
MPI and Shared
Memory

Lecture 7
March 4, 2025

To Dos

Reading for next time

Program 3 submission on Thursday

Questions about program 3?

Review: MPI Communication

● Communicator
● Point-to-Point

○ Send
○ Receive

● Collective communication
○ MPI_Reduce, MPI_Allreduce
○ MPI_Bcast
○ MPI_Scatter
○ MPI_Gather, MPI_Allgather
○ MPI_Barrier

Communication vs. Computation

● Communication way more expensive than local computation
● Every message has a high fixed overhead cost for sending with some

additional time dependent on payload size
○ latency = fixed_overhead_1_byte + (payload-size / bandwidth)
○ 2 messages will take longer than 1 message with same data

Data Consolidation in Messages

● count parameter to communication functions
○ For sending of arrays

● Derived datatypes
○ Like creating a struct for the data values you need to send
○ Sequence of basic MPI datatypes with a displacement for each

■ e.g., {(MPI_DOUBLE, 0), (MPI_DOUBLE, 16), (MPI_INT, 24)}
● MPI_Pack/Unpack

Derived Datatypes

● count - number of elements in datatype
● array_of_block_lengths - number of elements in each datatype
● array_of_displacements - displacement in bytes from start of first

data
○ Use MPI_GetAddress(void *location_p, MPI_AInt*

address_p) to get address of data reference by location_p
● array_of_types - stores datatypes of elements
● Need to call MPI_Type_commit(MPI_Datatype* new_type_p) before

using in communication function (just like any other MPI type)
● Need to MPI_Type_free (MPI_Datatype *new_type_p) when done

MPI_Type_create_struct(int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements[],
MPI_Datatype array_of_types[],
MPI_Datatype * new_type_p)

Questions?Parallel Performance

Collecting Timing Info

● Surround code we care about with timing collection function calls and
subtract to find total time code ran

● double MPI_Wtime(void)
○ Returns wall clock time

● To ensure all parallel processes start at same time, have every process
call MPI_Barrier (MPI_Comm comm) before calling MPI_Wtime so they
start in synch

● Need to then find the largest time for the parallel processors as that is
the time required by the entire set of parallel processes

Limitations to Performance Improvements

● Amdahl's Law

● Inherently sequential parts of code
● Overhead in parallel parts of code

○ Communication of data between processes
○ Load balancing
○ Synchronization

Speedup and Efficiency

● Speedup(n, p) = Tserial(n) / Tparallel(n,p)

○ Linear speedup = p

● Efficiency (n, p) = S(n,p) / p = Tserial(n) / (p * Tparallel(n,p))

○ Linear speedup corresponds to Efficiency = p/p = 1
● Strongly scalable - maintain constant efficiency w/out increasing

problem size
● Weakly scalable - maintain constant efficiency if problem size increases

at same rate as number of processes

Questions?Shared Memory

Shared Memory Programming
(aka Multithreaded Programming)

Processes
● Instance of running program

○ One process per instance
● Memory is private to process
● Associated resources (e.g. files)
● Access permissions
● Includes state for at least one

thread of execution
○ HW registers,

runnable/blocked

Threads
● Contained within a process
● 1+ threads per process
● All memory shared among threads

○ Each thread has own stack
memory

● All resources and permissions
defined by process

● Each thread has own state of
execution

○ HW registers,
runnable/blocked

POSIX Threads (aka Pthreads)

● Standard for Unix-like OSes
● Specifies API for multithreaded programming
● Like MPI, just a library linked with C programs

Basic Pthreads program setup

● #include <pthread.h>
● When compiling, link in pthreads library

gcc –g –o hello hello.c –lpthread

● When running, just run as normal
./hello

Some key features

● All non-stack variables shared by all threads
○ Where the challenges of multithreaded programming comes from!

● Variables allocated on a thread s̓ stack are considered private
○ Technically, they can be accessed by other threads, but that s̓ not

good practice
● Running the program multiple times may result in different outcomes

Creating a Thread

● pthread_t* :
○ Stores thread-specific info that uniquely identifies thread
○ User program cannot access the contents

● pthread_attr_p* :
○ Specifies new threads attributes
○ Set stack, set stack size, set scheduling policy, set affinity, etc.
○ NULL indicates use of default values

int pthread_create(pthread_t* thread_p, const
pthread_attr_t* attr_p, void* (*start_routine)(void*),
void* arg_p)

Creating a Thread

● void* (*start_routine)(void*) :
○ Function pointer for code thread should execute
○ Function must take single void* argument and return void *

● void* arg_p :
○ Arguments to be passed to function
○ Can be single value cast to void*
○ Often is array or other complex data structure that contains 1+

values

int pthread_create(pthread_t* thread_p, const
pthread_attr_t* attr_p, void* (*start_routine)(void*),
void* arg_p)

K&R 5.11 talks about pointers to functions

Waiting for a Thread

● Waits for thread specified to finish execution
○ If multiple threads call join on same thread, undefined action
○ Unjoined threads are considered to be zombie threads

● void** ret_val_p:
○ Pointer to location of the item returned by thread s̓ return

statement
○ Can be NULL

int pthread_join(pthread_t thread, void **ret_val_p)

