
MapReduce and
(Apache) Spark

Lecture 20
May 13, 2025

To Dos

What algorithms did you decide on?

Program grades back this week

Main Points

● MapReduce
○ API
○ System organization
○ Google File System

● Limitations of MapReduce
● (Apache) Spark

○ API
● Hadoop vs. Spark
● PIM intro

Motivation for MapReduce

● Data parallel computations on large, mostly read-only data sets
distributed over large number of machines

● Considerations
○ How do you use commodity resources that fail frequently?
○ How do you parallelize the work?
○ How do you deal with distribution of work?
○ How do you load balance work to achieve lower latency?

Solution: MapReduce
● Programmer describes the work in a data parallel fashion

○ Map
■ input key/value pair → set of intermediate key/value pairs

○ Reduce
■ set of all intermediate key/value pairs with same key →

key/value pair
● Submit job to scheduling system
● Underlying system handles all the other issues:

○ Distributing the work
○ Distributing the data
○ Dealing with hardware failures
○ Load balance
○ Locality

map from Functional Programming
Languages

From Wikipedia: map is the name of a higher-order function that applies a
given function to each element of a functor, e.g. a list, returning a list of
results in the same order.
● Takes function F
● Takes a list [a1, a2,…,an]
● Produces [F(a1), F(a2), …F(an)]

Example 1: Counting Strings

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:

EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
 // key: word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

Execution of MapReduce
● Partition input into set of M splits

○ Splits processed in parallel
○ Each split typically 16-64 MB

● Start many copies of program on cluster
○ Master task
○ M map tasks
○ R reduce tasks
○ M+R >> workers

● Master assigns maps tasks to workers
● Map tasks apply map function to input

key/value pairs and write intermediate
values to local memory

● Map results written to local disk, partitioned
into R regions based on partition function,
tell master

Execution of MapReduce
● Partition input into set of M splits

○ Splits processed in parallel
○ Each split typically 16-64 MB

● Start many copies of program on cluster
○ Master task
○ M map tasks
○ R reduce tasks
○ M+R >> workers

● Master assigns maps tasks to workers
● Map tasks apply map function to input

key/value pairs and write intermediate
values to local memory

● Map results written to local disk, partitioned
into R regions based on partition function,
tell master

Execution of MapReduce
● Partition input into set of M splits

○ Splits processed in parallel
○ Each split typically 16-64 MB

● Start many copies of program on cluster
○ Master task
○ M map tasks
○ R reduce tasks
○ M+R >> workers

● Master assigns maps tasks to workers
● Map tasks apply map function to input

key/value pairs and write intermediate
values to local memory

● Map results written to local disk, partitioned
into R regions based on partition function,
tell master

Execution of MapReduce
● Partition input into set of M splits

○ Splits processed in parallel
○ Each split typically 16-64 MB

● Start many copies of program on cluster
○ Master task
○ M map tasks
○ R reduce tasks
○ M+R >> workers

● Master assigns maps tasks to workers
● Map tasks apply map function to input

key/value pairs and write intermediate
values to local memory

● Map results written to local disk, partitioned
into R regions based on partition function,
tell master

Execution of MapReduce (2)
● Master tells reduce tasks where to get data.

Workers use RPC calls to get data from
map tasksʼ disks

● Reduce tasks
○ Sort by intermediate keys
○ Apply reduce function
○ Append output to file

Execution of MapReduce (2)
● Master tells reduce tasks where to get data.

Workers use RPC calls to get data from
map tasksʼ disks

● Reduce tasks
○ Sort by intermediate keys
○ Apply reduce function
○ Append output to file

Example Partition Function

unsigned long MR_DefaultHashPartition(char *key, int num_partitions) {
 unsigned long hash = 5381;

int c;

while ((c = *key++) != '\0’)
hash = hash * 33 + c;

return hash % num_partitions;
}

https://github.com/remzi-arpacidusseau/ostep-projects/tree/master/concurrency-mapreduce

Fault Tolerance

● Ping workers periodically to establish status
● Re-execute map tasks on failure
● Atomic commits of map and reduce task outputs

○ Map buffers output locally and notifies master of local file names
○ Reduce buffers into local file and then atomically renames

temporary file to output file

Locality

● Master tries to assign map tasks at node where data is replicated or
nearby

● Combiner functions
○ Executed on map task machine
○ Combines partial results from this map task before writing results

to local intermediate file

Straggler Tasks

● Some tasks take a really long time to execute
○ Maybe because of failed node
○ Maybe because of overloaded node

● When few tasks left, master schedules backup executions of
in-progress tasks

Motivation for
Google File System

Large files frequently read sequentially

Files frequently read-only after creation

File appends from potentially multiple writers

Commodity parts mean frequent failures

Google File System Characteristics

● Redundancy and fault tolerance
● Large files
● Optimized for large sequential reads
● Support for append-only writes
● Prioritize bandwidth over latency

Mechanisms

● Files divided into large chunks (64MB)
● Master orchestrates disbursal of meta data to clients and coordination

of chunk servers
● Chunk servers respond to data requests from clients
● Chunks are replicated

Keeping data consistent
● Meta data handled by single master so

no race conditions there
● Random access writes possible but not

optimized
● Record append performed atomically
● File regions are defined as consistent or

inconsistent
○ Applications must deal with

occasional inconsistent data
■ E.g. Duplicate entries

● Master appoints primary replica to
determine order of updates to chunk and
orchestrate those updates happening at
replicas

Limitations of MapReduce

Acyclic data flow
● No iterative jobs
● No interactive analysis

Spark

● Insight: Some applications reuse working set of data across multiple
operations

● Abstraction 1: Resilient Distributed Datasets (RDDs)
○ Read-only collection of objects partitioned across set of machines

that can be rebuilt in case of failures
○ Can explicitly cache RDD in memory across machines and reuse it

in multiple MapReduce-like parallel operations
● Abstraction 2: Parallel operations on datasets
● Additional features: 2 types of shared variables

○ Read-only broadcast variables
○ Accumulators

RDD

Constructed from
● File
● Dividing collection of data (e.g., array) into slices
● Transforming existing RDD (e.g., use map or filter)
● Change persistence of RDD

○ Cache (hint to keep in memory)
○ Save (writes to filesystem)

Parallel Operations

● Reduce
○ Combine dataset elements using associative function

● Collect
○ Send all elements to driver program

● Foreach
○ Pass each element through user provided function

● Invoke operations like map, filter, reduce by passing closures (functions)
to Spark

Shared Variables

● Broadcast variables
○ Variable saved to file at workers so only distributed once
○ Can be cached by Spark at worker node

● Accumulator variables
○ Each worker has separate copy of accumulator and initialized to 0
○ After task completes, worker sends message to driver program

containing updates made to accumulator
○ Driver applies updates

Example

val file = spark.textFile(“hdfs://…”) // create RDD
val errs = file.filter(_.contains(“ERROR”)) // transform RDD
val ones = errs.map(_ => 1) // map each line to 1
val count = ones.reduce(_ + _) // add up 1s in reduce

Example
val points = spark.textFile(…).map(parsePoint).cache() // create RDD

var w = Vector.random(D) // d-dimensional vector
// update w
for(i <- 1 to ITERATIONS) {

val grad = spark.accumulator(new Vector(D))
 for(p <- points) { // foreach runs in parallel

val s = (1/(1+exp(-p.y*(w dot p.x))) -1)*p.y
grad += s * p.x

}
w –= grad.value

}

