
Shared Memory
Synchronization

Lecture 8
March 6, 2025

To Dos

Reading for next time

Program 3 submission today

Questions about program 3?

Synchronization Motivation

● When threads concurrently read/write shared memory,
program behavior is undefined
○ Two threads write to the same variable; which one

should win?
● Thread schedule is non-deterministic

○ Behavior changes when re-run program
● Compiler/hardware instruction reordering
● Multi-word operations are not atomic

Question: What is the outcome of this code?

Thread 1

x=x+1;

print x;

Thread 2

x=x+1;

print x;

x = 0

Question: Will p have result of someComputation()
before someFunction()?

Thread 1

p = someComputation();

pInitialized = true;

Thread 2

while (!pInitialized)

 ;

q = someFunction(p);

Why Reordering?
● Why do compilers reorder instructions?

○ Efficient code generation requires analyzing control/data
dependency

○ Problem: If variables can spontaneously change (due to
threads), most compiler optimizations become
impossible

● Why do CPUs reorder instructions?
○ Write buffering: allow next instruction to execute while

write is being completed
Fix: memory barrier

○ Instruction to compiler/CPU
○ All ops before barrier complete before barrier returns
○ No op after barrier starts until barrier returns

Too Much Milk Example

Person A Person B

12:30 Look in fridge. Out of milk.

12:35 Leave for store.

12:40 Arrive at store. Look in fridge. Out of milk.

12:45 Buy milk. Leave for store.

12:50 Arrive home, put milk away. Arrive at store.

12:55 Buy milk.

 1:00 Arrive home, put milk away.
Oh no!

Definitions
Race condition: output of a concurrent program depends on

the order of operations between threads
Mutual exclusion: only one thread does a particular thing at

a time
○ Critical section: piece of code that only one thread can

execute at once
Lock: prevent someone from doing something

○ Lock before entering critical section, before accessing
shared data

○ Unlock when leaving, after done accessing shared data
○ Wait if locked (all synchronization involves waiting!)

Definitions

● Safety – program never enters a bad state
● Liveness – program eventually enters a good state

Too Much Milk, Try #1

● Correctness property
○ Someone buys if needed (liveness)
○ At most one person buys (safety)

● Try #1: leave a note
if (!note)

 if (!milk) {
 leave note
 buy milk
 remove note
 }

Too Much Milk, Try #2

Thread A

leave note A
if (!note B) {
 if (!milk)
 buy milk
}
remove note A

Thread B

leave note B
if (!noteA) {
 if (!milk)
 buy milk
}
remove note B

Too Much Milk, Try #3
Thread A

leave note A

while (note B) // X

 do nothing;

if (!milk)

 buy milk;

remove note A

Thread B

leave note B

if (!noteA) { // Y

 if (!milk)

 buy milk

}

remove note B

Can guarantee at X and Y that either:
(i) Safe for me to buy

(ii) Other will buy, ok to quit

Lessons

● Solution is complicated
○ “obvious” code often has bugs

● Modern compilers/architectures reorder instructions
○ Making reasoning even more difficult

● Inefficient due to busy waiting
○ Generalizing to many threads/processors even more

complex and still inefficient

Implementing Synchronization

Locks

● Lock has two states: free, busy
● Lock::acquire()

○ wait until lock is free, then take it (make busy)
○ done atomically

● Lock::release()
○ release lock, waking up one thread waiting for it which will

now have the lock
● Properties:

1. At most one lock holder at a time (safety/mutual exclusion)
2. If no one holding, acquire gets lock (progress)
3. If all lock holders finish and no higher priority waiters,

waiter eventually gets lock (progress/bounded waiting)

Too Much Milk, #4

Locks allow concurrent code to be much simpler:

lock.acquire();
if (!milk)
 buy milk
lock.release();

Rules for Using Locks

● Lock is initially free
● Always acquire before accessing shared data structure

○ Beginning of procedure!
● Always release after finishing with shared data

○ End of procedure!
○ Only the lock holder can release

● Never access shared data without lock
○ Danger!

