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Technology advances will soon enable billion transistor chips, permitting large
quantities of both logic and memory to be placed on a single die. Increasing on-
chip wire delays, however, are shrinking the chip area reachable in a single clock
cycle. In response, computer architects are redesigning on-chip structures to reduce
the distance signals must travel in one clock period. Single-chip multiprocessors are
one proposed architecture for dealing with the multi-cycle communication latencies
affecting future chips. These chips are organized into a grid of nodes, where each
node contains a processor and a portion of the total on-chip memory. Although these
nodes function independently, they interact via shared memory through a network
with the property that latency increases linearly based on Manhattan distance.

This dissertation examines how to efficiently map applications onto single-chip
multiprocessors given these chips’ constraints and opportunities. The small amount
of per-node storage limits how much data can be placed on any given node, while the
ample processing resources and high bandwidth, low-latency on-chip communication
create a large number of quickly accessible locations where data and threads can re-
side. In order to achieve high performance on these chips, applications must balance
the competing goals of improving locality and of distributing resource demands across
the chips’ many nodes. I present two symbiotic approaches for managing these chips’
resources. The first technique, migration of data and threads, reacts to dynamic
resource demands and communication patterns to avoid resource hot-spotting and
improve locality. The second approach proactively eliminates communication by ex-
ecuting computation at the location of its most frequently accessed data, its anchor.
Finally, I show how these techniques can be used in conjunction with well-established

techniques, like caching, to further improve application performance.



Acknowledgement

vi



This dissertation would not have been possible without the help and encourage-
ment of a large group of people. I would like to begin by thanking my advisor, Bill
Dally, for helping to shape my understanding of computer architecture research. One
particularly valuable lesson Bill has taught me is the importance of considering tech-
nology’s impact on the research you’re proposing. Over the years, he has also helped
me understand that research is really a progression of your ideas, where new ideas
grow out of the understanding you gained from earlier ideas. Most importantly, I
learned from Bill how to have confidence in my research.

Margaret Martonosi of Princeton University has been a wonderful mentor and
friend to me since 1996. I cannot thank her enough for the time she has dedicated
to helping me work through my thesis research. Her enthusiasm as we discussed
my research results always motivated me to work harder and faster to get the next
results. I will forever be grateful to her for always making time for me and for her
encouragement, compassion, and understanding.

I would also like to thank Kunle Olukotun for serving on my Reading Committee
and Mendel Rosenblum for serving on my Orals Committee. I had the good fortune
of also working with Kunle, Mendel, and Christos Kozyrakis as a teaching assistant.
I learned a great deal from all three of them about teaching and appreciate their
willingness to let me develop my own teaching skills, using the students in their
classes as my test subjects.

Carla Ellis of Duke University has been a huge supporter and friend to me since
college. She has been there whenever I have been unsure of the best path to take,
encouraging me to do my best and reassuring me of my abilities. Carla has also been
a great hiking buddy and explorer; I am always curious if we're going to somehow or
another get ourselves into trouble when we get together.

I also would like to thank Dan Sturman and Tushar Chandra, who I worked with at
IBM’s TJ Watson Research Lab. Although I only worked with them for a summer,
they’ve both kept tabs on me throughout the years. I particularly want to thank
Tushar for helping me realize the many choices open to me once I left Stanford.

Much of what I learned in graduate school was from the other students in the

vil



CVA research group. I would like to thank Andrew Chang, Whay Sing Lee, Li-
Shiuan Peh, Mattan Erez, and Abhishek Das in particular for their friendship and
guidance. Andrew and Whay were my thesis (and life) coaches as well as being great
friends. Graduate school was never the same once they finished. Not only did Li-
Shiuan brighten up my days with gossip, she helped me gain perspective on graduate
school and didn’t mind me crashing at her place in Princeton. Mattan taught me
tons about interacting with people different from me, spent many hours helping me
with my research, and also livened up my afternoons with silly conversations in the
office. Finally, Abhishek was the best officemate I could have had for my last years
of graduate school. Thanks for all the cheers when things went well.

I was lucky to have three other graduate students to meet with on a weekly basis
to discuss our research, life as a graduate student, and life in general. I owe a great
deal to Beth Seamans, Bob Kunz, and Ayodele Thomas for their support through the
last few years of graduate school. Their many suggestions improved my research and
my abilities as a researcher. Their encouragement helped see me through to the end.
Beth, in particular, helped me through each of the graduate school hurdles, starting
my first year.

I need to thank Tim Purcell and Vicky Wong for getting me through my qualifying
exams and not minding my dictatorial way of running our meetings. The same
appreciation goes to Sameer Qureshi, Silas (Marner) Boyd-Wickizer, Howard Tsai,
and Lance Hammond for putting up with me during my teaching stints at Stanford.

I could never have completed my research without help from the system admin-
istrators in the Computer Systems Lab. Not only did Charlie Orgish, Kevin Colton,
and Joe Little keep things running, but they came to my rescue many times through-
out the years. Somehow they would always find a way for me to get my work done.

Without the help of the many administrators in the Computer Science Depart-
ment, I would never have managed to navigate the quagmire of Stanford bureaucracy.
I'd like to thank Pamela Elliott, Kathi DiTommaso, Indira Choudhury, Peche Turner,
Jam Kiattinant, Suzanne Bigas, Thea (the key lady), and the rest of the second floor
administrators for all of their help and goodwill.

I also need to thank the many friends I made during graduate school who just made

viii



life fun. Liadan Boyen, Greg Humphreys, and Jessica Humphreys have been steadfast
friends for years. They’ve listened to me complain, laughed at my silliness and my
foibles, and been there whenever I needed a shoulder to lean on. Rachel Weinstein
brought hilarity back to the office hallway during my last years at Stanford. She also
inspired me to make things better for younger women at Stanford. I've had some
great times hanging out with Ravi Soundararajan, Janet Wu, Andrew Chang, and
Whay S. Lee outside of Stanford. Aarati Martino, Diane Tang, Aaron Stump, Qi Sun,
Suzanne Rivoire, Rebecca Schultz, and Marija Vrljic also brought levity and frivolity
to my years at Stanford.

