
value pairs < key,value >, allowing retrieval and storage
of data from these data structures. In the cloud, key-value
stores are replicated across multiple machines, increasing
the availability of data and simultaneously introducing the
complexity of keeping data consistent across all copies.

B. Event Ordering

We introduce event ordering issues first here, followed by
atomicity in the next section. If we revisit Figure 1, we
observe multiple events generated by the motion sensor and
the smartphone responsible for home control. Although events
are generated by devices connected to the same network,
the edge home network and many current IoT services do
not offer strong guarantees regarding their ordering. In this
case, multiple events generated by a single device can be
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Fig. 2. Atomicity violation scenario in a smart home system. In some smart home environments, multiple events can perform writes to shared state unrestrictedly.
As such, the lack of read-modify-write atomicity leads to incorrect or non-intuitive results.

reordered at multiple locations before arriving at the cloud
service. Messages can be reordered by the wireless protocol
connecting smart home devices with the smart home hub and
also as they travel from the home’s gateway to the cloud using
transport protocols. In our example in Figure 1, both lock and
unlock events are generated by the same phone. A possible
reordering however can change the order of lock and unlock
events. In that case, the device’s view of state will become
inconsistent with the state intended by the user’s requests, and
the door will be erroneously left in a state contrary to user’s
expectation. After the events arrive at the cloud platform,
there are additional potential locations for reordering, due to
arbitrary delays in accesses and updates in cloud storage as
well as in the processing of events. This simple reordering
scenario results from the fact that events can arrive out of order
at the hub or home gateway within the edge home network or
at the cloud and there is no mechanism to guarantee order of
arrival identical with the order at the origin.

C. Atomicity Violations

Figure 2 depicts a scenario of a motion sensing application in a
smart home system that shows the need for atomic operations.
In it, two different events are created by a motion sensor due
to physical triggers (labels 1,2 in Figure 2) and reach a smart
home application in the cloud via the edge home network
(3,4). The motion events are received by an event handler in
an application that toggles a smart bulb, changing its state
from on to off and vice versa. The state of the physical smart
light bulb is a state variable that is stored in the cloud. In
order to execute the application logic and perform accesses
and modifications to the light bulb state, the smart home
system runtime spawns a cloud thread per event. For the toggle
operation, each cloud thread will access the current light bulb
state in the key-value store (5,6), flip its value and perform
an update to the cloud store (7,8). If the executions of both
cloud threads corresponding to the motion events overlap and
occur non-atomically, however, both cloud threads will read
the initial state of the smart bulb instead of the second cloud
thread viewing the state as altered by the first. The timeline
of these accesses is presented by the timing diagram in Figure
2. The simultaneous accesses to cloud state create a race
condition and will cause both cloud threads to read the state

of the light bulb as ON and set it to OFF (9,10,11) which is
counter to expectation.

Although often challenging, application developers can reason
about and enforce atomicity while developing their applica-
tions. However, some smart home platform providers have
designed their runtime systems in ways that do not allow use
of atomic primitives by smart home applications due to cost
considerations; when cloud threads do not restrict concurrent
accesses to shared state, cloud thread execution times will
remain shorter, which translates to lower resource usage and
consequently cost reduction. Our example, however, indicates
that having no mechanism to guarantee atomicity leads to
correctness violations, which are critical in smart homes as
the operation and physical security of users’ homes might be
compromised.

D. Weakly consistent cloud storage

Databases and distributed systems have long employed a
variety of approaches for reasoning about state updates and
ordering. These include the familiar ACID transaction model
[16], as well as newer distributed systems concepts including
eventual consistency [17] or causal consistency [18]. For cloud
platforms and services supporting IoT and smart home appli-
cations, weaker consistency models like eventual consistency
are commonly used to optimize for performance and trade off
consistency for availability [19]. Weak ordering approaches on
state updates—such as eventual consistency [17]—offer few
formal promises regarding when a state update will complete;
this burdens programmers trying to ensure reasonable opera-
tion on top of unpredictable foundations. A consistency model
offering strong consistency guarantees would allow application
developers to reason about update orders in which updates
should be applied to avoid reading stale values and counter-
intuitive behavior when interfacing with cloud storage.

