<

GPU Architecture and
Memory

Lecture 15
April 22, 2025

Reading for next time (GPUs!)

Program #6

To Dos

CUDA Error Checking

e For asynchronous (i.e., kernel launch) error checking, see
o https://docs.nvidia.com/cuda/cuda-c-programming-quide/index.htmi#er

ror-checking

o cudaGetLastError ()

o cudaGetErrorString ()

e For some devices, you can use asserts
o assert (int expression)

o cudaErrorAssert ()

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#error-checking
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#error-checking

High Level Architecture

tOtit2... tm | ", SMO0 SM 1 T . tm ”
\\\\\\\\\\5 * +* \\\\\\\\\\3

S| wrwo owtw | SE5S | Blocks

4)
L (4 (4
p)
AAAAAAAAALS J_I
.

VN

L € (L (¢ ({4
Py >)] P>)]

Blocks

L

Ell Memory il Memory [

e Little on-chip space dedicated to control and memory
e Blocks assigned to Streaming Multiprocessors

o Threads within same block can synchronize and share shared memory
e Threads execute on Streaming Processors or cores

o Al SPsin a SM execute same instructions in lock-step

© David Kirk/NVIDIA and Wen-mei Hwu, 2007-2016 ~ECE408/CS483 / ECE498al, University of Illinois, Urbana-Champaign

Single Program Multiple Data (SPMD)

e Main performance concern with branching is control divergence
o Threads within a single warp take different paths
o Different execution paths are serialized in current GPUs
m The control paths taken by the threads in a warp are
traversed one at a time until there is no more.

© David Kirk/NVIDIA and Wen-mei Hwu, 2007-2016 ~ECE408/CS483 /ECE498al, University of Illinois, Urbana-Champaign

Control Divergence

A common case: control divergence could occur
when branch condition is a function of thread ID

o Example with divergence:
m 1f (threadIdx.x > 2) {
m This creates two different control
aths for threads in a block
m Branch granularity < warp size;
threads O, 1and 2 follow dlfferent path
than the rest of the threads in the first
warp :
o Example without divergence:
m if (threadIdx.x / WARP SIZE
> 2) { } B
= Also creates two different control
aths for threads in a block
m Branch granularity is a whole multiple
of warp size; all threads in any given
warp follow the same path

if (threadIdx.x < 24) {
A

} else {

1.2 3 23 24 35 A

43

inactive

inactive é §§

T

-.MNW\

i
$39¢3

© David Kirk/NVIDIA and Wen-mei Hwu, 2007-2016 ~ECE408/CS483 /ECE498al, University of Illinois, Urbana-Champaign

Control Divergence Due to Loops in Kernel

NS e
S NN
S NS e
N o, W

N = a[threadldx.x];
for(i = 0; i < N; ++i) {

A

B N e N Y -
A e s s
B N N
IR . -
R R RPN

Each thread could execute loop different number of times

© David Kirk/NVIDIA and Wen-mei Hwu, 2007-2016 ~ECE408/CS483 /ECE498al, University of Illinois, Urbana-Champaign

Why Block Configuration Matters

For Matrix Multiplication usin%multiple blocks, should one use 8X8, 16X16 or 32X32
bIo%:ksé? BAl\ssEme that in the GPU used, each SM can take up to 1,536 threads and
up to 8 blocks.

o For 8X8, we have 64 threads per block. Each SM can take up to 1536
threads, which is 24 blocks. But each SM can only take up to 8 Blocks, only
512 threads (16 warps) will go into each SM!

e For16X16, we have 256 threads per block. Since each SM can take up to
1,536 threads (48 warps), which'is 6 blocks (within the 8 block limit). Thus we
use the full thread capacity of an SM.

e For 32X32, we would have 1,024 threads per Block (32 warps). Only one
block can fit into an SM, using only 2/3 of the thread capacity of an'SM.

© David Kirk/NVIDIA and Wen-mei Hwu, 2007-2016 ~ECE408/CS483 /ECE498al, University of Illinois, Urbana-Champaign

Why Block Configuration Matters (cont.)