The people I met in California who were not affiliated with Stanford reminded
me that life existed outside of graduate school. I cannot thank them enough for the
reminders! In particular, I'd like to thank the Sun ladies - Val Henson, Val Bubb, and
Tabriz Leman. They gave me a glimpse of being young, smart, *and* female in the
Bay area. My yoga lady friend Heidi Kikiwada forever impressed me by how good a
person she is; she also took me to Giants games! Volunteering with Lorraine Michelle
at the Support Network for Battered Women gave me the opportunity to help others
and reminded me that I had lots of useful skills. Although I only volunteered for three
months, Lorraine’s easy way of encouraging people and making them feel great has
had a profound effect on how I try to treat people. Additionally, I'd like to thank my
British neighbor, Micky Willmott, for just being herself on our daily train commute.
Thanks also to Tom Kruse and Vikram Asrani.

I'm thankful to my college buddies for their friendship over the years. These
people include Andy David (my trumpet buddy), Lenore Ramm, Eric Gramond (my
Frenchman), Billee Jo Kelder, Jen Yates, Jeanette Bennett, Jon Snitow (my friend
from Princeton), and Rob (Wob) Flowers. I also have to thank Rachel Pottinger and
Steve Wolfman. I've known them both since the beginning of freshman year. Over
the years, they’ve been my friends, roommates, work partners, and unofficial tutors.
I've learned from observing them each individually as well as from observing them as
a couple. They’ve been there for me every time I needed them, and they inspire me

to try to be the person I want to be.

X



I'd like to thank my family for their support. My sisters and brothers have pro-
tected, supported, and encouraged me throughout my life. As they added people to
our family, those people joined in and brought new joy to my life and taught me new
things about myself and about life. There is not enough space to do justice to all that
I have to be grateful for from my family, so I will just list my siblings from oldest to
youngest and specify their families. My oldest sister Lisa Brideau and her husband
Norman have two adorable children, Jessica and Justin. My brother Ronald DeGraw
and his wife Heidi have a really cute daughter named Lizzie. My brother Russell
DeGraw and his wife Tracy have two children, Skylar and Braden. My sister Cathy
Smith has three sons, Freddie, Shahiem, and Billique. My twin sister Marianne Shaw
is married to Steven Rubenstein. Steven and their two dogs, Greta (the Weimaraner)
and Lola (the Redbone Coonhound), have added oodles of entertainment to my life.
Steven’s large and confusing family has also been extremely welcoming and supportive
during my years of graduate school.

Finally, I have to add a very special thank you to my sisters Lisa and Marianne.
They have been the constants in my life (along with my teddy bear). They have
always encouraged me to be the best I can be, they have stepped in whenever I
needed help, and they have let me be who I am even when they didn’t necessarily

approve. This dissertation is dedicated to them. Without them, I would not be here.



Contents

Preface

Acknowledgement

1 Introduction
1.1 Technology Trends . . . . . . . . . . . .. ... .. .. .. ......
1.2 Single-Chip Multiprocessors . . . . . . . . .. .. ... ... .....
1.3 Single-Chip Multiprocessor Challenges . . . . . . . .. ... ... ..
1.4 Contributions . . . . . . . . . ...
1.5 Roadmap . . . . . . . . . . . .

2 Application Characterization

2.1

2.2

2.3

24

An Example Application: barnes-hut . . . . . . . . .. ... ... ..
2.1.1 Description . . . . . ..o
2.1.2 Resource Demands . . . . .. ... .. ... ... .. ...,
Two Program Decomposition Styles . . . . . . . . ... .. ... ...
2.2.1 Heavyweight threads . . . . . ... .. ... .. ... .....
2.2.2  Lightweight threads . . . . . . . . ... ... .. ... .. ...
223 Comparison . . . . . . . ...
Resource demands . . . . . .. . ... oL
2.3.1 Computation . . . . . . . ... ...
2.3.2 Communication . . . . . . ... ... ...
Communication patterns . . . . . . . . . ... ... L.
2.4.1 Inherent application communication patterns . . . . . . . . ..

X1

iv

vi

© oo Ut W =

10



2.5

2.4.2  Description of object interaction parameters . . . . . . . . ..
2.4.3 Graphing Object Relationships . . . . .. ... .. ... ...

Conclusions . . . . . . . .

Application Descriptions

3.1

3.2

3.3

3.4
3.5

Application Description . . . . . . . . ... ...
3.1.1 raytrace . . . ... oo

3.1.2 mbody . . ...
3.1.3 barnes-hut . . . . . ...
3.1.4 equake . . . . ...

Decomposition into Threads and Data Objects . . . . . . . .. .. ..
Resource Demands . . . . . . . . ... .. ... ... ...
3.3.1 Cumulative Application Demands . . . . . ... .. ... ...
3.3.2 Variability . . . . ...
Communication Patterns . . . . . . . . ... ... ... ... ... ..

SUMMATY . . . . o o o e e

Reactive Approach - Migration

4.1

4.2

4.3

4.4

4.5
4.6

Impact of Object Placement on Runtime Information . . . . . . . ..
4.1.1 Observable communication patterns . . . . . . . ... ... ..
4.1.2 Nodes’ resource demands . . . . . . . .. .. ... ... ...
Migrating Based on Directed Forces . . . . . . . .. .. .. ... ...
4.2.1 Movement Policy . . . . ... .. ... oo
4.2.2 Invocation Policy . . . . .. ... ... ... ... ...
Exploring Migration Potential . . . . . . . . ... ... ... .. ...
4.3.1 Repulsion Forces . . . . .. ... ... ... ...
4.3.2 Adding Attraction Forces to Repulsion Forces . . . . . .. ..
Examining Larger Applications . . . . . .. ... ... ... .....
4.4.1 Real applications: execution time improvement . . . . . . ..
4.4.2 Performance impact of migration as processor speed increases
Directory Traffic . . . . . ... .. ...

