<

MPI and Shared
Memory

Lecture /7
March 4, 2025

»

Reading for next time

Program 3 submission on Thursday

Questions about program 3?
To Dos Prog

Review: MPI Communication

e Communicator
e Point-to-Point
o Send
o Receive
e Collective communication
o MPI_Reduce, MPI_Allreduce
MPI_Bcast
MPI_Scatter
MPI_Gather, MPI_Allgather
MPI_Barrier

O O O O

Communication vs. Computation

o Communication way more expensive than local computation
e Every message has a high fixed overhead cost for sending with some
additional time dependent on payload size
o latency = fixed_overhead_l_byte + (payload-size / bandwidth)
o 2 messages Wwill take longer than 1 message with same data

Data Consolidation in Messages

e count parameter to communication functions
o For sending of arrays
o Derived datatypes
o Like creating a struct for the data values you need to send
o Sequence of basic MPI datatypes with a displacement for each
= e.g., {(MPI_DOUBLE, 0), (MPI_DOUBLE, 16), (MPL_INT, 24)}
e MPI Pack/Unpack

Derived Datatypes

MPI Type create struct(int count, int array of blocklengths|[],
MPI Aint array of displacements]|[],
MPI Datatype array of types|[],
MPI Datatype * new type p)

e count - number of elements in datatype

e array of block lengths -number of elementsin each datatype

e array of displacements -displacement in bytes from start of first
data

o UseMPI GetAddress(void *location p, MPI AInt*
address p) to get address of data reference by 1ocation p

e array of types - storesdatatypes of elements

e NeedtocallMPI Type commit (MPI Datatype* new type p) before
using in communication function (just like any other MPI type)

e NeedtoMPI Type free (MPI Datatype *new type p) Whendone

Parallel Performance

Collecting Timing Info

e Surround code we care about with timing collection function calls and
subtract to find total time code ran

e double MPI Wtime (void)

o Returns wall clock time

e Toensure all parallel processes start at same time, have every process
call MPI Barrier (MPI Comm comm) before CaIIing MPI Wtime SO they
start in synch

o Need to then find the largest time for the parallel processors as that is
the time required by the entire set of parallel processes

Limitations to Performance Improvements

¢ Amdahl's Law

fractionepnanced
SpeedupPennhancement

Tenhanced = (1 - f rac tionenhanced)XTunenhanced + Tunenhanced)

e Inherently sequential parts of code

e Overhead in parallel parts of code
o Communication of data between processes
o Load balancing
o Synchronization

Speedup and Efficiency

e Speedup(n,p)=T_. /T

serial(n) parallel(n,p)

o Linear speedup = p

¢ EfﬁCienCy (n' p) (n p) / P= Tserlal (n) / (p * Tparallel (n p))
o Linear speedup corresponds to Efficiency = p/p =1

e Strongly scalable - maintain constant efficiency w/out increasing
problem size

o Weakly scalable - maintain constant efficiency if problem size increases
at same rate as number of processes

Shared Memory

SMP - Symmetric Multiprocessor System

Main
Memory

System Bus I

Cache Cache 1/0

Cache

By Ferruccio Zulian - MilanItah)

https://commons.wikimedia.org/wiki/File:SMP_- Symmetric_Multiprocessor_System.svg

Shared Memory Programming
(aka Multithreaded Programming)

Processes Threads

e Instance of running program o %Om?eig%% EVSPSF OaC|(c;rSci“cess

o One process per instance ° All memory shared

. : among threads
e Memory s private to process T Eacr%/thread has ovx?n stack
e Associated resources (e.g. files) memory
e Access permissions) QII 1:r_esc()jutr)ces and permissions
e Includes state for at least one €lineéd Dy Process
thread of execution ° Eigg}t?gﬁad has own state of
o HW reqisters, o HW regiisters,
runnable/blocked runnable/blocked

POSIX Threads (aka Pthreads)

o Standard for Unix-like OSes
o Specifies API for multithreaded programming
Like MPI, just a library linked with C programs

Basic Pthreads program setup

e #include <pthread.h>
o When compiling, link in pthreads library

gcc —g —o0 hello hello.c —-lpthread
e When running, just run as normal
./hello

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int num threads;

void *Hello (void *rank)

{
printf ("Hello from thread %1d out of %d\n", (long)rank, num threads);
return NULL;

}

int main (int argc, char *argv[])
{

long pthread;

num_ threads= 4;

pthread t ids[num_threads];

for(long i = 0; i < num_threads; i++) {
pthread create(&ids[i], NULL, Hello, (void*)i);
}
printf ("Hello from main!\n");
for(int i = 0; i < num threads; i++) {
pthread join(ids[i], NULL);
}

return 0;

Some key features

e All non-stack variables shared by all threads
o Where the challenges of multithreaded programming comes from!
o Variables allocated on a thread's stack are considered private
o Technically, they can be accessed by other threads, but that's not
good practice
e Running the program multiple times may result in different outcomes

Creating a Thread

int pthread create(pthread t* thread p, const
pthread attr t* attr p, voild* (*start routine) (void¥*),
void* arg p)

e pthread t* :
o Stores thread-specific info that uniquely identifies thread
o User program cannot access the contents
e pthread attr p*
o Specifies new threads attributes
o Set stack, set stack size, set scheduling policy, set affinity, etc.
o NULL indicates use of default values

Creating a Thread

int pthread create(pthread t* thread p, const
pthread attr t* attr p, voild* (*start routine) (void¥*),
void* arg p)

e voild* (*start routine) (void*) :
o Function pointer for code thread should execute
o Function must take single void* argument and return void *
e void* arg p :
o Arguments to be passed to function
o Can be single value cast to void*
o Oftenis array or other complex data structure that contains 1+
values

K&R 5.11 talks about pointers to functions

Waiting for a Thread

int pthread join(pthread t thread, void **ret val p)

o Waits for thread specified to finish execution
o If multiple threads call join on same thread, undefined action
o Unjoined threads are considered to be zombie threads
e void** ret val p:
o Pointer to location of the item returned by thread’s return
statement
o Canbe NULL