Figure 3 presents a scenario of a sunset event (light sensor) and
a proximity event (labels 1,2 in Figure 3) that are handled by
two different applications (3,4), the first one causing a smart
door lock to unlock and the second one to lock respectively.
For each of these events, there are corresponding cloud threads
that perform an update to an eventually consistent cloud
storage, in the order of their arrival. An eventually consistent
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Fig. 3. Consistency violation scenario in a smart home system. Multiple events are received and processed by cloud applications, designed to control the
state of a smart door lock, performing updates to cloud storage in the process. Due to weak consistency, stale values can be returned by the key-value store

and cause unexpected application behavior.

cloud storage system means that the updates will be eventually
applied in the same order to all replicas, but there is no
guarantee as to when the updates will be visible throughout
the system. In the example, the first update writes Unlocked
into replica B (5,7) and subsequently, the second update writes
Locked into replica C (6,8). In practice, that means that a read
of the value of the Smart Lock state can return Unlocked,
even if the more recent update set the value to Locked. This
result can only happen during the window when the Locked
update is not yet visible across all replicas (9). During that
window, any application that uses the lock state to control
smart home devices can access a stale lock state from one of
the replicas for which the latest update is not yet visible. In
this scenario, the application will Unlock the smart lock as this
is the stale value returned by a read after the updates to the
key-value store (10,11,12). Due to the staleness of the data,
the application’s control of the physical lock can be counter
to the user’s expectation.

III. TESTING REAL-WORLD SMART HOME SYSTEMS

Section II and Figures 2 and 3 offer simple scenarios where
network ordering, atomicity and weak consistency affect ap-
plication correctness. Despite the seemingly naive aspects to
these scenarios, our work indicates they actually occur in real-
world systems. In this section, we demonstrate how these
scenarios can appear in the context of smart home systems
and other platforms that build on distributed storage. We use
the SmartThings smart home platform as a case study and
present measurements that provide concrete evidence of these
behaviors, along with the testing methodology.

A. SmartThings Smart Home Architecture

SmartThings home automation platform allows development
of applications in the cloud, called SmartApps, that interact
with devices in the user’s home. The SmartThings platform
follows the smart home architecture described previously;
here, we describe how network reordering, atomicity and
consistency violations appear on SmartThings.

There are two ways of persisting application state in the
SmartThings cloud platform, state and atomicState. These
storage mechanisms have different expectations about when

their modifications are propagated to persistent storage in the
cloud backend.

To understand updates to persistent data, one must understand
the SmartThings execution model. SmartApps are not con-
tinuously running in the cloud. Their execution is triggered
when an event arrives at the cloud (initiated by either a
physical device or a mobile application), resulting in an event
handler in the SmartApp executing on a cloud server. Multiple
instances of the same SmartApp may execute simultaneously
and independently in the cloud. This design means that when
event handlers execute, their only context is the persistent state
stored in the backend and that multiple event handlers may be
accessing that state at the same time.

Given the potential overlap of reads and writes from different
event handlers, it is difficult for programmers to develop
correctly functioning applications without understanding the
consistency guarantees of a smart home platform. On Smart-
Things, even if implemented correctly, an application is not
guaranteed to execute correctly as we will see next. The cloud
storage component of SmartThings is built with Cassandra
[20], a widely-used, eventually-consistent, distributed, key-
value store. For the two types of SmartThings state, state and
atomicState, there are different expectations for when updates
are sent to persistent storage. When an event handler executes,
modifications made to state objects are only updated in per-
sistent storage after the event handler’s execution completes.
In contrast, modifications to atomicState are reflected in the
cloud backend not “more or less immediately” [19], meaning
updates to persistent storage do not wait for the event handler’s
execution to complete.