Conclusions . . . . . . . .

xii

27
28
28
31
31
32
33
34
35
36
42
47

48
49
50
52
52
93
60
61
64
65
71
72
74



5 Proactive Approach - Anchors 77

5.1 Moving Computation to Data . . . . . . . ... ... ... ...... 78
5.2 An Example: Barnes-Hut . . . . . . . . . .. ... ... ... ..., 80
5.2.1 Benefits: Reduced and Clarified Communication . . . . . . . . 81
5.2.2  Performance Limiting Overheads . . . . . .. ... ... ... 83
5.2.3 Cost-Benefit Analysis . . . . . . .. ... ... ... ... ... 84

5.3 Analyzing the Impact of Changing Costs . . . . . .. ... ... ... 84
5.3.1 Synthetic Benchmark Description . . . . . ... .. ... ... 85
5.3.2  Communication Benefits from Using Anchors . . . .. .. .. 85
5.3.3 Impact of Remote Invocation Costs . . . . . .. ... .. ... 92
5.3.4  Summary .. o. ... 95

5.4 Benefits of using anchors on full applications . . . . . . .. ... ... 96
5.4.1 Adding Subthreads and Anchors to Applications . . . . . . . . 96
5.4.2 Application Results . . . . . . . ... ... ... ... ... .. 97

5.5 Anchors Plus Migration . . . . ... ... ... ... ......... 100
5.6 Conclusions . . . . . . . ... 104
6 Comparison to Caching 105
6.1 Communication Produced by Caches . . . . . ... .. ... .. ... 107
6.1.1 Communication Description . . . . . . ... .. .. ... ... 107
6.1.2 Directory Overhead . . . . . . . . .. ... ... ... ... .. 110
6.1.3 Potential Improvements beyond Caching . . . . .. ... ... 110

6.2 Workload Characterization . . . . . . . . .. ... ... ... ..... 112
6.3 Combining Migration with Caches . . . . . . . . .. .. .. ... ... 116
6.3.1 Data Migration . . . . . . ... ... 0oL 116
6.3.2 Thread Migration . . . . . . . .. ... ... ... ... 119

6.4 Anchors and Caches . . . . . ... ... ... ... ... ..., 121
6.4.1 General Comparison . . . . . .. ... ... ... 121
6.4.2 Anchors versus Caching . . . . .. ... ... ... ...... 124
6.4.3 Caching and Anchors . . . . . . . .. ... ... ... ... 128

6.5 Application Summary . . . . . ... 130

xiii



6.6 Conclusions . . . . . . . . . 131

7 Related Work 132
7.1 Technology Trends . . . . . . . .. . ... ... ... ... ..... 133
7.2 Single-Chip Multiprocessors . . . . . . . .. . . ... ... ...... 134
7.3 Migration . . . . . ... 135

7.3.1 Thread Migration . . . . . . . ... ... ... ... ... .. 135
7.3.2 Data Migration . . . . . ... ... .00 136
7.4 Thread Decomposition . . . . . .. . ... ... L. 137
7.4.1 Executing computation at data’s location. . . . . . .. .. .. 137
7.4.2 Compiler optimizations . . . . . . . . ... ... .. ...... 138
7.5 Conclusions . . . . . . . . . . 138

8 Conclusions 139
8.1 Thesis Summary . . . . . . ... 140
8.2 Future Directions . . . . . . . . .. ..o 142

Bibliography 143

Xiv



List of Tables

1.1
1.2
1.3

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1

6.1
6.2

Ongoing projects assuming multi-cycle chip latencies . . . . . . . ..
Baseline architecture for single-chip multiprocessors . . . . . . . . ..

Differences between multi-chip and single-chip multiprocessors . . . .

Explicit object relationships . . . . . . . . .. ..o 21
Implicit object relationships . . . . . . . .. .. ... 22
Explicit and implicit relationships in barnes-hut . . . . . . . . . . .. 22
Application descriptions . . . . .. ... 29
Cumulative breakdown of application events . . . . . . ... ... .. 35
Variation in applications’ thread lifetimes . . . . . . . . .. . ... .. 36
Cumulative data reference frequencies . . . . . . . . .. ... .. ... 40
Application communication patterns . . . . . . ... ... 44
Summary of application characteristics . . . . . . ... ... .. ... 47
Description of synthetic benchmarks . . . . . ... ... ... .... 61
Summary of application characteristics . . . . . . ... ... .. ... 71
Synthetic benchmarks’ defining parameters. . . . . .. .. ... ... 86
Impact of caching on number of data requests reaching memory . . . 117
Recommended techniques for each application . . . . . .. ... ... 130

XV



List of Figures

1.1
1.2

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Chip area reachable in single clock cycle . . . . . ... .. ... ...

Baseline single-chip multiprocessor . . . . . . ... ... ... .. ..

