
MPI: Message Passing 
Interface

Lecture 5
February 25 & 27, 2025



To Dos

Reading for next time

Program 2 submission 

Program 3



Questions?Algorithm Presentations



Questions?MPI



Parallelizing a 
Problem

Partition problem solution into tasks

Identify communication between 
tasks

Aggregate tasks into composite 
tasks

Map composite tasks to cores



Reminder: Flynnʼs Taxonomy

SPMD is a special case of MIMD



Distributed Message Systems
● Each core has its own private memory
● Cores must explicitly communicate to coordinate or share data
● Programs often started by executing multiple processes

○ Processes given identifiers so they can identify each other
● Typically have send() and receive() functions to communicate 

between processes
○ May also have collective communication mechanisms like

■ broadcast()
■ reduction()

● Programmer has to do all the heavy lifting
○ Figure out parallelization
○ Figure out data replication and distribution to different 

processes



Message Passing Interface (MPI)

● Defines library of functions called from C, C++, or Fortran programs
● Compilation: 

○ mpicc –g –Wall –o hello hello.c
○ Calls C compiler with all the libraries needed

● Execution:
○ mpiexec –n 4 ./hello
○ Starts up 4 processes, giving them names, and enabling their 

communication
○ All 4 processes run the same ./hello executable
○ Processes are given a non-negative rank which they use to 

differentiate which code to run



Basic MPI program setup

● #include <mpi.h>

● MPI_Init(int *argc_p, char ***argv_p)

○ Should be first MPI function called
○ Allocates resources (e.g. buffers) and decides which process 

gets assigned which rank (i.e. 0, 1, 2, …, p-1)
● MPI_Finalize()

○ Last MPI function called
○ Releases resources #include <mpi.h>

int main(int argc, char **argv)
{

MPI_Init(&argc, &argv);
…
MPI_Finalize();
return 0;

}



Communicators

● Named collection of processes that can send messages to each other
○ Can have more than one communicator in a program
○ Created by MPI_Init()
○ Default communicator named MPI_COMM_WORLD

● MPI_Comm_size(MPI_Comm comm, int *comm_sz_p)
○ Let s̓ you find out number of processes in communicator

● MPI_Comm_rank(MPI_Comm comm, int *my_rank_p)
○ Let s̓ process find out its rank/name in communicator

● Can create new communicators using MPI_Comm_split()



Determining Your Rank in A 
Communicator
● A process can dynamically determine it's rank in a communicator 
● int MPI_Comm_rank(MPI_Comm comm, int *rank)

○ Rank will be placed into second argument's memory location



MPI_Send

● msg_size: number of elements to be sent
● msg_type: can send different types of data
● dest:  rank of process to send to
● tag: mechanism for identifying message if 

multiple messages will be sent from sender 
to receiver (non-negative int)

MPI_Send(void*msg_buf_p, int msg_size, MPI_Datatype msg_type,
 int dest, int tag, MPI_Comm communicator)

MPI datatype
MPI_CHAR
MPI_SHORT
MPI_INT
MPI_LONG
MPI_FLOAT
MPI_DOUBLE
…

Implementation dependent: 
May buffer message and not block if size < threshold; if size > threshold, blocks until 
completes



MPI_Recv

● status_p: 
○ Stores info about MPI_SOURCE, MPI_TAG, MPI_ERROR

■ ex.) MPI_Get_count(&status, recv_type, &count)
● count tells you amount of data received

○ Can specify MPI_STATUS_IGNORE as argument if you donʼt care
● src:

○ Indicates sender
○ Can be MPI_ANY_SOURCE to deal with blocking issues on multiple 

sources

MPI_Recv(void*msg_buf_p, int buf_size, MPI_Datatype buf_type,
 int src, int tag, MPI_Comm communicator, 
 MPI_Status *status_p)

Always blocks



Sends and Receives Must Match

● Communicator
● Tag
● Source
● Destination
● Type
● Receiver buffer size >= sender buffer size



#include <mpi.h>
int main(int argc, char **argv)
{

char greeting[100];
int comm_sz;
int my_rank;

MPI_Init(NULL, NULL);
MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

if(my_rank != 0){
sprintf(“Greetings from process %d of %d\n”, comm_sz, my_rank);
MPI_Send(greeting, strlen(greeting)+1, MPI_CHAR, 0, 0, MPI_COMM_WORLD);

}
else{

printf(“Greetings from %d\n”, my_rank);
for(int q = 0; q < comm_sz; q++){

MPI_Recv(greeting, 100, MPI_CHAR, q, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf(”%s\n”, greeting);

}
MPI_Finalize();
return 0;

}

SPMD



Collective Communication

● Sometimes you want group communication – either sending or 
receiving

● There are some well-defined group communications to make 
programming easier than all point-to-point communication
○ Can send/receive to all members of communicator

● Underlying implementation figures out best way to do group 
communications (e.g., trees)



