
GPU Architecture and
Memory

Lecture 15
April 22, 2025

To Dos

Reading for next time (GPUs!)

Program #6

CUDA Error Checking

● For asynchronous (i.e., kernel launch) error checking, see
○ https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#er

ror-checking
○ cudaGetLastError()
○ cudaGetErrorString()

● For some devices, you can use asserts
○ assert(int expression)
○ cudaErrorAssert()

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#error-checking
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#error-checking

High Level Architecture

● Little on-chip space dedicated to control and memory
● Blocks assigned to Streaming Multiprocessors

○ Threads within same block can synchronize and share shared memory
● Threads execute on Streaming Processors or cores

○ All SPs in a SM execute same instructions in lock-step

Single Program Multiple Data (SPMD)

● Main performance concern with branching is control divergence
○ Threads within a single warp take different paths
○ Different execution paths are serialized in current GPUs

■ The control paths taken by the threads in a warp are
traversed one at a time until there is no more.

Control Divergence

A common case: control divergence could occur
when branch condition is a function of thread ID
○ Example with divergence:

■ if (threadIdx.x > 2) { }
■ This creates two different control

paths for threads in a block
■ Branch granularity < warp size;

threads 0, 1 and 2 follow different path
than the rest of the threads in the first
warp

○ Example without divergence:
■ if (threadIdx.x / WARP_SIZE

> 2) { }
■ Also creates two different control

paths for threads in a block
■ Branch granularity is a whole multiple

of warp size; all threads in any given
warp follow the same path

Control Divergence Due to Loops in Kernel

Each thread could execute loop different number of times

Why Block Configuration Matters

For Matrix Multiplication using multiple blocks, should one use 8X8, 16X16 or 32X32
blocks? Assume that in the GPU used, each SM can take up to 1,536 threads and
up to 8 blocks.

● For 8X8, we have 64 threads per block. Each SM can take up to 1536
threads, which is 24 blocks. But each SM can only take up to 8 Blocks, only
512 threads (16 warps) will go into each SM!

● For 16X16, we have 256 threads per block. Since each SM can take up to
1,536 threads (48 warps), which is 6 blocks (within the 8 block limit). Thus we
use the full thread capacity of an SM.

● For 32X32, we would have 1,024 threads per Block (32 warps). Only one
block can fit into an SM, using only 2/3 of the thread capacity of an SM.

Why Block Configuration Matters (cont.)

Occupancy: (# of warps assigned to SM) / (max # of warps / SM)
● Finite resources for all of these can limit number of warps SM can hold

○ Dynamic partitioning of resources across blocks
■ registers
■ shared memory
■ thread block slots
■ thread slots

○ CUDA Occupancy Calculator

CUDA Device API

CUDA provides functions to query device resource capabilities
● cudaDeviceCount(&devCount) - number of CUDA devices in

system
● cudeGetDeviceProperties(&devProp, i) - characteristics of

devices
○ devProp.maxThreadsPerBlock
○ devProp.multiProcessorCount
○ devProp.maxThreadsDim[0…1…2]
○ devProp.maxGridSize[0…1…2]
○ devProp.regsPerBlock
○ devProp.warpSize
○ devProp.sharedMemPerBlock
○ …

Questions?GPU Memory

Programmer View of
CUDA Memories
Each thread can:

● Read/write per-thread registers
(~1 cycle)

● Read/write per-block shared memory
(~1-3 cycles)

● Read/write per-grid global memory
(~300-800 cycles)

● Read/only per-grid constant memory
(~1-3 cycles with caching)

Global, constant, and texture memory
spaces are persistent across kernels
called by the same application.

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

The Von-Neumann Model

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Going back to the program

● Every instruction needs to be fetched from memory, decoded, then executed.
○ The decode stage typically accesses register file

● Instructions come in three flavors: Operate, Data transfer, and Program
Control Flow.

● An example instruction cycle is the following:

Fetch | Decode | Execute | Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Operate Instructions

● Example of an operate instruction:
ADD R1, R2, R3

● Instruction cycle for an operate instruction:
Fetch | Decode | Execute | Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Memory Access Instructions

● Examples of memory access instruction:
LDR R1, R2, #2
STR R1, R2, #2

● Instruction cycle for a memory instruction:
Fetch | Decode | Execute | Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Registers vs Memory
● Registers are “free”

○ No additional memory access
instruction

○ Very fast to use, however, there are
very few of them

● Memory is expensive (slow), but very
large

● __device__ is optional when used with __shared__ or
__constant__

● Automatic variables without any qualifier reside in a register
○ Except per-thread arrays that reside in local memory (which

is global memory)

CUDA Variable Type Qualifiers

Variable declaration Memory Scope Lifetime
 int LocalVar; register thread grid
__device__ __shared__ int SharedVar; shared block grid
__device__ int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Questions?
ORCHESTRATING MEMORY USE

Row-Major Layout of 2D arrays in C/C++

© David Kirk/NVIDIA and Wen-mei Hwu, 2007-2016 ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/
2007-2016

Matrix Multiplication Example
A Simple Host Version in C

// Matrix multiplication on the (CPU) host in single
precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{
 for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 float sum = 0;
 for (int k = 0; k < Width; ++k) {
 float a = M[i * Width + k];
 float b = N[k * Width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}

Kernel Function - A Small Example
● Have each 2D thread block compute a (TILE_WIDTH)2 sub-matrix (tile) of

the result matrix
○ Each has (TILE_WIDTH)2 threads

● Generate a 2D Grid of (WIDTH/TILE_WIDTH)2 blocks

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

A Slightly Bigger Example
(TILE_WIDTH =2)

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

A Slightly Bigger Example (cont.)
(TILE_WIDTH = 4)

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

 // Setup the execution configuration
 // TILE_WIDTH is a #define constant
 dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH, 1);
 dim3 dimBlock(TILE_WIDTH, TILE_WIDTH, 1);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Kernel Invocation (Host-side Code)

25

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)
{

 // Pvalue is used to store the element of the matrix
 // that is computed by the thread
 float Pvalue = 0;

Work for Block (0,0)
in a TILE_WIDTH = 2 Configuration

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Work for Block (0,1)

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

A Simple Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int

Width)

{

 // Calculate the row index of the d_P element and d_M

 int Row = blockIdx.y*blockDim.y+threadIdx.y;

 // Calculate the column index of d_P and d_N

 int Col = blockIdx.x*blockDim.x+threadIdx.x;

 if ((Row < Width) && (Col < Width)) {

float Pvalue = 0;

 // each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k){

 Pvalue += d_M[Row*Width+k] * d_N[k*Width+Col];

}

 d_P[Row*Width+Col] = Pvalue;

 }

}
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

How about performance on a device with
150 GB/s memory bandwidth?

● All threads access global memory for their
input matrix elements

○ Two memory accesses (8 bytes) per
floating point multiply-add

○ 4B/s of memory bandwidth/FLOPS
○ 150 GB/s limits the code at 37.5 GFLOPS

● Need to drastically cut down memory
accesses to get closer to the peak of
more than 1,000 GFLOPS

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

