
CUDA Kernels

Lecture 13
April 15, 2025

To Dos

Reading for next time (GPUs!)

Program #5 due Thursday

Issues That Impact GPU Performance

● Global Memory Bandwidth
○ Need to keep parallel compute resources fed with data
○ Need to have enough computation to use all resources and hide

memory latency

Global Memory Bandwidth
Ideal Reality

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of
Illinois, Urbana-Champaign

Issues That Impact GPU Performance

● Global Memory Bandwidth
○ Need to keep parallel compute resources fed with data
○ Need to have enough computation to use all resources and hide

memory latency
● Need to prevent load imbalance

○ Need to decrease likelihood of divergent control paths
● Need to prevent serialization due to locks

Conversion of a color image to grey–scale
image

Pixels can be calculated independently

CUDA/OpenCL – Execution Model
Integrated host+device app C program

● Serial or modestly parallel parts in host C code
● Highly parallel parts in device SPMD kernel C code

Compiling A CUDA Program

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of Illinois, Urbana-Champaign

Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/
Linker

Host Code Device Code (PTX)

Device Just-in-Time
Compiler

Heterogeneous Computing Platform with
CPUs, GPUs

Hierarchy of Computation

● A kernel describes the work performed on a single set of data by a
single thread of control
○ Each thread will have its own registers in HW

● Many threads execute a single kernel simultaneously (data parallelism)
● CUDA provides a mechanism for organizing and naming threads

○ All threads involved in a kernel are collectively part of a grid
○ A grid is composed of many blocks, organized in 3 dimensional

space
○ Each block contains many threads, organized in 3 dimensional

space
○ Specify configuration of threads on kernel invocation

Arrays of Parallel Threads
A CUDA kernel is executed by a grid (array) of threads

● All threads in a grid run the same kernel code (SPMD)
● Each thread has an index that it uses to compute memory addresses

and make control decisions

Thread Blocks: Scalable Cooperation
Divide thread array into multiple blocks

● Threads within a block cooperate via shared memory, atomic operations and
barrier synchronization

● Threads in different blocks cannot cooperate
● Blocks contain same number of threads (up to 1024)

blockIdx and threadIdx
● Each thread uses indices to

decide what data to work on
○ blockIdx: 1D, 2D, or 3D
○ threadIdx: 1D, 2D, or 3D

● Simplifies memory
addressing when processing
multidimensional data
○ Image processing
○ Solving PDEs on volumes
○ …

blockDim, gridDim, blockIdx, and threadIdx
variables

● Defined in kernel
● gridDim – config of blocks in grid

○ struct w/ 3 unsigned ints: x, y, z
○ Values set by kernel invocation

● blockDim – config of threads in block
○ struct w/ 3 unsigned ints: x, y, z
○ Values set by kernel invocation call

● Thread identifiers: blockIdx and threadIdx
○ blockIdx – gives all threads in block a common block coordinate

(e.g. area code)
■ x, y, and z fields depending on dimensions specified by

blockDim
○ threadIdx – gives all threads in block a way to distinguish

themselves (e.g. local phone #)

Calculating thread ids

● 1D grid of 1D blocks
○ blockIdx.x * blockDim.x + threadIdx.x

● 1D grid of 2D blocks
○ blockIdx.x*blockDim.x*blockDim.y + threadIdx.y*blockDim.x +

threadIdx.x
● 2D grid of 1D blocks

○ blockId = blockIdx.y * gridDim.x + blockIdx.x
○ threadId = blockId *blockDim.x + threadIdx.x

● It s̓ like calculating array index offsets with multidimensional arrays

Vector Addition – Conceptual View

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of Illinois, Urbana-Champaign

Vector Addition – Traditional C Code

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of Illinois, Urbana-Champaign

// Compute vector sum C = A+B

void vecAdd(float* A, float* B, float* C, int n)

{

 for (i = 0, i < n, i++)

 C[i] = A[i] + B[i];

}

Vector Addition – Traditional C Code

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of Illinois, Urbana-Champaign

int main()

{

 // Memory allocation for A_h, B_h, and C_h

 float *A_h = (float*)malloc(N*sizeof(float));

 float *B_h = (float*)malloc(N*sizeof(float));

 float *C_h = (float*)malloc(N*sizeof(float));

 // I/O to read A_h and B_h, N elements

 // note memset is for chars/ints not floats

 …

 vecAdd(A_h, B_h, C_h, N);