While the name atomicState implies atomicity can be
achieved, this is not how it is actually implemented. As the
SmartThings platform does not provide any form of atomic
read-write-modify capabilities, it is not possible to achieve
atomicity. As a consequence, two simultaneous executions of
event handlers accessing the same state (state or atomicState)
can result in classic race conditions; both event handlers may
read the state before either updates the state and their subse-
quent serialized updates result in the first update performed
on that state being obliterated by the second event handler’s
update to that same state. The previous scenario demonstrates
why the atomicState primitive constitutes a bad design choice.
If race conditions are to be prevented, another mechanism must



be created to provide atomic updates to the state.
B. Experimentation on smart home deployments

In order to validate the existence of network reordering,
atomicity and consistency violations in smart home systems,
we design tests for the respective properties that we want
to test, as presented in Table II. For all the tests, there is
a single device that is generating the events that trigger the
executions of the cloud threads. (See Section V for details on
the experimental setup.) All tests are non-deterministic due to
concurrency and therefore multiple trials are performed. For
the atomicity test, a shared persistent variable X is incremented
every time an event is handled. Since the cloud storage does
not successfully implement mutual exclusion and executions
of event handlers can overlap, concurrent executions can lead
to values being erroneously overwritten due to race conditions.
When both cloud threads read the value x = 1, this is
an indication of an atomicity violation that leads to a race
condition. Requests generated by a device can be generated
in order but can be handled out of order by the application in
the cloud. The network ordering test identifies this condition,
when the cloud threads read the values in a different order than
the order the corresponding events were generated. Finally, we
want to test the impact of a weakly consistent key-value store
on our application. However, it is impossible to test the impact
of weak consistency in the absence of an atomicity mechanism,
as we won’t be able to distinguish consistency violations from
atomicity violations. For this reason, we perform the weak
consistency test on a standalone Cassandra key-value store
deployment, the same key-value store that the SmartThings
platform uses. In this test, we want to identify if a value is
stale, if a read returns previous state (value initialized to 0)
after a more recent update has set the value. That is possible
when a write update is performed on a different replica than
the one the read accesses.

We present event reordering and atomicity violation statistics
for our tests on the SmartThings platform. As Figure 4 shows,
our measurements indicate that event reorderings and race
conditions are present and that they increase as the event
generation rate on the device increases. For the consistency
test, we measure stale values at a frequency of 1.4% over the
number of the tests in our Cassandra deployment. Without im-
proved support for the ordering and atomicity with which state
is observed and updated and storage systems with stronger
guarantees to build upon, even simple smart home systems
will suffer from severe correctness and concurrency problems.

(a) Atomicity Test

Cloud Thread T Cloud Thread 2 Result Outcome
X=x+1 X=x+1 ) = 1,20 = 2 OK
write(x) write(x) Ty =2,20 =1 OK
read(x) read(x) r; = 1,290 =1 Race condition

(b) Network Reordering Test

Cloud Thread T Cloud Thread 2 Result Outcome
write(x=1) write(x=2) 1 = 1,20 = 2 OK
read(x) read(x) r] = 2,22 =1 Reordering

(c) Weak Consistency Test

Cloud Thread  Result Outcome
write(x=1) r=1
read(x) xz =0 Stale value (initially z = 0)
TABLE 11

TESTS FOR DETECTING ATOMICITY VIOLATIONS, NETWORK REORDERING
AND WEAK CONSISTENCY.