Organization of data in barnes-hut . . . . . . . . .. ... ... ... 15
Decomposition of thread from barnes-hut into clusters . . . . . . . .. 23
Data structures in raytrace . . . . . . . . ... 30
Thread lifetimes in raytrace . . . . . . . .. ... 38
Thread lifetimes in barnes-hut . . . . . . . . . .. ... ... .. ... 39
Thread lifetimes in equake . . . . . . . . . . ... 39
Data access frequencies in raytrace . . . . . . . ... ... ... ... 41
Data access frequencies in barnes-hut . . . . . . . . ... . ... ... 41
Data access frequencies in equake . . . . . . . .. ... ... ... .. 42
Working set similarity among threads in raytrace . . . . . . . .. .. 46
Working set similarity among threads in equake . . . . . .. ... .. 46
Communication distance in single-chip multiprocessors . . . . . . .. 50
Communication patterns among data and threads . . . . . . ... .. 51
Creation of migration forces from attraction and repulsion forces . . . 53
Example calculation of attraction forces . . . ... ... ... .... 55
Impact of single-hop locality improvement . . . . . .. .. ... ... 55
Example calculation of repulsion forces . . . . . .. .. .. ... ... 58
Possible outcomes of combining attraction and repulsion forces . . . . 59
Example migration based on attraction and repulsion forces . . . . . 60

xvi



4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16

5.1
5.2
5.3
5.4
9.5
5.6
5.7
0.8
9.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

6.1

Initial placement of objects in resource-imbalance benchmark . . . . .
Execution times for resource-imbalance using migration . . . . . . . .
Execution times for single-unshared using migration . . . . . . . . ..
Execution times when data have clear communication patterns . . . .
Execution times when threads have clear communication patterns

Execution times when no objects have clear communication patterns .
Application execution times using migration . . . . . .. ... .. ..

Execution times for raytrace as processor speed increases . . . . . . .

Decomposition of thread into clusters . . . . . ... ... ... ....
Application of anchor technique to thread . . . . . .. ... .. ...
Clarification of communication patterns achieved by using anchors . .
Execution times of single-nosubthreads using anchors . . . . . . . ..
Communication demands of single-nosubthreads using anchors

Distance between data and the center of its references . . . . . . . . .
Temperature graph of the optimal locations for data . . . . . . . . ..

Execution times for multithreading benchmarks using anchors

Communication demands of multithreading benchmarks using anchors

Execution times of single-nosubthreads-compute using anchors

Impact of state size on anchor technique . . . . .. ... ... ....
Impact of remote invocation latency on anchor technique . . . . . . .
Impact of number of nodes executhing threads on anchor technique
Execution times for raytrace using anchor technique . . . . . . . . ..
Execution times of barnes-hut using anchor technique . . . . . . . ..
Execution times for nbody using anchor technique . . . . . . . . . ..
Temperature graph showing optimal data placements in barnes-hut
Communication demands for nbody using anchor technique . . . . . .
Final locations of data when using anchor and migration techniques .
Execution times when using anchor and migration techniques . . . . .

Execution times when migration state exchange frequency varies . . .

Remote request protocol in cacheless system . . . . .. ... .. ...

xXvil



6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

Remote request protocol in system with caching . . . . . . ... ...
Example object placement created when using anchors and migration
Execution times at different cache sizes and multithreading levels
Breakdown of messages into memory and cache coherence types
Communication demands as cache size varies . . . . . . . . ... ...
Execution times using data migration in system with caching . . . . .
Execution times using thread migration in system with caching . . . .
Number of messages sent in systems with and without caches . . . . .
Comparison of execution times for caching and anchor technique . . .
Comparison of communication for caching and anchor technique . . .
Execution times when caching and anchor techique used . . . . . ..

Communication demands when caching and anchor technique used . .

Xviil

111
113
114
115
118
120
123
125
127
129
130



Chapter 1

Introduction



CHAPTER 1. INTRODUCTION 2

The computer industry has enjoyed doubling transistor counts every 18 months
for more than 20 years. This growth in capacity has enabled manufacturers to place
larger data structures and increasingly complex processors on individual chips. The
resulting generations of processors run at faster clock speeds and require more chip
area. These phenomenal advances, however, have begun to be plagued by two new
trends, namely increasing on-chip wire delays and tapering performance gains from
additional exploitation of instruction level parallelism. In a given clock cycle, smaller
fractions of chips can be reached, a consequence of increasing transistor counts and
wire delays. At the same time, dedicating larger chip areas to single, complex pro-
cessor cores obtains only small performance speedups.

Faced with these new constraints, researchers have begun examining new ways
to design chips. By strategically decomposing long wires into a series of short wires
connected by repeaters, wire delays become proportional to the number of short
wires traversed. However, even these constant delays inhibit the use of global control
traditionally used in uniprocessor chip design. Designers, consequently, are creating
chip architectures with decentralized control which are simply parallel architectures
on individual chips.

Single-chip multiprocessors are one approach to using the abundant on-chip tran-
sistor counts while accounting for constant, across-chip wire delays. Instead of placing
a few complex, superscalar cores on a single chip, many single-issue, in-order cores
and memory populate the same total area. These chips are organized into a grid of
nodes, where each node contains a processor and a portion of the total on-chip mem-
ory. Although these nodes function independently, they interact via shared memory
through a network where latency increases linearly based on Manhattan distance.

The challenges facing users of these single-chip multiprocessors resemble those
encountered in earlier multiprocessor systems, namely load balancing and locality.
However, single-chip multiprocessors differ significantly enough from earlier multipro-
cessors in terms of per processor storage and remote communication latencies that
solutions that improved performance in earlier systems have limited applicability in

this new domalin.
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This thesis examines how to efficiently map applications onto single-chip multi-
processors given these chips’ constraints, limited on-chip storage, and opportunities,
ample processing resources and high bandwidth, low-latency on-chip communication.
By analyzing application information about communication patterns and resource
demands available at compile and runtime, we create techniques that improve ap-
plication performance by making better decisions about the placement of data and
threads across the chip. In particular, we present a strategy which simultaneously
reduces communication demands and distributes resource demands. We also show
that results from our application analysis can be used statically to create new thread
decompositions which enable improved data and thread mappings on single chip mul-
tiprocessors. Finally, we show how these techniques can be used in conjunction with

well-established techniques, like caching, to further improve application performance.