}

Heterogeneous Computing vecAdd Host Code

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of Illinois, Urbana-Champaign

#include <cuda.h>
void vecAdd(float* A, float* B, float* C, int n)
{
 int size = n* sizeof(float);
 float* A_d, B_d, C_d;

1. // Allocate device memory for A, B, and C
 // copy A and B to device memory

2. // Kernel launch code – to have the device
 // to perform the actual vector addition

3. // copy C from the device memory
 // Free device vectors
}

Partial Overview of CUDA Memories
● Device code can:

○ R/W per-thread registers
○ R/W per-grid global memory

● Host code can
○ Transfer data to/from per

grid global memory

CUDA Device Memory Management API functions
● cudaMalloc()

○ Allocates object in the
device global memory

○ Two parameters
■ Address of a pointer to

the allocated object
(void**)

■ Size of allocated object
in terms of bytes

● cudaFree()
○ Frees object from device

global memory
■ Pointer to freed object

Host-Device Data Transfer API functions
● cudaMemcpy()

○ memory data transfer
○ Requires four parameters

■ Pointer to destination
■ Pointer to source
■ Number of bytes

copied
■ Type/Direction of

transfer
● Transfer to device is

synchronous

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of Illinois, Urbana-Champaign

void vecAdd(float* A, float* B, float* C, int n)
{
 int size = n* sizeof(float);
 float* A_d, B_d, C_d;

1. // Allocate device memory for A, B, and C
 cudaMalloc((void **) &A_d, size);
 cudaMemcpy(A_d, A, size, cudaMemcpyHostToDevice);
 cudaMalloc((void **) &B_d, size);
 cudaMemcpy(B_d, B, size, cudaMemcpyHostToDevice);

 // copy A and B to device memory
 cudaMalloc((void **) &C_d, size);

2. // Kernel launch code – to be shown later

Missing Error Checking
Code!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of Illinois, Urbana-Champaign

3. // copy C from the device memory
 cudaMemcpy(C, C_d, size, cudaMemcpyDeviceToHost);

 // Free device vectors
 cudaFree(A_d); cudaFree(B_d); cudaFree (C_d);

}

Error Checking CUDA Calls

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g37d37965bfb4803b6d4e59ff26856356

Example: Vector Addition Kernel

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of Illinois, Urbana-Champaign

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global__
void vecAddKernel(float* A_d, float* B_d, float* C_d, int n)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 if(i < n)

C_d[i] = A_d[i] + B_d[i];
}

int vectAdd(float* A, float* B, float* C, int n)
{
 // A_d, B_d, C_d allocations and copies omitted
 // Run ceil(n/256) blocks of 256 threads each
 vecAddKernel<<< ceil(n / 256.0), 256 >>>(A_d, B_d, C_d, n);
}

Device
code

Host
code

Specifying Thread Organization

● Specified after kernel name, before argument list
○ kernelName<<< B, T>>>>(argument list)

● B: configuration of blocks in grid
○ 1D: can just use a number indicating number of blocks
○ 2D or 3D: need to specify dimensions using dim3 variable

● T: configuration of threads in blocks
○ 1D: can just use a number indicating number of threads
○ 2D or 3D: need to specify dimension using dim3 variable

dim3 type

● Integer vector type based on uint3
● Any dimension not specified initialized to 1
● Components accessible as variable.x, variable.y, variable.z
● Examples

○ dim3 block1D(5);
○ dim3 block2D(5, 5);
○ dim3 block3D(5, 5, 5);

● blockDim and gridDim are both of dim3 type

More on Kernel Launch

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g37d37965bfb4803b6d4e59ff26856356

int vecAdd(float* A, float* B, float* C, int n)
{
 // A_d, B_d, C_d allocations and copies omitted
 // Run ceil(n/256) blocks of 256 threads each
 dim3 DimGrid(n/256, 1, 1);
 if (n % 256)

DimGrid.x++;
 dim3 DimBlock(256, 1, 1);

 vecAddKernel<<<DimGrid,DimBlock>>>(A_d, B_d, C_d, n);
}

● Any call to a kernel function is asynchronous, explicit synch needed
for blocking

Host
code

Kernel execution in a nutshell

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g37d37965bfb4803b6d4e59ff26856356

More on CUDA Function Declarations

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g37d37965bfb4803b6d4e59ff26856356

● __global__ defines a kernel function
○ Each “__” consists of two underscore characters

● A kernel function must return void
○ __device__ and __host__ can be used together