IV. OKAPI: API FOR RESTORING SMART HOME
CONSISTENCY AND ATOMICITY

To avoid the erroneous scenarios discussed earlier and to in-
sure correctness in smart home applications, support for atomic

Reorderings Race conditions

Number of events

5 10 15 20 25 30 35 40 45 50

Request generation rate (requests/s)

Fig. 4. Statistics for occurrences of event reorderings and race conditions. A
test application executes the Atomicity and Network Reordering tests respec-
tively using shared persistent variables. Results are presented in increasing
request generation rate and out of a total of 1000 events. Lower is better.

operations and a mechanism for preventing event reordering is
needed. However, cloud platforms like SmartThings are often
either proprietary or restrictive in terms of platform modifica-
tions; application developers are unable to add the required
functionality to the cloud backend. Therefore, we propose
OKAPI, a synchronization service that creates consistency and
atomicity mechanisms for use in Smart Home applications.
Developers can use OKAPI to create the guarantees not
provided by the platform’s cloud backend but needed by their
applications.

OKAPI’s design consists of two components: an OKAPI
server responsible for guaranteeing atomicity and ordering
and an OKAPI synchronization layer that initiates a two-
phase communication protocol with the OKAPI server on the
application side. Applications use the OKAPI synchronization
layer to send requests to the OKAPI server. The OKAPI server
then disallows concurrent writes to shared state stored in the
cloud, effectively serializing access to critical sections of code
from concurrent event handlers.

OKAPI’s design is flexible and allows adoption across vari-
ous scenarios with the purpose of restoring consistency and
atomicity in the smart home. When the platform does pro-
vide atomicity and ordering guarantees, consumers can still
choose to deploy OKAPI in case an application does not
use platform-available concurrency features correctly. OKAPI
may be deployed in different ways. If a user’s platform
allows programmable hubs, the OKAPI server could be im-
plemented on the hub. Alternatively, OKAPI can be hosted
as a synchronization service on a third party server. Due to
privacy concerns about third party servers and given the rise
of personal cloud systems, individuals could also potentially
deploy OKAPI in their personal cloud infrastructure.

A. OKAPI Usage

OKAPI relies on two mechanisms to provide atomicity and
ordering functionality, the OKAPI Server and the OKAPI Syn-
chronization Layer. To invoke these, applications annotate their
critical sections accordingly and OKAPI does the enforcement.
OKAPI Server: The OKAPI synchronization server is used
to implement atomic locks and their corresponding acquire
and release operations. For each block of code within a
SmartApp that requires mutual exclusion, the server maintains
a lock. The OKAPI server receives and handles external lock
acquire and release requests from SmartApps trying to access
a critical section in the code, e.g. a SmartApp performs
updates to shared atomicState in the cloud backend. Second,
in such a scenario where the application needs to perform
atomic updates, a mechanism is required in order to block
an executing event handler while it waits to be granted sole
access to the critical section by the synchronization server.

OKAPI Synchronization Layer: The OKAPI Synchroniza-
tion layer provides Smart Home applications with an interface
to utilize the atomicity and ordering features the OKAPI
Server provides. Mutual exclusion is achieved by sending lock



acquire and release requests to the remote synchronization
service via synchronous HTTP requests. A synchronous HTTP
request blocks the execution of the event handler issuing the
request until a response to the HTTP request is received. In
this way, concurrent execution of event handlers is prevented,
enabling mutual exclusion of event handlers accessing shared
state in the application’s critical section. When the response is
received from the OKAPI server, the event handler’s execution
can proceed, knowing it currently has sole access to the shared
atomicState. When the event handler finishes accessing the
shared state, it sends another synchronous HTTP request to
the remote server releasing the lock to the shared data. The
event handler then waits until a response is received from the
remote server to guarantee release of the critical section. For
the Synchronization layer protocol to be correct, updates to the
shared state need to be propagated to persistent storage before
the release of the lock at the remote server. In SmartThings,
an update to atomicState needs to complete before the lock is
released from the OKAPI server, as code outside the critical
section could otherwise execute concurrently. Tests across
thousands of events did not reveal any updates to atomicState
that happened out of the order of execution specified by the
application or before the release of the lock at the OKAPI
server. Based on our experimentation, we regard all atomic-
State updates as synchronous in the application logic.
Timeout Handling and Deadlock Prevention: If no response
is returned within a specified time limit for each synchronous
HTTP request, the HTTP request times out. The HTTP request
timeout for the SmartThings platform is 10s. If a timeout
occurs, an additional synchronous HTTP request is generated
by the application to gain access to the critical section. During
the execution, the OKAPI server can potentially run into a
deadlock, e.g. when a remote device gets a lock but does not
explicitly unlock it due to loss of network connection. Since
the synchronization protocol is based on HTTP, the OKAPI
server uses the HTTP timeout value as expiration for exclusive
access to the critical section. In addition to HTTP timeouts,
the SmartThings applications’ execution time is limited to 20
seconds. This limit is imposed by the SmartThings Application
Runtime in order to optimize allocation of resources; OKAPI
is not limited by the application execution time.