Occupancy: (# of warps assigned to SM) / (max # of warps / SM)

o Finite resources for all of these can limit number of warps SM can hold
o Dynamic partitioning of resources across blocks
m regqisters
s Shared memory
m thread block slots
m thread slots
o CUDA Occupancy Calculator

© David Kirk/NVIDIA and Wen-mei Hwu, 2007-2016 ~ECE408/CS483 /ECE498al, University of Illinois, Urbana-Champaign

CUDA Device API

CUDA provides functions to query device resource capabilities

e cudaDeviceCount (&devCount) - humber of CUDA devices in
system o
e cudeGetDeviceProperties (&devProp, i) - characteristics of
devices
o devProp.maxThreadsPerBlock
devProp.multiProcessorCount
devProp.maxThreadsDim[0..1..2]
devProp.maxGridSize [0..1..2]
devProp.regsPerBlock
devProp.warpSize
devProp.sharedMemPerBlock

O O O O O O O

© David Kirk/NVIDIA and Wen-mei Hwu, 2007-2016 ~ECE408/CS483 /ECE498al, University of Illinois, Urbana-Champaign

Programmer View of
CUDA Memories

Each thread can:

Grid

Block (0, 0) Block (1, 0)

e Read/write per-thread registers

- e e
e Read/write per-block shared memory
(~1-3 cycles) Thread (o;ﬂ Thread (ﬂ Thread (0, 0) | Thread (ﬂ
+

e Read/write per-grid global memory

(~300-800 cycles)
+ Readontyperraconsantmenory [

(~1-3 cycles with caching)

Global, constant, and texture memory

spaces are persistent across kernels

called by the same application. o .
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

The Von-Neumann Model

Memory
f]

Processing Unit

Reg
File

i

I/0

Control Unit

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Going back to the program

e Every instruction needs to be fetched from memory, decoded, then executed.
o The decode stage typically accesses register file

e Instructions come in three flavors: Operate, Data transfer, and Program
Control Flow.
e An example instruction cycle is the following:

Fetch | Decode | Execute | Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Operate Instructions

e Example of an operate instruction:
ADD R1, R2, R3

e Instruction cycle for an operate instruction:
Fetch | Decode | Execute |

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Memory Access Instructions

e Examples of memory access instruction:
LDR R1, R2, #2
STR R1,R2, #2

e Instruction cycle for a memory instruction:
Fetch | Decode | Execute | Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Registers vs Memory

e Registers are "free”

o No additional memory access
instruction

o Very fast to use, however, there are
very few of them

e Memory is expensive (slow), but very
large

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

/0

Control Unit

CUDA Variable Type Qualifiers

Variable declaration Memory | Scope Lifetime
int LocalvVar; register | thread grid
__device _ shared _ int SharedvVar; shared block grid
__device int GlobalVar; global grid | application
__device_ _ constant__ int ConstantVar; | constant grid application
e _ device_ _isoptional when used with __shared _or
constant

e Automatic variables without any qualifier reside in a register
o Except per-thread arrays that reside in local memory (which

is global memory)

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

ORCHESTRATING MEMORY USE

Row-Major Layout of 2D arrays in C/C++

M3,0 M3,1 M3,2 M3,3

Mo M3 My, Mys My My; My, M3 Mg My M3, Mgz

Mo,0|Mo;1 Mo (Mg

RNRV RN M, Ms Mg M; Mg My M;y My My, My My M5

M, 4 = Row*Width+Col = 2*4+1 =9

© David Kirk/NVIDIA and Wen-mei Hwu, 2007-2016 ECE408/CS483/ECE498al, University of lllinois, Urbana-Champaign

Matrix Multiplication Example
A Simple Host Versionin C

// Matrix multiplication on the (CPU) host in single
precision
void MatrixMulOnHost (float* M, float* N, float* P, int Width)
{
for (int 1 = 0; i < Width; ++1)
for (int j = 0; 7 < Width; ++3) {

float sum = 0;

for (int k = 0; k < Width; ++k) {
float a i * Width + kJ;
float b k * Width + j1;