MPI_Reduce

● Construct that collects information from all processes and combines results together 
○ All processes in communicator must execute MPI_Reduce() with compatible 

arguments
■ They match up by order of MPI_Reduce() calls across different processes if 

more than 1 call
● input_data_p: data from each process
● output_data_p : global result used only in dest_process
● count: If > 1, indicates number of elements in array
● operator: Max, Min, Sum, Product, Logical AND/OR/XOR, Bitwise AND/OR/XOR, Max 

and location of max, Min and location of min

MPI_Reduce(void *input_data_p, void *output_data_p, int count,
 MPI_Datatype datatype, MPI_Op operator, 
 int dest_process, MPI_Comm communicator)



MPI_Allreduce

● Result stored on all processes

MPI_Allreduce(void *input_data_p, void *output_data_p, 
 int count, MPI_Datatype datatype, 
 MPI_Op operator, MPI_Comm communicator)



MPI_Bcast

● Sends data to all processes in communicator
○ All processes in communicator must execute MPI_Bcast() with 

compatible arguments
○ Data will be taken from src_process s̓ data_p
○ Data will be put into all other processʼ data_p

MPI_Bcast(void *data_p, int count, MPI_Datatype datatype, 
 int src_process, MPI_Comm communicator)

https://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/



Example: Find Min in Large Array

● How do we distribute the data?



MPI_Scatter

● Construct that  sends information selectively to other processes
○ Divides total data in send_data_p amongst comm_sz processes

● send_data_p : data to be distributed
● send_count : amount of data going to each process

MPI_Scatter(void *send_data_p, int send_count,
  MPI_Datatype send_type, void *recv_data_p, 
  int recv_count, MPI_Datatype recv_type, 
  int src_proc, MPI_Comm communicator)

https://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/



Ways to Distribute Data

● Block partition
● Cyclic partition 
● Block-cyclic partition



MPI_Gather

● Construct that  collects information from other processes and stores 
consecutively

● send_buf_p : data to be collected from given process
● send_count : amount of data coming from each process
● recv_buf_p : location to store all collected data (comm_siz * send_count)
● recv_count : amount of data from each process

MPI_Gather(void *send_buf_p, int send_count,
  MPI_Datatype send_type, void *recv_buf_p, 
  int recv_count, MPI_Datatype recv_type, 
  int dest_proc, MPI_Comm communicator)

https://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/



MPI_Allgather

● Construct that  collects information from other processes and stores 
consecutively AT ALL processes

● recv_buf_p : location to store all collected data (comm_siz * send_count)
● recv_count : amount of data from each process

MPI_Allgather(void *send_buf_p, int send_count,
  MPI_Datatype send_type, void *recv_buf_p, 
  int recv_count, MPI_Datatype recv_type, 
  MPI_Comm communicator)

https://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/



Dave Pattersonʼs take on Matrix Multiply
● Dave Patterson - Distinguished Engineer, Google; ACM A.M. Turing Award Laureate
● ACM Tech Talk
● Title: A New Golden Age for Computer Architecture
● In the 1980s, Mead and Conway democratized chip design and high-level language programming 

surpassed assembly language programming, which made instruction set advances viable. 
Innovations like Reduced Instruction Set Computers (RISC), superscalar, and speculation ushered 
in a Golden Age of computer architecture, when performance doubled every 18 months. The 
ending of Dennard Scaling and Moore s̓ Law crippled this path; microprocessor performance 
improved only 3% last year! In addition to poor performance gains of modern microprocessors, 
Spectre recently demonstrated timing attacks that leak information at high rates. The ending of 
Dennard scaling and Moore's law and the deceleration of performance gains for standard 
microprocessors are not problems that must be solved but facts that if accepted offer 
breathtaking opportunities. We believe high-level, domain-specific languages and architectures, 
freeing architects from the chains of proprietary instruction sets and the demand from the public 
for improved security will usher in a new Golden Age. Aided by open source ecosystems, agilely 
developed chips will convincingly demonstrate advances and thereby accelerate commercial 
adoption. The instruction set philosophy of the general-purpose processors in these chips will 
likely be RISC, which has stood the test of time. We envision the same rapid improvement as in the 
last Golden Age, but this time in cost, energy, and security as well as in performance. Like in the 
1980s, the next decade will be exciting for computer architects in academia and in industry!



Matrix Multiply

https://commons.wikimedia.org/wiki/File:Matrix_multiplication_diagram.svg

https://commons.wikimedia.org/wiki/File:Matrix_multiplication_diagram.svg


Matrix Multiply – Ways to Parallelize

● What is a task?
● What data is needed for each task?



Questions?Parallel Performance



Limitations to Performance Improvements

● Amdahl's Law

● Inherently sequential parts of code
● Overhead in parallel parts of code 

○ Communication of data between processes
○ Load balancing
○ Synchronization

 