B. Enforcing atomicity

For atomicity, Figure 5 sums up OKAPI’s two-phase com-
munication between Smart Home applications and the remote
synchronization server. In this example, one phone generates
two requests corresponding to the unlock() and lock() methods
for a smart lock. The unlock() event handler in Execution
1 sends a synchronous HTTP request to the remote server
(sync()) requesting the lock for its shared data to be acquired.
The remote server executes its acquire() method for the lock
and sends a response to Execution 1 indicating it has access to
the shared data and can proceed. Execution 1 is able to read
and write the shared data, with those updates being sent to the
cloud backend, and send a lock message to the physical device.
Execution 1 then sends a synchronous HTTP request releasing
the lock which causes the remote server to release the lock.
While Execution 1 has the lock, a second synchronous HTTP
request is sent to the remote synchronization server by the
lock() event handler, but the lock() event handler is blocked
until it receives a response to its request after Execution 1’s
lock release is complete.

C. Ordering

Overall, OKAPI provides Per-Object Sequential Consistency
[21], [22] at the application level. According to this guarantee,
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Fig. 5. OKAPI two-phase protocol enforcing atomicity.
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Fig. 6. OKAPI two-phase protocol enforcing atomicity and in-order event
delivery in Smart Home applications.

for each shared state object (e.g. shared Smart Lock state),
there exists a legal, total order over all events which is reflected
in each clients order.

We achieve ordering by building upon the atomicity enforce-
ment in the OKAPI synchronization server. The ordering
mechanism is implemented in the remote server and provides
a serial order of events per client and a total order of events
per shared state object. In practice, OKAPI allows a single
copy of an object to progress over time. Clients will always
see a newer value of shared state as they interact with it, but
these values can be different across clients.

To provide ordering guarantees, each client provides metadata
in the form of a sequence number embedded in each request
which allows the remote server to order and to serialize these
requests. We introduce a sequencing scheme in the events
received by the application to achieve ordering of events per
client. Sequencing of events can also be achieved by modifying
the smart home platform or hub, if the implementations are
open source. Figure 6 summarizes OKAPI’s enforcement of
both atomicity and ordering. For one of the two requests
arriving out of order at the Smart Home application, the
synchronization server “stalls” its acquisition of the lock (i.e.
execution of its acquire() method at the remote server) until the
sequence number of said request matches the next sequence
number allowed to proceed. Once that acquire operation is
complete, the protocol proceeds as in Figure 5.

V. EVALUATION METHODOLOGY

Experimental setup—Measurements: To concretely study
event reorderings in Smart Home environments,we introduce



components for the client and physical device that enable us
to automate event triggering and collect information about
messages sent by the cloud backend.

Typically, a mobile application client sends a message to the
cloud to trigger an event. To remove user involvement and
automate experiments, we exploit part of the SmartThings
API that creates an endpoint that is accessible over the web.
HTTP requests sent to these endpoints trigger event handler
executions just like messages sent from a mobile application
to the cloud. A computer generates endpoint requests in order
to automate event triggering and therefore simulate a client.
We use the same methodology to interface with a 3-node
Cassandra cluster for our consistency experiment, but we
replace the SmartThings API with the Cassandra APIL.