M|
N[
sum += a * Db;

}
P[i * Width + j] = sum;

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/

T{|

2007-2016

A
A4

Kernel Function - A Small Example

e Have each 2D thread block compute a (TILE_WIDTH)? sub-matrix (tile) of
the result matrix

o Each has (TILE_WIDTH)? threads
e Generate a 2D Grid of (WIDTH/TILE_WIDTH)?blocks

Block(0,0) Block(0,1)

\ 7

Poo [Pos|Po2|Pos| WIDTH =4; TILE_ WIDTH =2
Each block has 2*2 = 4 threads

I:’1.0 I:)1,1 P1,2 P1,3

WIDTH/TILE_WIDTH =2

P2o | P21 |P22|P
20172117221 7231 yse 2* 2 = 4 blocks

P3,0 P3,1 P2,3 P3,3

Block(1,0) Block(1,1)

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

A Slightly Bigger Example
(TILE_WIDTH =2)

WIDTH =8; TILE_WIDTH =2
P20|P21|P22| P23 | P24 |Pas|P2s | Pa7| Each block has 2*2 = 4 threads

WIDTH/TILE_WIDTH = 4
Ps,o [Ps1|Ps2|Ps3|Psa|Pss|Pss|Ps7| Use4*4 = 16 blocks

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/2007-2016

A Slightly Bigger Example (cont.)
(TILE_WIDTH = 4)

WIDTH =8; TILE_WIDTH =4
P20 | P21 | P22 | P23 | P24 | Pas | Pas | Pa7| Each block has 4*4 =16 threads

WIDTH/TILE_WIDTH =2
Use 2* 2 =4 blocks

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Kernel Invocation (Host-side Code)

// Setup the execution configuration
// TILE WIDTH is a #define constant

dim3 dimGrid (Width/TILE WIDTH, Width/TILE WIDTH, 1);
dim3 dimBlock (TILE WIDTH, TILE WIDTH, 1);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

© David Kirk/NZ\ngIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Kernel Function

// Matrix multiplication kernel - per thread code

__global void MatrixMulKernel (float* d M, float* d N, float* d P, int Width)

{

// Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = 0;

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Work for Block (0,0)
ina TILE_WIDTH = 2 Configuration

blockDim.x blockDim.y Q Q
e p—
Yy
M
readldx.y

Row =0 L v v

Row =1 \[EWNLY, PR PNALY, P
M2,0{M21|M22(Ma3 P2o | P21 | P22 P23
Mso|Ms1[M32(M33 P3o|P31|Ps2|Pas

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

Work for Block (0,1)

Col =1%*2 + threadIdx.x

Row = WIdx.y

Row =0
Row =1

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

blockldx.y

=100
[0D

[4
£

-
~
N

—
—
w

-]
ey
N

—
w

il

M2,1

M3,1

__global void MatrixMulKernel (float* d M, float* 4 N, float* d P,
Width)

A Simple Matrix Multiplication Kernel

// Calculate the row index of the d P element and d M

int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of d P and d N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if

}

((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k){
Pvalue += d M[Row*Width+k] * d N[k*Width+Col];
}
d P[Row*Width+Col] = Pvalue;

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

int

How about performance on a device with

150 GB/s memory bandwidth?

e All threads access global memory for their
input matrix elements

o Two memory accesses (8 bytes) per
floating point multiply-add

o 4B/s of memory bandwidth/FLOPS
o 150 GB/s limits the code at 37.5 GFLOPS

e Need to drastically cut down memory
accesses to get closer to the peak of

Grid

Block (0, 0) Block (1, 0)

o] e o

S
w (0,0) Thread (1,0) | Thread (0, 0) Thread (1, 0)
Nt 1 1 2

more than 1,000 GFLOPS Host ¢

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ 2007-2016

-