1.1 Technology Trends

Advances in chip transistor capacities have enabled increasingly complex, faster, and
more powerful processors to be manufactured. Transistor densities, however, repre-
sent an important, but not comprehensive, factor in chip performance; wires connect-
ing transistors influence performance as well. In fact, the relative performance impact
of wire delays is growing. As wire widths have decreased, wire resistances have in-
creased, creating larger signal propagation delays. Combined with growing transistor
capacities and chip sizes, the fraction of chip area reachable at a given clock rate is
decreasing as seen in Figure 1.1.

One approach to reducing the impact of wire delays includes breaking long wires
into a series of short wires connected by repeaters. Instead of delay growing quadrati-
cally with wire length, it grows linearly. This design approach to on-chip interconnect
results in multi-cycle chip latencies. Consequently, global control of chips becomes

more difficult to achieve, making uniprocessor architectures less appealing.
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Table 1.1: Ongoing projects assuming multi-cycle chip latencies.

‘ Project ‘ Description

Smart Memories | A single chip is divided into tiles which each include a processor,
reconfigurable memory, and a network interface. The project
is exploring the usefulness of providing reconfigurability on a
larger scale. They have made the on-tile memory reconfigurable
and allow multiple adjacent tiles to function together as a single
processing entity.

MIT RAW The RAW project divides a chip into many small tiles, each
containing a processor, memory, configurable logic, and a pro-
grammable switch. Communication between tiles is fast and
generally orchestrated by the compiler although a slower dy-
namic network exists when communication can not be scheduled
statically.

TRIPS This project at the University of Texas divides a single-chip into
two large grid processors. Each grid processor contains an array
of executing nodes. Nodes in the array are connected to their
nearest-neighbors but can send messages to any other node in
the array. The goal of this architecture is to allow these arrays
to be reconfigured in order to provide the appearance of different
types of architectures suited for different application types.

1.2 Single-Chip Multiprocessors

Computer architects must accomodate these multi-cycle latencies in their designs.
One approach being taken is to decompose chips into multiple regions, where all
structures in a given region can be reached in a single cycle. Communication between
regions takes multiple cycles depending on the distance between these regions. The
intuition behind this chip design is that each region operates independently, enabling
the region to run at a fast clock rate. In order for this approach to achieve high
performance, however, multi-cycle communication latenices must be either tolerated
or minimized.

Table 1.1 lists three projects currently incorporating this type of chip design. In
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Figure 1.2: Baseline single-chip multiprocessor

this thesis, we define a single-chip multiprocessor to include the recurring features of

these architectures, namely

e chips consist of multiple, independent processing nodes,
e cach processing node contains limited storage which is globally accessible, and

e communication takes 1 cycle between adjacent nodes and increases linearly with

Manhattan distance.

Our conclusions apply to all of these chips regardless of additional architecture
dependent features.

Figure 1.2 and Table 1.2 depict the parameters of our baseline architecture. A
single chip contains 64 nodes organized in an 8x8 grid. Each node contains a processor

core similar to a MIPS R5000, a portion of the on-chip memory, and a network
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Table 1.2: Baseline architecture for single-chip multiprocessors

‘ Parameter ‘ Value ‘
Nodes 64
Processor Single-issue, in-order, 1GHz CPU
CPI=1 for all non-memory instructions
Hardware Thread Contexts 8
Per Node Memory 1 MB
Node Memory Access Time 0 cycles
On-chip Network 8x8 mesh
Flit Size 8B (equal to read request)
Per Node Physical Channels 6 (N, S, E, W, injection, ejection)
Injection Channel Buffers 16 Messages
Ejection Channel Buffers Infinite
Virtual Channels Per Physical Channel | 4
Per Virtual Channel Buffers 8
Hop Latency 1 cycle
Off-chip Memory Access Time 50 cycles

interface to the on-chip network. Specifically, each node includes a single-issue, in-
order processor with 8 hardware thread contexts. The processor clock rate is relatively
slow, 1 GHz. We assume a zero cycle latency for switching between thread contexts.
64MB of memory are divided equally among nodes on the chip, and each processor
can access the memory on its node within a single cycle.

A mesh network connects the nodes together. Consequently, each node has six
channels, one to each of its neighbors and one each for injection and ejection. Nodes
can buffer up to 16 messages to be injected into the network. The channels con-
necting nodes are 8B wide, the size of a memory request, and operate at the same
rate as the processor. Table 1.2 specifies the additional parameters determining net-
work bandwidth. With respect to latency, the mesh network allows adjacent nodes to
communicate in one processor cycle and the communication latency to remote nodes
equals the number of nodes traversed times the clock cycle, without contention. Al-
though not modeled in detail, off-chip DRAM can be accessed with a fixed latency of
50 cycles.
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Table 1.3: Key differences between multi-chip and single-chip multiprocessor systems

‘ Parameter ‘ Multi-chip ‘ Single-chip ‘
Cache Multiple Levels (32KB L1 | Single Level (32-64KB)
/ 1 MB L2)
Local Memory 32+ MB 1MB
Remote Memory Access | 100s cycles 10s cycles (distance de-
pendent)

1.3 Single-Chip Multiprocessor Challenges

Single-chip multiprocessors resemble the multi-chip multiprocessors examined exten-
sively in the 1990s. Obtaining high performance in both of these systems requires
distribution of work across all of the available processors. Additionally, reducing
remote memory access times is essential to keeping these processors busy.