Since the cloud backend and hub are proprietary on Smart-
Things, we cannot add instrumentation to these parts of the
system, we must use them as black boxes. One of OKAPI’s
contributions is that we can overlay needed atomicity and
ordering functionality over an IoT cloud platform that does
not offer these capabilities.

To track message order, messages sent by our client are tagged
with sequence numbers that propagate across the system.
The cloud generates sequence numbers for each message it
receives and sends a reply message to the client. The OKAPI
synchronization service is a Go HTTP server which responds
to requests providing access to the critical section of the
Smart Home application. The HTTP server handles HTTP
requests concurrently and is able to provide atomicity locally
using mutexes. Given atomicity, one of the concurrent HTTP
requests that are not processed gets hold of the mutex and
participates in the two-phase protocol with the Smart Home
application. The remaining concurrent requests are blocking,
waiting to get hold of the mutex.

OKAPI runs on a Ubuntu 14.04 LTS virtual machine, with 1
CPU Core, 30 GB SSD storage and 2GB memory and is hosted
on Linode [23]. Utilizing this OKAPI synchronization server
for the evaluation incurs an additional latency, corresponding
to the round trip time between the SmartApps and the OKAPI
server. This additional latency is reflected in the results.

Latency & Throughput Evaluation: We evaluate OKAPI
request latency by measuring from the time a request was
generated until the Smart Home application responds. In
addition, we measure the throughput in events processed per
second. For our testing purposes, a client sends requests to
the Smart Home application at a controlled rate. We vary the
request generation rate to test the overhead of OKAPI under
both low and high contention for the critical section. The
critical section remains constant and short-lived across our
experiments and consists of test code as presented in Table
II. We compare an unmodified version of a test application
(denoted as Unmodified) with a version that enforces atomicity
(denoted as Atomic) and a version that enforces both atomicity
and ordering (denoted as Atomic + Ordering).

VI. EVALUATION

With respect to correctness, when the Atomic approach is used,
no race conditions exist, and when the Atomic + Ordering
approach is used, no race conditions or reorderings occur.
This section evaluates the performance of OKAPI’s (i) Atomic
and (ii) Atomic + Ordering approaches versus the Unmodified
approach. We evaluate OKAPI in terms of the latency and
throughput overhead.

Throughput overhead evaluation: Figure 7 presents the
throughput in requests/s for a single client simulating a mobile
application across different rates of incoming requests. The

Unmodified ——— Atomic 0 Atomic + Ordering ===

Throughput (requests/s)
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Fig. 7. Presentation of the average throughput of our test SmartThings
application across three methods. We compare the (i) Unmodified (ii) Atomic
and (iii) Atomic + Ordering approaches. Results are presented in increasing
request generation rates. Higher throughput is better.
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Fig. 8. Presentation of the average request completion latency of our
test SmartThings application across three methods. We compare the (i)
Unmodified (ii) Atomic and (iii) Atomic + Ordering approaches. Results are
presented in increasing request generation rates. Lower latency is better.

overhead for request generation rate between 5-10 requests/s
is 0.4%-0.7% and 0.8-1.6% for the Atomic and the Atomic +
Ordering respectively. When the number of requests generated
increases, the number of executions concurrently performing
acquire to obtain access to the critical section increases as
well. Reorderings cause the OKAPI synchronization server
to delay responses to out of order requests, thus reducing
throughput. Figure 4 presents the frequency of reorderings as a
function of the event generation rate. The overhead of OKAPI
is 11.5% for the Atomic approach and 40.2% for the Atomic
+ Ordering approach compared to Unmodified.

Latency overhead evaluation: Figure 8 presents the com-
pletion latency (ms) for requests generated by a single client
across different request generation rates. Both OKAPI ap-
proaches use an external synchronization service, which adds
one more hop in the network and increases the request
completion latency. The overhead for the Atomic and Atomic
+ Ordering approaches increases when the request generation
rate increases, demonstrating a linear behavior for rates below
30 requests/s and remaining below 21.0% and 64.1% respec-
tively. The communication latency between the SmartApp and
the OKAPI server is included in these results. Beyond that
request generation rate, the latencies increase significantly and
application developers need to account for the responsiveness
of their smart home applications. Throughout our experiments,
there are no timeouts for the request generation rates we
evaluated. However, when we increased request generation
rate to 100 requests/s in order to stress test the Atomic +
Ordering approach, 65.6% of requests time out causing the
average latency to increase significantly.

