
Creating
Concurrent
Processes
Lecture 2
February 11, 2025

To Dos

Reading for next time

Program 1

Office hours (M 2-3:30, W 1-2:30)

Program 1
Part 1

● Look for strings in dictionary that start with
any combination of specified 3 letters

● Divide work among 6 concurrent, child
processes

● Child processes send results to parent
● Parent prints results after all children finish

Part 2

● Explore graph algorithm written in C++ from
GAP benchmark suite

● Understand high level goal of algorithm
● Use gprof to understand where time is

spent and call graph
● Use debugger and code examination to

understand time-intensive portions
● Algorithms:

○ Breadth-First Search (BFS)
○ Single-Source Shortest Paths (SSSP)
○ PageRank (PR_SPMV)
○ Connected Components (CC_SV)
○ Betweenness Centrality (BC)
○ Triangle Counting (TC)

Main Points

● Creating and managing processes
○ fork, exec, wait

● Performing I/O
○ open, read, write, close

● Communicating between processes
○ pipe, dup, select, connect

Program to Process

Process State (i.e., Process Context)
● Address space

● Instruction Pointer (IP/PC)
● Register state
● Status of program I/O (e.g. files)
● User and process ID

○ Process ID (PID)
○ Parent Process ID (PPID)

● Current state (i.e. new, running…)
● Accounting info
● Privileges
● Memory management info

Process States

Process States

● New – being created (not yet runnable)
● Ready – Eligible for running. Just waiting for OS to give it the

processor
● Running – OS has chosen this process to run and it is running on

processor
● Blocked – Not eligible for running because it s̓ waiting for I/O, another

process to signal it (e.g. wait()), or waiting for sleep() call to finish
● Done – finished executing correctly or abnormally

Unix Processes

● Process ID
○ getpid()

● Parent process ID
○ getppid()

● Permissions for process come from user account and its group.
Effective IDs typically same as read IDs (but can be changed)
○ getuid() and geteuid()
○ getgid() and getegid()

Simple Process Example

● Use ps –al to see all running process

UNIX Process Management

● UNIX fork – system call to create a copy of the current process, and start
it running
○ No arguments!

● UNIX exec – system call to change the program being run by the current
process

● UNIX wait – system call to wait for a process to finish

● UNIX signal – system call to send a notification to another process

UNIX Process Management

Unix fork()

● Creates new process
● New process has exact copy of memory image, same next instruction

address
● Inherits open files, environment, and privileges from parent
● Call returns

○ 0: to child process
○ Child pid: to parent process
○ -1: error

Question: What does this code print?
int child_pid = fork();
if(child_pid == -1){
 printf(“Error creating process \n”);
 exit(1);
}
else if (child_pid == 0) {
 printf("I am process #%d\n", getpid());
 return 0;
} else {
 printf("I am parent of process #%d\n", child_pid);
 return 0;
}

Question: What does this code print?
int child_pid = fork();

if(child_pid == -1){

 printf(“Error creating process \n”);

 exit(1);

}

else if (child_pid == 0) {

 sleep(5);

 printf("I am process #%d\n", getpid());

 return 0;

} else {

 printf("I am parent of process #%d\n", child_pid);

 return 0;

}

wait(), Zombies, and Orphans

● A process and its children will finish at different times
○ They will compete for same processor resources

● Parent process can wait for children to complete with wait() and
waitpid()

● Zombie process
○ Child process completes and parent hasnʼt called wait on it yet

● Orphan
○ Parent process completes and didnʼt call wait() on child
○ Child processʼ parent because system init process (pid==1)

Simple wait for child to finish example
int main(int argc, char **argv)
{
 int child_pid = fork();
 if(child_pid == -1){
 printf("Error creating process \n");
 exit(1);
 }
 else if (child_pid == 0) {
 sleep(5);
 printf("I am process %d\n", getpid());
 return 0;
 } else {
 wait(NULL);
 printf("I am parent %d of process %d\n", getpid(), child_pid);
 return 0;
 }
}

Running a different program: exec()

● Process can begin running different program via exec() family of system calls
○ execl(), execle(), execlep() : when you know program path at compile

time
○ execv(), execve(), execvp() : when you know program path at runtime

● Overwrites process image with specified program s̓ image
○ Entire address space overwritten with new program
○ Register state overwritten with values for starting new program

● Should never return

Simple execl() example
int main(int argc, char **argv)
{
 int child_pid = fork();
 if(child_pid == -1){
 printf("Error creating process \n");
 exit(1);
 }
 else if (child_pid == 0) {
 printf("I am process %d calling date\n", getpid());
 execl("/bin/date", "date", NULL);
 printf("Code after execl -- shouldn't be reached\n");
 return 0;
 } else {
 wait(NULL);
 printf("I am parent %d of process %d\n", getpid(), child_pid);
 return 0;
 }
}

What if we had the following fact program?
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char **argv)
{
 if(argc > 1){
 int val = atoi(argv[1]);

 int result = 1;
 for(int i = 1; i <= val ; i++){
 result *= i;
 }
 printf("The factorial of %d is %d!\n", val, result);
 }
}

What will this code
print?

int main(int argc, char **argv)
{
 int val = 4;
 int pid = fork();
 if(pid == 0){
 val += 4;
 int child = fork();
 if(child == 0){
 char *str = "3";
 execl("fact", "fact", str, NULL);
 printf("val is %d\n", val);
 }
 else{
 val += 5;
 waitpid(child, NULL, 0);
 printf("val2 is %d\n", val);
 }
 }
 else{
 val += 6;
 waitpid(pid, NULL, 0);
 printf("val3 is %d\n", val);
 }
}

Processes are Independent
● Processes know about their parent and children
● But after creation, a process doesnʼt share memory with any other

process
● How can they collaborate and interact?