Example: Bounded Buffer
Class BoundedBuffer {
 private:

Lock lock;

int buf[MAX];
int front;
int tail;

 public:
int tryget();
void tryput(int item);

}

Example: Bounded Buffer
tryget() {

 item = NULL;

 lock.acquire();

 if (front < tail) {

 item=buf[front % MAX];

 front++;

 }

 lock.release();

 return item;

}

tryput(item) {

 lock.acquire();

 if((tail – front)< MAX){

 buf[tail % MAX]=item;

 tail++;

 }

 lock.release();

}

Initially: front = tail = 0; lock = FREE; MAX is buffer capacity

Question

● If tryget returns NULL, do we know the buffer is empty?

● If we put tryget in a loop, what happens to a thread calling tryput?

Condition Variables

● Waiting inside a critical section
○ Called only when holding a lock
○ Waiting for another thread to do something
○ Alternative to polling/busy-waiting

● wait(lock): atomically release lock and relinquish processor
○ Reacquires the lock when wakened

● signal(lock): wake up a waiter, if any

● broadcast(lock): wake up all waiters, if any

Shared Object

● Contains shared data
● Contains lock
● Contains 0+ condition variables

○ Can wait for some shared data state to change while
not preventing other threads from getting lock

Condition Variable Design Pattern
methodThatWaits() {
 lock.acquire();
 // Read/write shared state

 while(!testSharedState()) {
 cv.wait(&lock);
 }

 // Read/write shared
 // state
 lock.release();
}

methodThatSignals() {

 lock.acquire();

 // Read/write shared state

 // If testSharedState

 // is now true

 cv.signal(&lock);

 // Read/write shared state

 lock.release();

}

Example: Bounded Buffer
Class BoundedBuffer {

 private:

Lock lock;

ConditionVariable full;

 ConditionVariable empty;

int buf[MAX];

int front;

int tail;

 public:

int get();

void put(int item);

}

Example: Bounded Buffer
get() {

 lock.acquire();

 while (front == tail) {

 empty.wait(lock);

 }

 item = buf[front % MAX];

 front++;

 full.signal(lock);

 lock.release();

 return item;

}

put(item) {

 lock.acquire();

 while((tail–front)==MAX)
{

 full.wait(lock);

 }

 buf[tail % MAX] = item;

 tail++;

 empty.signal(lock);

 lock.release();

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

Pre/Post Conditions

● What is state of the bounded buffer at lock acquire?
○ front <= tail
○ front + MAX >= tail

● These are also true on return from wait

● And at lock release

Pre/Post Conditions
methodThatWaits() {

 lock.acquire();

 // Pre-condition: State is

 // consistent

 // Read/write shared state

 while (!testSharedState()) {

 cv.wait(&lock);

 }

 // WARNING: shared state may

 // have changed! But

 // testSharedState is TRUE

 // and pre-condition is true

 // Read/write shared state

 lock.release();

}

methodThatSignals() {

 lock.acquire();

 // Pre-condition: State is
consistent

 // Read/write shared state

 // If testSharedState is now true

 cv.signal(&lock);

 // NO WARNING: signal keeps lock

 // Read/write shared state

 lock.release();

}

Condition Variables

● ALWAYS hold lock when calling wait, signal, broadcast
○ Condition variable is sync FOR shared state
○ ALWAYS hold lock when accessing shared state

● Condition variable is memoryless
○ Has queue of waiting threads
○ If signal when no one is waiting, no op
○ If wait before signal, waiter wakes up on signal

● Wait atomically releases lock
○ What if release, then wait?

Condition Variables, contʼd

● When a thread is woken up from wait, it may not run immediately
○ Signal/broadcast put thread on ready list
○ When lock is released, anyone might acquire it

● Wait MUST be in a loop
while (needToWait()) {
 condition.wait(lock);

}

● Simplifies implementation
○ Of condition variables and locks
○ Of code that uses condition variables and locks

Structured Synchronization

● Identify objects or data structures that can be accessed by multiple threads
concurrently

● Add locks to object/module
○ Grab lock on start to every method/procedure
○ Release lock on finish

● If need to wait
○ while(needToWait()) { condition.wait(lock); }
○ Do not assume when you wake up, signaler just ran

● If you do something that might wake someone up
○ signal or broadcast

● Always leave shared state variables in a consistent state
○ When lock is released, or when waiting