Despite these similarities, single-chip multiprocessors exhibit several distinct char-
acteristics from multi-chip multiprocessors. First, the amount of storage available at
each processor is significantly smaller than in a multi-chip system. Because a fixed
area can be reached in a single clock cycle, a fixed amount of storage can be reached
in a single cycle. Second, the on-chip communication network connecting process-
ing nodes differs substantially from the off-chip networks used in multi-chip designs.
Nodes on a single chip interact via a high-bandwidth, low latency network. Com-
munication between neighboring nodes is fast (1 clock cycle) and latencies between
distant nodes increase linearly with Manhattan distance. In contrast, multi-chip re-
mote accesses took 100s of clock cycles regardless of the destination node’s physical
proximity to the requesting node. Finally, although single-chip multiprocessors have a
high-bandwidth network, their network usage frequency is likely to outpace between-
chip transfers simply due to the limited amount of per node storage. Nodes will need
to collectively share all on-chip memory. Contention for network resources, therefore,
will become a concern in these systems.

Table 1.3 summarizes the key differences between single- and multi-chip multi-

processors. These differences motivate re-exploration of techniques that distribute
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resource demands and reduce remote memory latencies. Techniques that improved
performance in the multi-chip domain do not necessarily suit the single-chip environ-
ment. For example, extensive caching enables multi-chip multiprocessors to reduce
memory access latencies, however, the limited per-node storage in single-chip systems

makes this approach infeasible on the same scale.

1.4 Contributions

In this thesis, we examine the two main challenges to achieving high performance in
parallel architectures: distributing resource demands and reducing communication la-
tency. These goals frequently conflict, making their simultaneous fulfillment difficult.
The large number of nodes on a single chip combined with the linearly increasing la-
tency function for communication among those nodes insure this conflict will strongly
influence single-chip multiprocessor performance.

Consequently, the first component of this research examines how the underlying
architecture impacts the interactions between application objects, a generic term used
to encompass both threads and data. We create a framework for characterizing the
resource demands of these objects in terms of computation, communication, and
storage and characterizing the inherent communication patterns among these objects.
This framework provides an architecture-independent view of the possible application
traits. We use this framework to pinpoint which application traits will perform poorly
on single-chip multiprocessors.

The second component of this research presents a simple migration strategy which
simultaneously distributes resource demands and reduces communication latency.
The technique builds specifically on the distinctive communication properties of single-
chip multiprocessors. In the network we consider, communication latencies between
adjacent nodes are small but increase linearly with Manhattan distance. Interact-
ing data and threads can therefore be placed on nearby nodes without incurring large
communication latency penalties. We use this property to design a migration strategy
which moves data and threads to nearby nodes in order to alleviate nodes’ resource

demands and/or reduce an object’s communication distance. Our strategy represents
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these two conflicting goals as directed forces. When combined, the resulting migration
force specifies the neighboring node which best satisifies both of these goals.

Because our migration strategy relies on dynamically visible communication pat-
terns, it cannot always improve an object’s locality despite the presence of locality
inherent in the application; the mapping of objects onto the architecture obscures
the relationships between objects. Often this occurs because different threads use
the same set of data at different points in time; thus, there are connections between
the data being used, but the observable connections are between each data object
and the requesting threads, not among the data objects. The best solution for ob-
taining good performance, therefore, requires avoiding these types of mappings. We,
therefore, analyze which application traits and mapping strategies obscure inherent
application locality.

In the third component of our research, we present and evaluate a technique
called anchors which statically modifies the application to prevent obfuscation of
these inherent communication patterns. Specifically, application code is changed to
expose these patterns. Threads are decomposed into sub-threads based on the clusters
of data those threads use over time. Each sub-thread then executes at the location
of a representative, or anchor, chosen from the associated data cluster. Doing so
insures that communication patterns among data, not just between data and threads,
become visible to potential optimizations like our migration strategy. A larger set of

applications can therefore be shaped to perform well on single-chip multiprocessors.

1.5 Roadmap

The presentation of our research begins with the introduction of our application
characterization framework in Chapter 2. We present the basic terminology used
throughout the remainder of the thesis. In particular, we specify the resource demands
exhibited by both threads and data and delineate the different types of communication
relationships exhisting among these objects. In Chapter 3, we describe the synthetic
benchmarks and applications used in our studies and explain how each application

fits into our framework.
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Chapter 4 describes our force-based migration strategy. After giving a detailed
description of the migration algorithm, we use synthetic benchmarks to analyze the
performance of this migration technique on different application characteristics and
mappings. We then proceed to analyzing the performance of full applications. Based
on our analysis, we explain the limitations and possible improvements for this tech-
nique.

Our anchor approach provides a solution for limitations of the migration strategy:.
Chapter 5 presents simple equations to explain the intuition behind anchors and then
explores how different parameters impact the costs of applying this technique. We
use full-sized applications to show how static approaches like anchors become even
more important to improving performance as processors become relatively faster than
communication networks.

Finally, we show how these two techniques compare to existing techniques for
reducing communication latency. We show that these techniques can be used to im-
prove performance on single-chip multiprocessors incorporating caches on each node
in addition to being used on cacheless systems. Chapter 6 uses full-length applications
to explore the impact of the different system designs and application characteristics
on the usefulness of the three approaches. We finish by discussing related work in

Chapter 7 and concluding in Chapter 8.
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The single-chip multiprocessor architecture explored in this work exhibits several
characteristics that need to be accounted for when decomposing applications into
threads and data and when distributing those threads and data across the nodes of
a chip. First, these chips offer large quantities of parallel processing resources. Not
only can a single thread execute independently on each node, but executing additional
threads per node will mask remote memory access latencies. Second, individual nodes
contain limited memory but can quickly access remote on-chip memory via the fast
and high bandwidth communication network. Third, these architectures can create
lightweight threads quickly (around 11 cycles) and can switch between threads quickly
28].

