
Understanding 
Parallelism

Lecture 3
February 13, 2025



To Dos

Reading for next time

Program 1 



Why Parallel Hardware?

● We no longer know how to speed up sequential processes significantly 
through hardware or technology improvements.

● Technology constraints (e.g., power, latency of global communication, 
chip verification) make it challenging to have an entire chip working in a 
coordinated way.

● Many tasks can be subdivided into independent pieces of work.

Throughput becomes the goal, with latency staying constant



So Why is Parallelism Considered Hard?

● If independent tasks didn't need to coordinate or share data, parallelism 
would be easy (both in HW and SW).

● But it's not because of
○ sharing of data
○ coordination of activities across tasks (e.g., synchronization)
○ balanced allocation of work across a parallel system



Two General Forms of Computational 
Parallelism
Task parallelism
● Partition tasks among cores
● Each core may do different work
● Example: 

○ Task 1: Remove capitalization
○ Task 2: Remove punctuation
○ Task 3: Search

● Example 2:
○ Task 1: Count words
○ Task 2: Sort words

Data parallelism
● Partition data among cores
● Each core does same work on 

different data
● Example:

○ Task 1: Remove 
capitalization, remove 
punctuation, and search on 
file 1

○ Task 2: Remove 
capitalization, remove 
punctuation, and search on 
file 2



Two General Forms of Computational 
Parallelism
Task parallelism Data parallelism



Questions to Think about With Respect to 
Different types of Parallelism?

● How much data needs to be processed?

● How much variability in computation per data item?

● How much computation per data item?



GPU/vector
SIMD

Chip MP / 
Cluster

Flynnʼs Taxonomy

SISD

MISD MIMD

Data

In
st

ru
ct

io
n

SPMD is a special case of 
MIMD

CPU



Example MIMD

https://commons.wikimedia.org/wiki/File:SMP_-_Symm
etric_Multiprocessor_System.svg

https://commons.wikimedia.org/wiki/File:Loosely_Coupl
ed_Multiprocessor_System.svg



Example SIMD

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg



Another Way to Think of Parallelism

Shared-memory
● Can tasks directly access and 

share data?
● One large pool of memory 

shared across tasks

Distributed-Memory
● Do tasks have to explicitly send 

messages to share data?
● Many private pools of memory



 Other HW Parallelism

Instruction Level Parallelism

Multiple Memory Banks

Co-processors (e.g., DMA, 
accelerators)



Approach for Writing Parallel Programs

1. Divide work among processes/threads such that
a. each process/thread gets roughly the same amount of work
b. amount of communication is minimized

2. Arrange for synchronization among processes/threads when needed
3. Arrange for communication among processes/threads



Shared Memory Systems

● Processes contain threads
● Threads

○ Have their own stack and registers
○ Share data in the address space

■ Communicate through shared variables implicitly



Shared Memory System Challenges

● Defn: nondeterminism - a given input can result in different outputs

● Defn: race condition - when threads try to access shared resource and 
the outcome depends on the order of the threads' execution
○ e.g., two threads want to do x++ to shared variable x



Shared Memory Solution for 
Nondeterminism - Synchronization

● Need to make access to shared variables atomic
● Do this by creating a critical section of code that only one thread can 

execute at a time (i.e., it will always be run serially)
● We must provide mutual exclusion to the critical section

○ How?
■ Hardware primitives allow us to create 

● Locks
● Semaphores
● Monitors

■ Busy waiting
● Enter a loop where you test a condition to see if thread 

can enter code exclusively



Distributed Memory Systems

● Processes have private memory spaces
● Processes are numbered
● Processes do different work based on their number
● Processes communicate through explicit send and receive messages

○ Sending messages to process i
○ Sending collective messages to multiple/all other processes



Distributed Memory Communication

● Send/receive messages are often blocking
○ Sender has to wait until receiver has started receiving
○ Receiver has to wait until sender has started sending

● Collective communication
○ Broadcast sends message to all other processes
○ Reduction collects results computed by all other processes into a 

single result



How do we 
use duplicate 
resources to 

speed up our 
programs?

● Identify portions of our programs that take 
up the most time

● Determine if there are independent 
computations in those sections

● Map those independent computations 
onto different computing resources

Leaving out lots of important details that impact 
mapping and performance (e.g., communication)



Performance
● Sequential execution time : T_serial
● Number of parallel processes : p
● Parallel execution time : T_parallel

● Ideal parallel execution time : T_ideal = T_serial / p
○ Linear speedup

● Actual parallel execution time: T_parallel = T_serial / p + T_overhead

● Overheads
○ Shared memory: critical sections serialize portions of code
○ Distributed memory: communicate between processes
○ Overheads increase with number of processors



Speedup and Amdahlʼs Law

 

● Speedup: T_serial/T_parallel
● Amdhahl’s Law: Performance improvement you get 

from an enhancement is dependent on:
○ The size of the enhancement
○ How frequently the enhancement is used



Limitations to Performance Improvements

● Sequential parts of code
● Parallel parts of code

○ Communication of data between processes
○ Load balancing
○ Synchronization

 



Let's Talk Through Performance Ideas

● First let's talk about sequential performance on a CPU
● Then let's talk about adding in communication / synchronization


