<

Understanding
Parallelism

Lecture 3
February 13, 2025

»

Reading for next time

Program 1

To Dos

Why Parallel Hardware?

e We no longer know how to speed up sequential processes significantly
through hardware or technology improvements.

e Technology constraints (e.g., power, latency of global communication,
chip verification) make it challenging to have an entire chip working in a
coordinated way.

e Many tasks can be subdivided into independent pieces of work.

Throughput becomes the goal, with latency staying constant

So Why is Parallelism Considered Hard?

o If independent tasks didn't need to coordinate or share data, parallelism
would be easy (both in HW and SW).

e Butit's not because of
o sharing of data
o coordination of activities across tasks (e.g., synchronization)
o balanced allocation of work across a parallel system

Two General Forms of Computational

Parallelism

Task parallelism

Partition tasks among cores
Each core may do different work

Example:

Task 1: Remove capitalization
Task 2: Remove punctuation
Task 3: Search

Example 2:
Task 1: Count words
Task 2: Sort words

Data parallelism

e Partition data among cores

e FEach core does same work on
different data

e Example:

o Task1: Remove
capitalization, remove
_lun1ctuat|on, and search on
ile

o Task 2: Remove
capitalization, remove
.lunzctuatlon, and search on
ile

Two General Forms of Computational
Parallelism

Task parallelism Data parallelism

o

Questions to Think about With Respect to
Different types of Parallelism?

e How much data needs to be processed?
e How much variability in computation per data item?

e How much computation per data item?

Flynn's Taxonomy

Instruction

|

ata

SISD

CPU

SIMD

GPU/vector

MISD | MIMD

ChipMP/
Cluster

SPMD is a special case of

MIMD

Example MIMD

SMP - symmetric multiprocessor system

Main
memory

Bus _ System bus

A

arbiter

|

A J

Cache Cache | Cache |

/0

By Ferruccio Zulian - Milan.Italy

Loosely coupled multiprocessor system
(distributed memory system)

Local bus Local bus

Prcessor

Local bus

Lk

2
Local
‘memory

]

=

- |

By Ferruccio Zulian - Milan. ltaly

https://commons.wikimedia.org/wiki/File:SMP_-_Symm
etric_Multiprocessor_System.svg

https://commons.wikimedia.org/wiki/File:Loosely_Coupl
ed_Multiprocessor_System.svg

Example SIMD

| N —
[[||

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg

Another Way to Think of Parallelism

Shared-memory Distributed-Memory

e Can tasks directly access and e Do tasks have to explicitly send
share data? messages to share data?

e One large pool of memory e Many private pools of memory

shared across tasks

Other HW Parallelism

Instruction Level Parallelism
Multiple Memory Banks

Co-processors (e.g., DMA,
accelerators)

Approach for Writing Parallel Programs

1. Divide work among processes/threads such that

a. each process/thread gets roughly the same amount of work

b. amount of communication is minimized
2. Arrange for synchronization among processes/threads when needed
3. Arrange for communication among processes/threads

Shared Memory Systems

e Processes contain threads
e Threads
o Have their own stack and registers
o Share data in the address space
s Communicate through shared variables implicitly

Shared Memory System Challenges

e Defn: nondeterminism - a given input can result in different outputs

o Defn: race condition - when threads try to access shared resource and
the outcome depends on the order of the threads' execution
o e.g., two threads want to do x++ to shared variable x

Shared Memory Solution for
Nondeterminism - Synchronization

o Need to make access to shared variables atomic

o Do this by creating a critical section of code that only one thread can
execute at a time (i.e., it will always be run serially)

o We must provide mutual exclusion to the critical section

o How?
s Hardware primitives allow us to create
e Locks
e Semaphores
e Monitors

s Busy waiting
o Enter aloop where you test a condition to see if thread
can enter code exclusively

Distributed Memory Systems

Processes have private memory spaces

Processes are numbered

Processes do different work based on their number

Processes communicate through explicit send and receive messages
o Sending messages to process i
o Sending collective messages to multiple/all other processes

Distributed Memory Communication

e Send/receive messages are often blocking
o Sender has to wait until receiver has started receiving
o Receiver has to wait until sender has started sending
o Collective communication
o Broadcast sends message to all other processes
o Reduction collects results computed by all other processes into a
single result

How do we
use duplicate

resources to
speed up our
programs?

e |dentify portions of our programs that take
up the most time

e Determine if there are independent
computations in those sections

e Map those independent computations
onto different computing resources

Leaving out lots of important details that impact
mapping and performance (e.g., communication)

Performance

Sequential execution time : T_serial
Number of parallel processes :

Parallel execution time : T_paraﬁ)el

Ideal parallel execution time : T_ideal = T_serial / p
o Linear speedup

Actual parallel execution time: T_parallel = T_serial / p + T_overhead

Overheads N . o .
o Shared memory: critical sections serialize portions of code
o Distributed memory: communicate between processes
o Overheads increase with number of processors

Speedup and Amdahl’'s Law

e Speedup: T serial/T_parallel

e Amdhahl’s Law: Performance improvement you get
from an enhancement is dependent on:
o The size of the enhancement
o How frequently the enhancement is used

fractionennanced
Speedupennnancement

ez = (b = RGO e S ey o (€ XTunenhanced)

Limitations to Performance Improvements

f racaonenhanced
Speedupennnancement

Tenhancea = (1 — fractioneynancea)XTunennanced + XTyunenhanced)

e Sequential parts of code

e Parallel parts of code
o Communication of data between processes
o Load balancing
o Synchronization

Let's Talk Through Performance Ideas

o Firstlet's talk about sequential performance on a CPU
e Then let's talk about adding in communication / synchronization

