
Microarchitecture 
Independent Workload 
Characterization
Lecture 4
February 18, 2025



To Dos

Reading for next time

Program 1 submission 

Program 2



Questions?Algorithm Presentations



Questions?Microarchitecture 
Independent Workload 
Characterization



● Understand resource demands of emerging applications

● Evaluate whether those resource demands differ from typical resource 
demands of current applications

● Assess whether different resource demands require changes to future 
hardware resources

Goals of Workload Characterization



Program Characteristics

µarchitecture-dependent
● Instructions / cycle
● Cache miss rates
● Branch misprediction rates
● TLB miss rates
● …

µarchitecture-independent
● Instruction mix
● Instruction-level parallelism
● Register traffic
● Working set size
● Data stream strides
● Branch predictability
● Parallelism granularity and 

degree



Program Characteristics (2)

µarchitecture-dependent
● HW performance counters

µarchitecture-independent
● Binary instrumentation
● Not ISA or compiler 

independent



Problem with µarch-dependent characteristics

● Can hide underlying program characteristics
● Similar uarch-dependent characteristics do not necessarily imply similar 

inherent behavior of software
● When run on different HW, might have very dissimilar characteristics



Advantage of µarch-independent characteristics

● Similar uarch-independent behavior implies similar uarch-dependent 
behavior (and dissimilar implies dissimilar)



Methodology

● Goal: find representative subset of benchmarks, including outliers

● Collect uarch-independent characteristics (p=47) w/ binary 
instrumentation tool
○ Benchmark = benchmark-input pair

● Reduce dimensionality (most informative characteristics)
○ Principal Component Analysis or Genetic Algorithm

● Cluster benchmarks based on reduced dimensionality



What were some interesting take-aways?



Questions?Parallel Performance



Limitations to Performance Improvements

● Amdahl's Law

● Inherently sequential parts of code
● Overhead in parallel parts of code 

○ Communication of data between processes
○ Load balancing
○ Synchronization

 


