<

MapReduce and
(Apache) Spark

Lecture 19
May 6, 2025

Program #7/ results

Reading for next time

Final project assigned
To Dos project assig

Main Points

e MapReduce
o AP
o System organization
o Google File System
Limitations of MapReduce
(Apache) Spark
o AP
e Hadoop vs. Spark

Different Programming Environments

o MPI
o Have to explicitly orchestrate data communication
e Pthreads / OpenMP
o Allows sharing of data
o Limited number of threads
e GPUs
o Read-only data sharing except within thread blocks
o Computation oriented, limited by memory bandwidth

Motivation for MapReduce

o Data parallel computations on large, mostly read-only data sets
distributed over large number of machines

Motivation for MapReduce

o Data parallel computations on large, mostly read-only data sets
distributed over large number of machines
o Considerations
o How do you use commodity resources that fail frequently?
How do you parallelize the work?
How do you deal with distribution of work?
How do you load balance work to achieve lower latency?

O O O

Solution: MapReduce

e Programmer describes the work in a data parallel fashion

o Map
= input key/value pair - set of intermediate key/value pairs
o Reduce

s set of all intermediate key/value pairs with same key -
key/value pair

e Submit job to scheduling system
o Underlying system handles all the other issues:

o Distributing the work
Distributing the data
Dealing with hardware failures
Load balance
Locality

O O O O

map from Functional Programming
Languages

From Wikipedia: map is the name of a higher-order function that applies a
given function to each element of a functor, e.g. a list, returning a list of
results in the same order.

e Takes function F
e Takesalist[al, a2,...,.an]
e Produces [F(al), F(a2), ...F(an)]

map (fn x=>x+1, [1,2,3,4,5]); (* "map" sucessor func to list *)
val it = [2,3,4,5,6] : int list

Example 1: Counting Strings

map (String key, String value): reduce(String key, Iterator values):
// key: document name // key: word
// value: document contents // values: a list of counts
for each word w in value: int result = 0;
EmitIntermediate(w, “1"); for each v 1n values:

result += ParselInt (v);
Emit (AsString(result));

Example 2: Inverted Index

e Map (Document name, file contents)

o Emits sequence of <word, document ID> pairs
e Reduce

o Emits <word, list(document ID)> pairs

Execution of MapReduce

e Partition input into set of M splits
o Splits processed in parallel
o Each split typically 16-64 MB

Execution of MapReduce

e Partition input into set of M splits
o Splits processed in parallel e
o Each split typically 16-64 MB gk
e Start many copies of program on cluster FES 4
o Master task / Master
o M map tasks
o Rreduce tasks
o M+R >> workers

' S
~
~
S
~

Execution of MapReduce

e Partition input into set of M splits
o Splits processed in parallel e
o Each split typically 16-64 MB S
e Start many copies of program on cluster
o Master task
o M map tasks
o Rreduce tasks
o M+R >> workers
o Master assigns maps tasks to workers

Execution of MapReduce

Partition input into set of M splits

o Splits processed in parallel

o Each split typically 16-64 MB
Start many copies of program on cluster

o Master task

o M map tasks

o Rreduce tasks

o M+R >> workers
Master assigns maps tasks to workers
Map tasks apply map function to input
key/value pairs and write intermediate
values to local memory
Map results written to local disk, partitioned
into R regions based on partition function,
tell master

User
Program
’ .

v
Master

map

’ Worker

} @ Write to

€.

Execution of MapReduce (2)

e Master tells reduce tasks where to get data. :
Use RPC calls to get data from map tasks'
disks .
\ A
Master‘ ::.

reduce X

'
Worker file O

Output
Worker file 1

Execution of MapReduce (2)

Master tells reduce tasks where to get data.
Workers use RPC calls to get data from Program

map tasks' disks :
Reduce tasks M

o Sort by intermediate keys Master {
o Apply reduce function reduce
o Append output to file

