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To Dos

What algorithms did you decide on?

Program grades back this week



Main Points

● MapReduce
○ API
○ System organization
○ Google File System

● Limitations of MapReduce
● (Apache) Spark

○ API
● Hadoop vs. Spark
● PIM intro



Motivation for MapReduce

● Data parallel computations on large, mostly read-only data sets 
distributed over large number of machines

● Considerations
○ How do you use commodity resources that fail frequently?
○ How do you parallelize the work?
○ How do you deal with distribution of work?
○ How do you load balance work to achieve lower latency?



Solution: MapReduce
● Programmer describes the work in a data parallel fashion 

○ Map
■ input key/value pair → set of intermediate key/value pairs 

○ Reduce
■ set of all intermediate key/value pairs with same key  → 

key/value pair
● Submit job to scheduling system
● Underlying system handles all the other issues:

○ Distributing the work
○ Distributing the data
○ Dealing with hardware failures
○ Load balance
○ Locality



map from Functional Programming 
Languages

From Wikipedia: map is the name of a higher-order function that applies a 
given function to each element of a functor, e.g. a list, returning a list of 
results in the same order.
● Takes function F
● Takes a list [a1, a2,…,an]
● Produces [F(a1), F(a2), …F(an)]



Example 1: Counting Strings

map(String key, String value):
  // key: document name
  // value: document contents
  for each word w in value:

EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
  // key: word
  // values: a list of counts
  int result = 0;
  for each v in values:
     result += ParseInt(v);
  Emit(AsString(result));



Execution of MapReduce
● Partition input into set of M splits 

○ Splits processed in parallel
○ Each split typically 16-64 MB

● Start many copies of program on cluster
○ Master task
○ M map tasks
○ R reduce tasks
○ M+R >> workers

● Master assigns maps tasks to workers
● Map tasks apply map function to input 

key/value pairs and write intermediate 
values to local memory

● Map results written to local disk, partitioned 
into R regions based on partition function, 
tell master
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Execution of MapReduce (2)
● Master tells reduce tasks where to get data.  

Workers use RPC calls to get data from 
map tasksʼ disks

● Reduce tasks 
○ Sort by intermediate keys
○ Apply reduce function
○ Append output to file



Execution of MapReduce (2)
● Master tells reduce tasks where to get data.  

Workers use RPC calls to get data from 
map tasksʼ disks

● Reduce tasks 
○ Sort by intermediate keys
○ Apply reduce function
○ Append output to file



Example Partition Function

unsigned long MR_DefaultHashPartition(char *key, int num_partitions) {
 unsigned long hash = 5381; 

int c; 

while ((c = *key++) != '\0’) 
hash = hash * 33 + c; 

return hash % num_partitions; 
}

https://github.com/remzi-arpacidusseau/ostep-projects/tree/master/concurrency-mapreduce



Fault Tolerance

● Ping workers periodically to establish status
● Re-execute map tasks on failure
● Atomic commits of map and reduce task outputs

○ Map buffers output locally and notifies master of local file names
○ Reduce buffers into local file and then atomically renames 

temporary file to output file



Locality

● Master tries to assign map tasks at node where data is replicated or 
nearby

● Combiner functions
○ Executed on map task machine
○ Combines partial results from this map task before writing results 

to local intermediate file



Straggler Tasks

● Some tasks take a really long time to execute
○ Maybe because of failed node
○ Maybe because of overloaded node

● When few tasks left, master schedules backup executions of 
in-progress tasks



Motivation for 
Google File System

Large files frequently read sequentially

Files frequently read-only after creation

File appends from potentially multiple writers

Commodity parts mean frequent failures



Google File System Characteristics

● Redundancy and fault tolerance
● Large files 
● Optimized for large sequential reads
● Support for append-only writes 
● Prioritize bandwidth over latency



Mechanisms

● Files divided into large chunks (64MB)
● Master orchestrates disbursal of meta data to clients and coordination 

of chunk servers
● Chunk servers respond to data requests from clients
● Chunks are replicated



Keeping data consistent
● Meta data handled by single master so 

no race conditions there
● Random access writes possible but not 

optimized
● Record append performed atomically
● File regions are defined as consistent or 

inconsistent
○ Applications must deal with 

occasional inconsistent data
■ E.g. Duplicate entries 

● Master appoints primary replica to 
determine order of updates to chunk and 
orchestrate those updates happening at 
replicas



Limitations of MapReduce

Acyclic data flow
● No iterative jobs
● No interactive analysis



Spark

● Insight: Some applications reuse working set of data across multiple 
operations

● Abstraction 1: Resilient Distributed Datasets (RDDs)
○ Read-only collection of objects partitioned across set of machines 

that can be rebuilt in case of failures
○ Can explicitly cache RDD in memory across machines and reuse it 

in multiple MapReduce-like parallel operations
● Abstraction 2: Parallel operations on datasets
● Additional features: 2 types of shared variables

○ Read-only broadcast variables
○ Accumulators



RDD

Constructed from
● File
● Dividing collection of data (e.g., array)  into slices
● Transforming existing RDD (e.g., use map  or filter)
● Change persistence of RDD

○ Cache (hint to keep in memory)
○ Save (writes to filesystem)



Parallel Operations

● Reduce 
○ Combine dataset elements using associative function

● Collect
○ Send all elements to driver program

● Foreach
○ Pass each element through user provided function

● Invoke operations like map, filter, reduce by passing closures (functions) 
to Spark



Shared Variables

● Broadcast variables
○ Variable saved to file at workers so only distributed once
○ Can be cached by Spark at worker node

● Accumulator variables
○ Each worker has separate copy of accumulator and initialized to 0
○ After task completes, worker sends message to driver program 

containing updates made to accumulator
○ Driver applies updates 



Example

val file = spark.textFile(“hdfs://…”) // create RDD
val errs = file.filter(_.contains(“ERROR”)) // transform RDD
val ones = errs.map(_ => 1) // map each line to 1
val count = ones.reduce(_ + _) // add up 1s in reduce



Example
val points = spark.textFile(…).map(parsePoint).cache()  // create RDD

var w = Vector.random(D) // d-dimensional vector
// update w
for(i <- 1 to ITERATIONS) {

val grad = spark.accumulator(new Vector(D))
    for(p <- points) { // foreach runs in parallel

val s = (1/(1+exp(-p.y*(w dot p.x))) -1)*p.y
grad += s * p.x

}
w –= grad.value

}




