
GPU Shared Memory

Lecture 17
April 29, 2025

To Dos

Program #7

Reading for next time

A Simple Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int

Width)

{

 // Calculate the row index of the d_P element and d_M

 int Row = blockIdx.y*blockDim.y+threadIdx.y;

 // Calculate the column index of d_P and d_N

 int Col = blockIdx.x*blockDim.x+threadIdx.x;

 if ((Row < Width) && (Col < Width)) {

float Pvalue = 0;

 // each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k){

 Pvalue += d_M[Row*Width+k] * d_N[k*Width+Col];

}

 d_P[Row*Width+Col] = Pvalue;

 }

}
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width)
{

 __shared__ float subTileM[TILE_WIDTH][TILE_WIDTH];
 __shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];

Tiled Multiply: Place global memory data into
Shared Memory for reuse
● Break up the execution of the kernel into phases so

that the data accesses in each phase is focused on
one subset (tile) of M and N

© David Kirk/NVIDIA and Wen-mei W. Hwu,
ECE408/CS483/ 2007-2016

bx = blockId.x
tx = threadId.x

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1
M0,

0

M1,0

M0,2
M0,

3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,

0
M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

P0,0 = M0,0*N0,0 + M0,1*N1,0 + M0,2*N2,0 +
M0,3*N3,0

P0,1 = M0,0*N0,1 + M0,1*N1,1 + M0,2*N2,1 + M0,3*N3,1

P1,0 = M1,0*N0,0 + M1,1*N1,0 + M1,2*N2,0 + M1,3*N3,0

P1,1 = M1,0*N0,1 + M1,1*N1,1 + M1,2*N2,1 + M1,3*N3,1

Work for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1
M0,

0

M1,0

M0,2
M0,

3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,

0
M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1
M0,

0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

SM

SM

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Read data into SM

Work for Block (0,0)
Threads use shared memory data in step 0.

Shared Memory

Shared Memory

M0,1
M0,

0

M1,0

M0,

2

M0,

3

M1,1

M2,

0
M2,2 M2,3M2,1

M1,3M1,2

M3,

0
M3,2

M3,

3
M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1
M0,

0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Use data in SM

P0,0 += M0,0*N0,0
P0,1 += M0,0*N0,1
P1,0 += M1,0*N0,0
P1,1 += M1,0*N0,1

Work for Block (0,0)
Threads use shared memory data in step 1.

SM

SM

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Use data in SM

P0,0 += M0,1*N1,0
P0,1 += M0,1*N1,1
P1,0 += M1,1*N1,0
P1,1 += M1,1*N1,1

N3,0

Work for Block (0,0)

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,1

SM

Read more data into SM

Work for Block (0,0)
Threads use shared memory data in step 2.

SM

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

M0,1
M0,

0

M1,0

M0,

2

M0,

3

M1,1

M2,

0
M2,2 M2,3M2,1

M1,3M1,2

M3,

0
M3,2

M3,

3
M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

SM

N3,0

M0,

3

M0,

2

M1,2 M1,3

N2,1N2,0

N3,1

Use data in SM

P0,0 += M0,2*N2,0
P0,1 += M0,2*N2,1
P1,0 += M1,2*N2,0
P1,1 += M1,2*N2,1

Work for Block (0,0)
Threads use shared memory data in step 1.

SM

SM

M0,1
M0,

0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Use data in SM

M0,3M0,2

M1,2 M1,3

N3,0

N2,1N2,0

N3,1

P0,0 += M0,3*N3,0
P0,1 += M0,3*N3,1
P1,0 += M1,3*N3,0
P1,1 += M1,3*N3,1

Loading an Input Tile 0

Accessing tile 0 2D indexing:

M[Row][tx]
N[ty][Col]

© David Kirk/NVIDIA and Wen-mei W. Hwu,
ECE408/CS483/ 2007-2016

Loading an Input Tile 1

Accessing tile 1 in 2D indexing:

M[Row][1*TILE_WIDTH+tx
]

N[1*TILE_WIDTH+ty][Col
]

© David Kirk/NVIDIA and Wen-mei W. Hwu,
ECE408/CS483/ 2007-2016

Loading an Input Tile m
However, recall that M and N are dynamically
allocated and can only use 1D indexing:

M[Row][m*TILE_WIDTH+tx]
M[Row*Width + m*TILE_WIDTH + tx]

N[m*TILE_WIDTH+ty][Col]
N[(m*TILE_WIDTH+ty) * Width + Col]

© David Kirk/NVIDIA and Wen-mei W. Hwu,
ECE408/CS483/ 2007-2016

Barrier Synchronization

● An API function call in CUDA
○ __syncthreads()

● All threads in the same block must reach the __syncthreads() before any
can move on

● Best used to coordinate tiled algorithms
○ To ensure that all elements of a tile are loaded
○ To ensure that all elements of a tile are consumed

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/
2007-2016

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width)

{

1. __shared__ float subTileM[TILE_WIDTH][TILE_WIDTH];

2. __shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;

4. int tx = threadIdx.x; int ty = threadIdx.y;

 // Identify the row and column of the P element to work on

5. int Row = by * TILE_WIDTH + ty;

6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;

 // Loop over the M and N tiles required to compute the P element

8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

 // Collaborative loading of M and N tiles into shared memory

9. subTileM[ty][tx] = M[Row*Width + m*TILE_WIDTH+tx];

