
GPU Architecture and
Scheduling

Lecture 14
April 17, 2025

To Dos

Reading for next time (GPUs!)

Program #5 presentations

Azure pay setup

CUDA Thread Block (review)
● All threads in a block execute the same kernel

program (SPMD)
● Programmer declares block:

○ Block size 1 to 1024 concurrent threads
○ Block shape 1D, 2D, or 3D

● Threads have thread index numbers within
block
○ Kernel code uses thread index and block

index to select work and address shared
data

● Threads in the same block share data and
synchronize while doing their share of the work

● Threads in different blocks cannot cooperate
○ Each block can execute in any order

relative to other blocks! Courtesy: John Nickolls, NVIDIA

What's On Them?

https://datacrunch.io/blog/nvidia-a100-gpu-specs-price-and-alternatives

Executing Thread Blocks
● Threads are assigned to

Streaming Multiprocessors in
block granularity

○ Up to 32 blocks to each SM
as resource allows

○ Maxwell SM can take up to
2048 threads

● Threads run concurrently
○ SM maintains thread/block id

#s
○ SM manages/schedules

thread execution

Thread Scheduling (1/2)
● Each block is executed as 32-thread warps

○ An implementation decision, not part of
the CUDA programming model

○ Warps are scheduling units in SM
● If 3 blocks are assigned to an SM and each

block has 256 threads, how many warps
are there in an SM?
○ Each block is divided into 256/32 = 8

warps
○ 8 warps/blk * 3 blks = 24 warps

Thread Scheduling (2/2)

SM implements zero-overhead warp scheduling
● Warps whose next instruction has its operands ready for consumption

are eligible for execution
● Eligible warps are selected for execution on a prioritized scheduling

policy
● All threads in a warp execute the same instruction when selected

Streaming Processor (SP) or Core

● Streaming Processors do actual instruction execution
● Single instruction fetch/dispatch unit shared among SPs on single SM

○ Same instruction executed on different SPs using different data
● All threads in a warp have same execution timing
● Much fewer SPs than threads scheduled to SM

○ Early GPUs only instructions from 1 warp at a time
○ Newer GPUs can execute instructions from multiple warps at same

time

Single Program Multiple Data (SPMD)

● Main performance concern with branching is control divergence
○ Threads within a single warp take different paths
○ Different execution paths are serialized in current GPUs

■ The control paths taken by the threads in a warp are
traversed one at a time until there is no more.

● A common case: control divergence could occur when branch
condition is a function of thread ID
○ Example with divergence:

■ if (threadIdx.x > 2) { }
■ This creates two different control paths for threads in a block
■ Branch granularity < warp size; threads 0, 1 and 2 follow

different path than the rest of the threads in the first warp
○ Example without divergence:

■ if (threadIdx.x / WARP_SIZE > 2) { }
■ Also creates two different control paths for threads in a block
■ Branch granularity is a whole multiple of warp size; all threads

in any given warp follow the same path

Why Block Configuration Matters

For Matrix Multiplication using multiple blocks, should one use 8X8, 16X16 or 32X32
blocks? Assume that in the GPU used, each SM can take up to 1,536 threads and
up to 8 blocks.

● For 8X8, we have 64 threads per block. Each SM can take up to 1536
threads, which is 24 blocks. But each SM can only take up to 8 Blocks, only
512 threads (16 warps) will go into each SM!

● For 16X16, we have 256 threads per block. Since each SM can take up to
1,536 threads (48 warps), which is 6 blocks (within the 8 block limit). Thus we
use the full thread capacity of an SM.

● For 32X32, we would have 1,024 threads per Block (32 warps). Only one
block can fit into an SM, using only 2/3 of the thread capacity of an SM.