○ Must explicitly set up mechanism for sharing information
■ Files
■ Pipes and FIFOs
■ Signals
■ Other mechanisms:

● Shared memory
● Semaphores
● Messages

UNIX I/O
● Uniformity

○ All operations on all files, devices, interprocessor
communication use the same set of system calls:
open(), close(), read(), write()

● Open before use
○ open() returns a handle (file descriptor) for use

in later calls on the file
● Explicit close

○ To garbage collect the open file descriptor

Unix files

● Special files : represent devices and are located in /dev directory
○ Block special file : device w/ characteristics like a disk

■ Block sized transfers
○ Character special file : device with characteristics similar to a terminal

● Regular file : ordinary data file on disk

UNIX File System Interface

● UNIX file open() is a Swiss Army knife:
○ Open the file, return file descriptor
○ Options:

■ if file doesnʼt exist, return an error
■ If file doesnʼt exist, create file and open it
■ If file does exist, return an error
■ If file does exist, open file
■ If file exists but isnʼt empty, nix it then open
■ If file exists but isnʼt empty, return an error
■ …

Simple open() and close()
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <unistd.h>

int main(int argc, char **argv)
{
 int filedes = open("foo.txt", O_RDWR);
 if(filedes == -1){
 printf("Error opening file\n");
 }
 else{
 printf("Opened file correctly %d\n", filedes);
 close(filedes);
 }
}

read() and write()

● ssize_t read(int filedes, void*buf, size_t nbyte)
○ Tries to read nbytes from filedes into buf
○ Returns number of bytes actually put into buffer

● ssize_t write(int filedes, void*buf, size_t nbyte)
○ Tries to write nbytes from buf into filedes
○ Returns number of bytes actually written into file

Files as a Mechanism for Sharing

● Processes can create, read, and write files assuming they have
permission to do so

● One process can write to a file that another can subsequently read
○ What problems might arise?

UNIX pipe

● A pipe is a kernel buffer with two file descriptors, one for writing and one for
reading

● Data is read in same order it is written
● Producer and consumer can work at different rates

UNIX Pipe

● Enables interprocess communication between related processes
○ Has to be inherited from parent process

● Represented as a special file
● Communication buffer accessed through 2 file descriptors

○ filedes[0] : reading
○ filedes[1] : writing

● Returns 0 on success, -1 on failure
● Can read(), write(), and close() on file descriptors

○ Reads/writes are blocking
○ If file descriptor closed, read() returns 0

#include <unistd.h>

int pipe(int filedes[2]);

Blocking

● Process waits until something becomes available for it to read on pipe or
something is listening on pipe

● Can be switched to nonblocking using flags

Simple Pipe Example :
wait_child.c

int main(int argc, char **argv)
{
 int fd[2];
 if(pipe(fd) == -1)exit(1);
 int child_pid = fork();
 if(child_pid == -1)exit(1);
 else if (child_pid == 0) {
 char buffer[100];
 if(read(fd[0], buffer, 100) != 0)
 printf("Received %s\n", buffer);
 printf("I am process %d\n", getpid());
 return 0;
 } else {
 char buffer[100];
 strcat(buffer, "Message");
 if(write(fd[1], buffer, 10) != 0)
 printf("Sent %s\n", buffer);
 wait(NULL);
 printf("I am parent %d of process %d\n", getpid(), child_pid);
 return 0;
 }

Example between parent and child:
two_way_pc.c

Example solution to process hanging

Example one-way between two children:
between_children.c

FIFOs: Communicating Between Unrelated
Processes

● Named pipes represented by special files that persist after all processes
close them
○ path : directory path and name of special file to create
○ mode : permissions

● To create, either
○ mkfifo at command prompt
○ Use function call in program

● Return 0 on success, -1 on failure
● Remove same way you remove a file (i.e. rm or unlink())

#include <sys/stat.h>

int mkfifo(const char *path, mode_t mode)

File Permissions

Symbol Meaning
S_IRUSR Read by owner
S_IWUSR Write by owner
S_IXUSR Execute by owner
S_IRWXU Read, write, execute by owner
S_IRGRP Read by group
…
S_IROTH Read by other
…
S_ISUID Set user ID on execution
S_ISGID Set group ID on execution

Example: create_fifo.c

Use FIFOs just like a file

● open()
○ When pipe/fifo opened for reading, blocks until

opened for writing

● read()/write()
○ Writes to fifos of no more than PIPE_BUF bytes are atomic

■ Not true of reads
● close()

Producer/consumer example:
reader.c and writer.c
● Demonstrate with 1-on-1
● Demonstrate with multiple instances
● Demonstrate with different modes

Example: client.c and server.c

Signals

● Software notification to a process of an event
● Generated when event that causes signal occurs
● Delivered when process takes action based on signal

○ Process installs signal handler to handle signal (via sigaction())
■ Note: sigaction() can be set up to ignore or take default action instead

of having handler
■ Note: Can block certain types of signals (via sigprocmask())

● User can only send to process owned by it

Required Signals

Signal Description
SIGABRT Process abort
SIGALRM Alarm clock
SIGBUS Access undefined part of memory object
SIGCHLD Child terminated, stopped, or continued
SIGCONT Execution continued if stopped
SIGFPE Error in arithmetic operation (e.g. div by 0)
SIGHUP Hang-up on controlling terminal (process)
SIGILL Invalid hardware instruction
SIGKILL Terminated
SIGINT Interactive attention signal (often Ctrl-C)
…