Output

Worker e 2 file O

Example Partition Function

unsigned long MR DefaultHashPartition (char *key, int num partitions) ({
unsigned long hash = 5381;
int c;

while ((c = *key++) != '"\0'")
hash = hash * 33 + ¢c;

o

return hash % num partitions;

https://github.com/remzi-arpacidusseau/ostep-projects/tree/master/concurrency-mapreduce

Fault Tolerance

o Ping workers periodically to establish status
o Re-execute map tasks on failure
e Atomic commits of map and reduce task outputs
o Map buffers output locally and notifies master of local file names
o Reduce buffers into local file and then atomically renames
temporary file to output file

Locality

o Master tries to assign map tasks at node where data is replicated or
nearby
e Combiner functions
o Executed on map task machine
o Combines partial results from this map task before writing results
to local intermediate file

Straggler Tasks

e Some tasks take a really long time to execute
o Maybe because of failed node
o Maybe because of overloaded node
e When few tasks left, master schedules backup executions of
in-progress tasks

Large files frequently read sequentially
Files frequently read-only after creation
Motivation for File appends from potentially multiple writers

Google File System
Commodity parts mean frequent failures

Google File System Characteristics

Redundancy and Fault Tolerance
Large files

Optimized for large sequential reads
Support for append-only writes
Prioritize bandwidth over latency

Mechanisms

o Files divided into large chunks (64MB)
e Master orchestrates disbursal of meta data to clients and coordination

of chunk servers
e Chunk servers respond to data requests from clients

Chunks are replicated

Keeping data consistent

Meta data handled by single master so no race conditions there
Random access writes possible but not optimized
Record append performed atomically
File regions are defined as consistent or inconsistent

o Applications must deal with occasional inconsistent data

s E.g. Duplicate entries

Master appoints primary replica to determine order of updates to chunk
and orchestrate those updates happening at replicas

Limitations of MapReduce

Acyclic data flow

e No iterative jobs
e No interactive analysis

Spark

¢ Insight: Some applications reuse working set of data across multiple
operations
o Abstraction 1: Resilient Distributed Datasets (RDDs)
o Read-only collection of objects partitioned across set of machines
that can be rebuilt in case of failures
o Can explicitly cache RDD in memory across machines and reuse it
in multiple MapReduce-like parallel operations
e Abstraction 2: Parallel operations on datasets
o Additional features: 2 types of shared variables
o Read-only broadcast variables
o Accumulators

RDD

Constructed from
o File
o Dividing collection of data (e.g., array) into slices
o Transforming existing RDD (e.g., use map or filter)
e Change persistence of RDD

o Cache (hint to keep in memory)
o Save (writes to filesystem)

Parallel Operations

e Reduce
o Combine dataset elements using associative function
o Collect
o Send all elements to driver program
e Foreach
o Pass each element through user provided function
e Invoke operations like map, filter, reduce by passing closures (functions)
to Spark

Shared Variables

e Broadcast variables
o Variable saved to file
o Can be cached by Spark at worker node
o Accumulator variables
o Each worker has separate copy of accumulator and initialized to O
o After task completes, worker sends message to driver program
containing updates made to accumulator
o Driver applies updates

Example

val file = spark.textFile (“hdfs://..”) // create RDD
val errs = file.filter(.contains(“ERROR”)) // transform RDD
val ones = errs.map(=> 1) // map each line to 1

val count = ones.reduce(+) // add up 1ls in reduce

Example

val points = spark.textFile(..) .map (parsePoint) .cache() // create RDD

var w = Vector.random (D) // d-dimensional vector
// update w

for(i <- 1 to ITERATIONS) {

val grad = spark.accumulator (new Vector (D))
for(p <- points) { // foreach runs in parallel
val s = (1/(l+exp(-p.y*(w dot p.x))) -1)*p.y

grad += s * p.x

w —= grad.value

4 Al Overview

Hadoop is a big data framework focused on storing and
processing massive datasets, while Spark is a fast, dis-
tributed computing framework that excels at real-time
data processing and machine learning. Hadoop primarily
uses disk storage and MapReduce for processing, whereas
Spark uses in-memory processing with Resilient Distributed

Datasets (RDDs). @

