
Pthread
Synchronization

Lecture 9
March 10, 2025

To Dos

Reading for next time

Midterm next class

Questions about program 4?

● To create a lock, need to
○ Declare a pthread_mutex_t variable

■ pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER
○ Call pthread_mutex_init() on that variable

■ Second argument sets attributes different from default and can be
NULL

Pthread Locks

int pthread_mutex_init(pthread_mutex_t *mutex_p,
 const pthread_mutexattr_t *attr_p)

● pthread_mutex_lock() blocks if someone already has lock
○ Returns 0 on success and thread has lock

● Pthread_mutex_unlock() returns 0 on success
○ Must have lock for this to be successful

Pthread mutexes: locking and unlocking

int pthread_mutex_lock(pthread_mutex_t *mutex_p)

int pthread_mutex_unlock(pthread_mutex_t *mutex_p)

● To create a condition variable, need to
○ Declare a pthread_cond_t variable

■ pthread_cond_t cond = PTHREAD_COND_INITIALIZER
○ Call pthread_cond_init() on that variable

■ Second argument sets attributes different from default and can
be NULL

Pthread Condition Variables

int pthread_cond_init(pthread_cond_t *restrict cond,
 const pthread_condattr_t *restrict attr)

Pthread CV: wait/signal/broadcast

int pthread_cond_wait(pthread_cond_t*p, pthread_mutex_t *mutex)

int pthread_cond_signal(pthread_cond_t *cond_var_p)

int pthread_cond_broadcast(pthread_cond_t *cond_var_p)

int num_threads;
int val;

void *Hello(void *rank)
{
 int tmp = val+1;
 if((long)rank % 2 == 0)
 sleep(1);
 val = tmp;
 return NULL;
}

int main(int argc, char *argv[])
{
 long pthread;
 num_threads = 4;
 val = 0;
 pthread_t ids[num_threads];

 for(long i = 0; i < num_threads; i++){
 pthread_create(&ids[i], NULL, Hello, (void*)i);
 }
 for(int i = 0; i < num_threads; i++){
 pthread_join(ids[i], NULL);
 }
 printf("Value of val %d\n", val);
 return 0;
}

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int num_threads;
int val;

void *Hello(void *rank)
{
 pthread_mutex_lock(&mutex);
 int tmp = val+1;
 if((long)rank % 2 == 0)
 sleep(1);
 val = tmp;
 pthread_mutex_unlock(&mutex);
 return NULL;
}

int main(int argc, char *argv[])
{
 long pthread;
 num_threads = 4;
 val = 0;
 pthread_t ids[num_threads];
 pthread_mutex_init(&mutex, NULL);

 for(long i = 0; i < num_threads; i++){
 pthread_create(&ids[i], NULL, Hello,

(void*)i);
 }
 for(int i = 0; i < num_threads; i++){
 pthread_join(ids[i], NULL);
 }
 printf("Value of val %d\n", val);
 return 0;
}

Semaphores

● Semaphore has a non-negative integer value
○ P() atomically waits for value to become > 0, then decrements
○ V() atomically increments value (waking up waiter if needed)

● Semaphores are like integers except:
○ Only operations are P and V
○ Operations are atomic

■ If value is 1, two P s̓ will result in value 0 and one waiter
● Semaphores are useful for

○ mutual exclusion and general waiting for another thread to do something
(e.g., fork/join)

How Can We Use a Semaphore to Create
Mutex?

Example from Earlier: Bounded Buffer
tryget() {

 item = NULL;

 lock.acquire();

 if (front < tail) {

 item=buf[front % MAX];

 front++;

 }

 lock.release();

 return item;

}

tryput(item) {

 lock.acquire();

 if((tail – front)< MAX){

 buf[tail % MAX]=item;

 tail++;

 }

 lock.release();

}

Initially: front = tail = 0; lock = FREE; MAX is buffer capacity

Semaphore Bounded Buffer

get() {

 fullSlots.P();

 mutex.P();

 item = buf[front % MAX];

 front++;

 mutex.V();

 emptySlots.V();

 return item;

}

put(item) {

 emptySlots.P();

 mutex.P();

 buf[last % MAX] = item;

 last++;

 mutex.V();

 fullSlots.V();

}

Initially: front = last = 0; MAX is buffer capacity
mutex = 1; emptySlots = MAX; fullSlots = 0;

Using Semaphores w/ Pthreads

● Semaphores not part of pthreads
● #include <semaphore.h>
● Type is sem_t
● int sem_init(sem_t* semaphore_p, int shared,

unsigned val)
○ shared : whether shared across processes. Should set to

0.
○ val : initial value

● int sem_post(sem_t* semaphore_p) // Up/V
● int sem_wait(sem_t* semaphore_p) // Down/P

#include <semaphore.h>

int num_threads;
int val;
sem_t semaphore;

void *Hello(void *rank)
{
 sem_wait(&semaphore);
 val++;
 sem_post(&semaphore);
 return NULL;
}

int main(int argc, char *argv[])
{
 long pthread;
 num_threads = 4;
 val = 0;
 pthread_t ids[num_threads];

 sem_init(&semaphore, 0, 1);

 for(long i = 0; i < num_threads; i++){
 pthread_create(&ids[i], NULL, Hello,

(void*)i);
 }

 for(int i = 0; i < num_threads; i++){
 pthread_join(ids[i], NULL);
 }

 printf("Value of val %d\n", val);
 return 0;
}

Barriers

● Point of synchronization that all threads must reach before any
proceed

● No implementation in pthreads
● Incredibly useful for parallel codes where all threads work

independently and then combine results for next stage
○ Functionally may do something akin to MPI s̓ reduce,

gather, or scatter functionality at the end of a barrier

Improving Lock Performance

● Locking granularity
○ Coarse grained: less concurrency
○ Fine grained: more concurrency, often more locks, often harder

to keep track of everything
● Try locks

○ Before trying to get a lock, see if it s̓ already in use
○ Trylocks attempt to get the lock, but return instantly if already in

use
■ int pthread_mutex_trylock(pthread_mutex_t

*mutex);
● Sometimes you have data that will be read lots by many different

threads but updated rarely
○ Donʼt want to serialize the threads when theyʼre just reading the

data
○ Still need to insure correct updates

Read-Write Locks

● Multiple readers grab read locks and can access shared data
simultaneously
○ Threads that want to write must wait until all readers have

released read locks
● Writer lock provides exclusive access to shared data

○ Only 1 writer at a time
○ No readers allowed when there is a writer

● How does write frequency impact performance?

Use of Read-Write Locks?

Read-Write Locks

● Type is pthread_rwlock_t
● Initialize variable to PTHREAD_RWLOCK_INITIALIZER
● int pthread_rwlock_init(pthread_rwlock_t* rwlock)

● int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
● int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

● int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
● There are try versions of both the read and write locks

Thread Safety

● Libraries frequently have static or global variables declared in them
● When you use threaded code, access to those variables has potential

to cause race conditions
● Need to only use thread-safe versions of libraries when writing

multithreaded programs

Questions?What do you remember
about caches?