In this chapter, we present a framework used to help decompose applications into
threads and data and then distribute the threads and data across the chip. We
describe the information available in each application that can be used to create
informed data and thread placements. For each application we examine, we extract
the resource demands exhibited by individual threads and data and the architecture-
independent communication links among data and threads. This information is used
throughout the rest of this dissertation to improve data and thread placements so that
unevenly distributed resource demands are avoided and communication demands are

reduced.

2.1 An Example Application: barnes-hut

Throughout this chapter, we use the barnes-hut application to illustrate which in-
formation we extract from applications and explain why we use that information in
our framework. We first describe the application’s organization and then discuss its

resource demands and its inherent communication patterns.

2.1.1 Description

barnes-hut is an optimized version of the n-body problem. N-body problems simulate

the influence that each body exerts on all of the other n-1 bodies in a system. For
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example, galaxy simulation calculates how different bodies’ masses and velocities
affect one another’s locations and velocities. The further bodies are apart from one
another, or the less mass they have, the smaller impact they have on one another.
barnes-hut exploits this property to reduce the amount of computation performed;
multiple distant bodies are treated as a single body. Consequently, the effects of
fewer bodies on a specific body’s location and velocity must be computed than in the
n-body case.

Figure 2.1 graphically depicts this difference between the applications for a given
body G. Despite the distance between G and bodies Ey4, Es5, and Eg, Figure 2.1(a)
shows computation must occur between G and all six other bodies when a generic
n-body algorithm is applied. In Figure 2.1(b), however, only 4 computations must
be calculated; the bodies F4, E5, and Eg are treated as a single body due to their
distance from G.

barnes-hut organizes the n bodies into a tree structure, called an octree, that
allows each node in the tree to have up to eight children. The octree’s internal nodes
represent a portion of the entire application space that includes several bodies; the
octree’s leaves represent individual bodies in the system. Bodies are positioned in
the octree as children of the internal nodes that encompass their locations. Figure
2.1(c) shows the octree organization of the bodies in Figure 2.1(b). Internal nodes
(I;) represent the total mass, location, and velocity of the bodies in their subtrees.
When a single internal node will have the same effect as the combination of all the

elements in its subtree, the values at the internal node are used for computation.

2.1.2 Resource Demands

We now look at how our organization of barnes-hut into threads and data determines
the computation and communication demands generated.

For each body F;, we compute its next location and velocity based on all of the
bodies with which it interacts. We quantify a body’s computational demands as the
number of bodies with which it interacts. In Figure 2.1(c), body G must calculate its

position by looking at Ey, Es, E3, and I. Ej5, on the other hand, must incorporate
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distant

(@) n-body (b) barnes-hut

‘@ ofe

c) octree for (b

Figure 2.1: (a) shows an example graph for an n-body problem. The impact of all
bodies (£;) on body G must be calculated. Because bodies Fy4, E5, and Ejg are distant
from body G, barnes-hut calculates their effect on G as a single entity as seen in (b).
(c) shows the organization of (b) into an octree which includes internal nodes, I;
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all of the bodies into its calculations because it is not particularly distant from any
of the other bodies in the system. Because the amount of processing required to
calculate each body’s location and velocity at the next timestep varies for each body,
it is difficult to equally distribute work across processors.

The number of data accesses, and therefore the communication demands, for com-
puting a body’s new position and velocity depend on the number of bodies included
in its calculation. The amount of communication incurred, therefore, varies across
the n bodies. Because of the tree structure placed on the n bodies, the inter-body
communications exhibit temporal locality; as each thread traverses the tree, the ele-
ments of the tree will be accessed in the same order, adding predictability to the data

accesses.

2.2 Two Program Decomposition Styles

Before proceeding with our extraction of information about resource demands and
locality, we first need to discuss how single-chip multiprocessors impact decisions
about decomposing applications into threads. Computation can be decomposed into
small numbers of heavyweight threads that execute for long periods of time or into
many lightweight threads that exist for short periods of time. The method used
for attributing resource demands and communication to individual threads and data

differs depending on which decomposition style is chosen.

2.2.1 Heavyweight threads

One way of decomposing a program into threads is to create one thread per processor
and divide the work equally among those threads. Computations that share similar
data can be computed by a single thread to improve locality. The n bodies in barnes-
hut can be divided equally among the processor threads; bodies near one another
in the octree are computed by the same thread. This approach is particularly useful
when thread creation, context switching, and inter-processor communication latencies

are large.
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Several limitations exist for this approach. First, distributing work equally may
be difficult in applications where sharing patterns change over time or are unknown
statically. For example, as bodies move over time in barnes-hut, they will move away
from previously close bodies and towards previously distant bodies. As a result,
threads will have unequal amounts of work and may end up having reduced data
locality despite good initial static placements. Second, attempts to take advantage of
idle resources will be thwarted by the limited number of threads and the threads’ as-
sociated data footprints. A single thread may have a large amount of work remaining,
but it cannot be doled out to other processors. Additionally, these threads frequently
accumulate large quantities of state (data); this state must be moved with the thread

to obtain the best performance.

2.2.2 Lightweight threads

An alternate approach to creating one thread per processor is to create one thread
per independent computation. An independent computation is defined as a series of
instructions and data accesses that complete one logical action in the application.
In barnes-hut, we can associate one thread with a single body’s computation for
a given timestep. In this scenario, N threads, where N represents the number of
independent computations and may be larger than the number of processors, can
execute in parallel. These threads can be moved between processors to take advantage
of idle resources. Additionally, because lightweight threads’ data footprints generally
remain small, the cost of moving thread state remains manageable.