Discussion: Typical smart home system workloads don’t
typically exceed 2 requests/s [24], even while considering
scenarios with multiple users performing multiple requests. In
addition, latency values between 300-600ms are typical from
the moment the event is triggered until an event notification
reaches the application. To stress the system, we performed
our evaluation using request rates higher than 5 requests/s
(300 requests/minute). The corresponding average latency for
the request rates 5 requests/s and 10 requests/s is 298 ms
and 305 ms for the Atomic and 332 ms and 340 ms for
the Atomic + Ordering version of OKAPI respectively. Under
these conditions, OKAPI enforces atomicity and ordering with
minimal impact on throughput and with latency that is within



typical values for smart home systems.
VII. RELATED WORK

Prior work has explored event-driven architectures, focusing
on exposing race conditions [25], as well as security defi-
ciencies [26]. While we also focus on event-driven platforms,
our approach concentrates on atomicity and ordering and
considers the whole Smart Home environment, including hubs,
devices and the cloud platforms. Related work [27], [28] has
investigated misuse of smart home application privileges and
has created solutions for data protection and access control.
Ensuring the correct execution of the individual devices as
well as the interaction of these devices requires checking that
applications are written correctly. In our work, we focus on
the atomicity and ordering problems that arise from these
platforms. The detailed study of security mechanisms and tools
that analyze applications’ permissions can help in statically
analyzing Smart Home application code and identify and
pinpoint code blocks with atomicity and ordering issues. [29]
investigates the security of smart locks, presents attacks against
them and performs a security analysis of consumer products.
The authors build a solution to mitigate the vulnerabilities
found and suggest the use of eventual consistency for systems
that use smart locks as it offers a nice intersection between
availability and consistency. OKAPI focuses on providing
ordering of events and atomicity in Smart Home application
execution, concluding that stronger guarantees are required
from a consistency standpoint. In another line of work, [30],
[31] investigate the use of happens-before graphs, adding new
constraints that model which operations can occur before other
actions. By creating these graphs, it is possible to detect
what new ordering constraints are necessary to prevent these
race conditions. The use of happens-before graphs has also
been used by [32] to formalize the concurrency semantics
of the Android programming model and to perform race
detection on real Android applications. In [33], a systematic
exploration of Kernel concurrency bugs is performed using
schedule exploration. In addition the authors of [34] perform
a study of concurrency bug characteristics in real systems.
The authors of [35] provide a bug finding analysis on formally
verified distributed systems and [36] leverages model checking
to discover errors in particular schedules of events. Such
techniques could help detect whether reads or writes to a
distributed platform could trigger possible race conditions and
facilitate a more fine grained use of OKAPI This paper
presents OKAPI, a framework that provides ordering and
atomicity to Smart Home applications. OKAPI is platform
independent and provides stronger consistency and ordering
guarantees, even if cloud platforms hosting Smart Home appli-
cations have more relaxed guarantees. The framework utilizes
an external synchronization service and a two phase protocol
for communication between the Smart Home applications and
the remote service to provide atomic execution and in order
event processing.
VIII. CONCLUSION

This paper proposed and evaluated OKAPI, a platform-
independent synchronization service that allows insertion of
atomicity and ordering guarantees into smart home appli-
cations. Consistency deficiencies and event reorderings and
race conditions are challenges for commercial smart home
platforms. OKAPI offers a methodology towards eliminating
them in smart home applications. OKAPI can be used as a
service to provide atomicity and ordering for Smart Home
applications without depending on cloud providers’ design
decisions.
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