10. subTileN[ty][tx] = N[(m*TILE_WIDTH+ty)*Width+Col];

11. __syncthreads();

12. for (int k = 0; k < TILE_WIDTH; ++k)

13. Pvalue += subTileM[ty][k] * subTileN[k][tx];

14. __syncthreads();

15. }

16. P[Row*Width+Col] = Pvalue;

} © David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Compare with Base Kernel

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Shared Memory and Threading
● Each SM in Maxwell has 64KB shared memory (48KB max per block)

○ Shared memory size is implementation dependent!
○ For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared

memory.
■ Shared memory can potentially support up to 32 thread blocks actively executing, but only 8 blocks

allowed
● In reality, if only 1536 threads allowed on SM, only 1536/256 = 6 blocks allowed

■ This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads
per block)

● Using 16x16 tiling, we reduce the accesses to the global memory by a factor
of 16
○ The 150GB/s bandwidth can now support (150/4)*16 = 600 GFLOPS!

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Questions?
DRAM CHARACTERISTICS

Global Memory (DRAM)
Bandwidth
Ideal Reality

©Wen-mei W. Hwu and David Kirk/NVIDIA, ECE408/CS483/ECE498AL, University of Illinois, 2007-2016

DRAM Bank Organization

● Each core array has about
O(1M) bits

● Each bit is stored in a tiny
capacitor, made of one
transistor

A very small DRAM Bank

©Wen-mei W. Hwu and David
Kirk/NVIDIA, ECE408/CS483/ECE498AL,
University of Illinois, 2007-2016

DRAM core arrays are slow.
● Reading from a cell in the core array is a very slow process

de
co

de

To sense amps

A very small capacitance
that stores a data bit

About 1000 cells connected to
each vertical line

©Wen-mei W. Hwu and
David Kirk/NVIDIA,
ECE408/CS483/ECE498AL,
University of Illinois,
2007-2016

DRAM Bursting (burst size = 4 bits)

©Wen-mei W. Hwu and David Kirk/NVIDIA,
ECE408/CS483/ECE498AL, University of Illinois, 2007-2016

DRAM Bursting (cont.)
second part of the burst

©Wen-mei W. Hwu and David Kirk/NVIDIA,
ECE408/CS483/ECE498AL, University of Illinois, 2007-2016

DRAM Bursting for our Example Bank

©Wen-mei W. Hwu and David Kirk/NVIDIA,
ECE408/CS483/ECE498AL, University of Illinois, 2007-2016

time

Address bits
to decoder

Core Array access delay
2 bits
to pin

2 bits
to pin

Non-burst timing

Burst
timing

Modern DRAM systems are designed
to be always accessed in burst mode.
Burst bytes are transferred but
discarded when accesses are not to
sequential locations.

Multiple DRAM Banks

Copyright © 2016 Elsevier Inc. All rights reserved.

Channel: memory controller w/ bus that connects set of DRAM banks to processor

Multiple DRAM Banks

©Wen-mei W. Hwu and David Kirk/NVIDIA,
ECE408/CS483/ECE498AL, University of Illinois, 2007-2016

0 0 1 0

DRAM Bursting for the 8x2 Bank

©Wen-mei W. Hwu and David Kirk/NVIDIA,
ECE408/CS483/ECE498AL, University of Illinois, 2007-2016

time

Address bits
to decoder

Core Array access delay
2 bits
to pin

2 bits
to pin

Single-Bank burst timing, dead time on
interface

Multi-Bank burst timing, reduced dead
time

Bank Interleaving

Copyright © 2016 Elsevier Inc. All rights reserved.

Placing a 2D C array into linear memory
space (review)

©Wen-mei W. Hwu and David Kirk/NVIDIA, ECE408/CS483/ECE498AL, University of
Illinois, 2007-2016

A Simple Matrix Multiplication Kernel (review)
__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width)

{

 // Calculate the row index of the P element and M

 int Row = blockIdx.y * blockDim.y + threadIdx.y;

 // Calculate the column index of P and N

 int Col = blockIdx.x * blockDim.x + threadIdx.x;

 if ((Row < Width) && (Col < Width)) {

float Pvalue = 0;

 // each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)

 Pvalue += M[Row*Width+k] * N[k*Width+Col];

 P[Row*Width+Col] = Pvalue;

 }

}

©Wen-mei W. Hwu and David Kirk/NVIDIA,
ECE408/CS483/ECE498AL, University of Illinois, 2007-2016

Two Access Patterns

d_M d_N

W
I D
T H

WIDTH

Thread 1
Thread 2

(a) (b)

M[Row*Width+k] N[k*Width+Col]

k is loop counter in the inner product loop of the
kernel code

©Wen-mei W. Hwu and David Kirk/NVIDIA, ECE408/CS483/ECE498AL, University of Illinois, 2007-2016

N accesses are coalesced.

©Wen-mei W. Hwu and David Kirk/NVIDIA, ECE408/CS483/ECE498AL, University of Illinois,
2007-2016

M accesses are not coalesced.

©Wen-mei W. Hwu
and David
Kirk/NVIDIA,
ECE408/CS483/ECE
498AL, University of
Illinois, 2007-2016

Coalescing

● On load request, all accesses from a warp reduced to the smallest
number of DRAM accesses
○ Perfect coalescing (all consecutive accesses) reduce number of

DRAM accesses the most
○ No coalescing results in 32 different DRAM accesses