Applications written in this fashion, however, perform poorly on systems with high
thread creation and communication latencies. Limited communication bandwidth
may restrict thread movement. Additionally, the locality inherent in the original
application can easily be lost if associations between threads and their data are not
maintained. For example, the data locality created by the octree structure in barnes-

hut can be easily lost as each body is assigned to its own thread.
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2.2.3 Comparison

The single-chip multiprocessors used for our studies can execute applications de-
composed either way. In order to take advantage of the available on-chip parallel
resources, however, we focus on applications with many lightweight threads, each
associated with a single independent computation. The remainder of this chapter fo-
cuses on extracting information about resource demands and locality for a set of such
applications. We can use this information to determine how to both initially place
and dynamically move data and threads on a single-chip multiprocessor to achieve

high performance.

2.3 Resource demands

In single-chip multiprocessors, both computation and communication resource con-
tention can significantly degrade application performance. An imbalanced thread
distribution limits the overall speedup gained by using parallel processors. Hot spots
in the network can cause communication latencies to explode, causing applications
expecting small on-chip latencies to flounder. Because data and threads contribute to
the overall demands for these resources, we discuss how to attribute resource demands

to both of these program abstractions.

2.3.1 Computation

The use of lightweight threads that only exist long enough to complete a single in-
dependent computation poses problems for detecting and responding to dynamic
knowledge about processor demands. When threads are associated with independent
computations, multiple threads may be used to perform the same calculations at dif-
ferent times during the application’s execution. In barnes-hut, for example, different
threads will perform movement calculations for a single body during different time
steps. At each new timestep, new threads are created and placed according to the
application’s original thread placements; consequently, all previous thread redistri-

butions will be lost between timesteps. To obtain the benefits of thread migration
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experienced by long-running threads, we must explicitly make connections between
short-lived threads that perform the same computation on the same data at different
points in the application’s execution.

The data operated on by these threads outlives thread creations and deletions,
making it an ideal mechanism for creating connections between these threads. Con-
sequently, we associate independent computations with the data they use. This as-
sociation is similar to the associations created between computation and data in
object-oriented code. Consider the scenario in which an object Foo contains private
data bar which is modifed by Foo’s method UpdateBar().

object foo {

UpdateBar(...){

bar = ...
}
private:

bar;

The computation in UpdateBar() is clearly associated with a specific instance of
object Foo and, in particular, that instance’s data element bar. Similarly, in barnes-
hut, we associate the computation performed for a given body with the data rep-
resenting that body. This establishes a single entity that represents the total work
performed by all of the body’s threads over time.

One way of deciding where to execute these short-lived threads is to execute each
thread at the location of the data with which the computation is associated. We can
use the information gathered about the amount of computation associated with data
to distribute data across nodes. Furthermore, we can insure that data is distributed
so that the total amount of computation per node is roughly equal. In barnes-hut, the

amount of computation performed to calculate each body’s next location and velocity
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varies depending on the body’s relative location to other bodies in the system. Placing
several bodies that require less computation on the same node as a body that requires
the maximum amount of computation prevents that node from being assigned more

than its share of total computation.

2.3.2 Communication

In addition to processor demands, both threads and data also have communication
demands. Because communication is dependent on data storage locations, we decom-
pose communication demands into two components: network resources and memory.
Memory stores data while network resources enable communication of that data be-
tween threads and data.

Any time a thread performs a load or store, creates a new thread, or performs
synchronization, it may require network resources. In contrast, data does not perform
actions but instead has actions performed on it. Just as data can be associated with
the computation that accesses it, we associate data with the network resources used
to access that data. Consequently, every load or store to a specific data element may
contribute to that data’s network demands.

Both threads and data require memory to store their associated data. For a thread,
the quantity of storage needed is the size of its stack and any additional private data.
For data, the storage demands are equal to its size.

When executing applications, we can use communication resource demands to
avoid resource contention caused by co-locating many frequently communicating data
and threads on the same node. For example, the bodies and internal nodes at the top
of barnes-hut’s octree are likely to be accessed frequently; to avoid network contention,
they should not all be placed on a single node. Similarly, distributing threads and
data with large memory sizes across multiple nodes improves the likelihood that all

of the data associated with these objects will fit in local memory.
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Table 2.1: Explicit object relationships created by direct communication between
objects.

‘ Object ‘ Object ‘ Mechanism ‘

T T Synchronization
T T Thread creation
T D Memory reference

2.4 Communication patterns

The preceding resource-centric characterization of threads and data provides infor-
mation which can help avoid overloaded architecture resources. However, it fails to
describe the complete set of relationships between these entities. These relationships
define the inherent locality within an application and, therefore, enable us to evaluate
the communication demands resulting from a given placement of data and threads.
In this section, we characterize the communication patterns that result from both
explicit and implicit relationships among data and threads. For the remainder of this

thesis, we will refer to data and threads generically as objects.

2.4.1 Inherent application communication patterns

Whenever communication occurs between two objects, an explicit relationship exists
between these objects. Table 2.1 summarizes the instances of explicit communication
between objects. When two threads synchronize with one another or a thread accesses
data, these objects are explicitly linked.

However, threads and data are also implicitly linked in many more complex ways,
as shown in Table 2.2. Threads that use the same data have an implicit relationship
via that data. Similarly, data used by the same thread are connected to one another
via the thread. These implicit relationships shape the global communication structure

of an application.
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Table 2.2: Implicit object relationships created by communication to two objects via
an intermediate object.

‘ Object ‘ Object ‘ Mechanism ‘
T T
D D

Data used by multiple threads
Data used by same thread

Table 2.3: Explicit and implicit relationships in Figure 2.2 at cluster ¢

‘ Relationship ‘ Object ‘ Object ‘
Explicit T b;.velocity
T b; . mass
T b; location
Implicit b;.velocity | b;.locality
b;.velocity | b;.mass
b;.locality | b;.mass
bo bi

2.4.2 Description of object interaction parameters

Having enumerated the set of possible implicit and explicit relationships between
threads and d