CUDA Kernels

Lecture 13
April 15, 2025




Reading for next time (GPUs!)

Program #5 due Thursday

To Dos



Issues That Impact GPU Performance

e Global Memory Bandwidth
o Need to keep parallel compute resources fed with data
o Need to have enough computation to use all resources and hide
memory latency



Global Memory Bandwidth
|deal

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of
Illinois, Urbana-Champaign



Issues That Impact GPU Performance

e Global Memory Bandwidth
o Need to keep parallel compute resources fed with data
o Need to have enough computation to use all resources and hide
memory latency
o Need to prevent load imbalance
o Need to decrease likelihood of divergent control paths
o Need to prevent serialization due to locks



Conversion of a color image to grey-scale
image




Pixels can be calculated independently

Input Array
I

Output Array
O

I[N-1]

r,gb

I[0] I[1] 1[2] ] 1[4]
r,g b r,g b rgb rgb
O[0] O[1] 0[3]

o

L

L=r*0.21+¢g*0.72 + b *0.07

O[N-1]




CUDA/OpenCL - Execution Model

Integrated host+device app C program

e Serial or modestly parallel parts in host C code
e Highly parallel parts in device SPMD kernel C code

Serial Code (host)

Parallel Kernel (device) SN
KernelA<<< nBlk, nTid >>>(args); ||»#W

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408 / CS483, University of
Illinois, Urbana-Champaign



Compiling A CUDA Program

Integrated C programs with CUDA extensions

-

NVCC Compiler

Host Code ‘ ' Device Code (PTX)

Host C Compiler/ Device Just-in-Time
Linker Compiler

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408 /CS483, University of Illinois, Urbana-Champaign



Hierarchy of Computation

o Akernel describes the work performed on a single set of data by a
single thread of control
o Each thread will have its own registers in HW
e Many threads execute a single kernel simultaneously (data parallelism)
o CUDA provides a mechanism for organizing and naming threads
o Allthreads involved in a kernel are collectively part of a grid
o A gridis composed of many blocks, organized in 3 dimensional
space
o Each block contains many threads, organized in 3 dimensional
space
o Specify configuration of threads on kernel invocation



Arrays of Parallel Threads

A CUDA kernel is executed by a grid (array) of threads

e Allthreads in a grid run the same kernel code (SPMD)
e Each thread has an index that it uses to compute memory addresses
and make control decisions

o

i = blockldx.x * blockDim.x +
threadldx.x;
C[i] = A[i] + B[iJ;

PR

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408 / CS483, University of Illinois, Urbana-Champaign




Thread Blocks: Scalable Cooperation

Divide thread array into multiple blocks

e Threads within a block cooperate via shared memory, atomic operations and
barrier synchronization

e Threadsin different blocks cannot cooperate

e Blocks contain same number of threads (up to 1024)

Thread Block 0 Thread Block 1 Thread Block N-1
i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x +
threadldx.x; threadldx.x; eee threadldx.x;
Cli] = A[i] + BI[il; C[i] = A[i] + BI[i; Cli] = Ali] + BIil;

I N R PR

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/ CS483, University of Illinois, Urbana-Champaign



blockldx and threadldx

e Each thread uses indices to

decide what data to work on Hoat Device
o blockldx: 1D, 2D, or 3D == g3
o threadldx: 1D, 2D, or 3D . oo s
Block| | Block |
O 0
o Simplifies memory S —.
addressing when processing '
multidimensional data

o Image processing
o Solving PDEs on volumes

O

Courtesy: NDVIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/ CS483, University of Illinois, Urbana-Champaign



blockDim, gridDim, blockldx, and threadldx
variables

o Defined in kernel
e gridDim - config of blocks in grid
o struct w/ 3 unsignedints: x, Yy, z
o Values set by kernel invocation
e blockDim - config of threads in block
o struct w/ 3 unsignedints: x, Yy, z
o Values set by kernel invocation call
o Thread identifiers: blockldx and threadldx
o blockldx — gives all threads in block a common block coordinate
(e.g. area code)
= X, Y, and z fields depending on dimensions specified by
blockDim
o threadldx — gives all threads in block a way to distinguish
themselves (e.g. local phone #)



Calculating thread ids

e 1D grid of 1D blocks
o blockldx.x * blockDim.x + threadldx.x
e 1D grid of 2D blocks
o blockldx.x*blockDim.x*blockDim.y + threadldx.y*blockDim.x +
threadldx.x
e 2D grid of 1D blocks
o blockld = blockldx.y * gridDim.x + blockldx.x
o threadld = blockld *blockDim.x + threadldx.x
o It's like calculating array index offsets with multidimensional arrays



Vector Addition — Conceptual View

vector

A A[O] | Al1] | Al2] | Al3] | Al4] . A[N-1]

vector

B B[O] B[1] B[2] B[3] B[4] cee B[N-1]
= + -+ + -+ -

vector | g | C[1] | C[2] | C[3] | Cl4] C[N-1]

C [N N ]

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of lllinois, Urbana-Champaign



Vector Addition — Traditional C Code

// Compute vector sum C = A+B
void vecAdd(float* A, float* B, float* C, int n)
{

for (i =0, i < n, i++)

C[i] = A[i] + BI[i];

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of lllinois, Urbana-Champaign



Vector Addition — Traditional C Code

int main ()
{
// Memory allocation for A h, B h, and C_h

float *A h = (float*)malloc(N*sizeof (float));

float *B h (float*)malloc (N*sizeof (float)) ;

float *C_h (float*)malloc (N*sizeof (float)) ;

// I/0 to read A h and B h, N elements

// note memset is for chars/ints not floats

vecAdd(A h, B h, C_h, N);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of lllinois, Urbana-Champaign



Heterogeneous Computing vecAdd Host Code
#include <cuda.h>
void vecAdd(float* A, float* B, float* C, int n)
{

int size = n* sizeof(float);
float* A_d, B_d, C_d;

1. // Allocate device memory for A, B, and C
/] copy A and B to device memory

2. /] Kernel launch code - to have the device
// to perform the actual vector addition

3./ copy C from the device memory
/[ Free device vectors

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of lllinois, Urbana-Champaign



Partial Overview of CUDA Memories

e Device code can:
o R/W per-thread registers
o R/W per-grid global memory

e Host code can
o Transfer data to/from per
grid global memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/ CS483, University of Illinois, Urbana-Champaign



CUDA Device Memory Management API functions

e cudaMalloc()
o Allocates objectin the

(Device) Grid

device global memory LS ) Block (1,0)

o Two parameters
bl

the allocated object

s Address of a pointer to
Thread (0,0) | | Thread (1,0) | | Thread (0, 0) || Thread (1, 0)

(void**)
s Size of allocated object

in terms of bytes 1
. cudsfree] o

o Frees object from device
global memory

s Pointer to freed object

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/ CS483, University of Illinois, Urbana-Champaign



Host-Device Data Transfer API functions

e cudaMemcpy()
o memory data transfer
o Requires four parameters
s Pointer to destination
s Pointer to source
= Number of bytes
copied
s Type/Direction of
transfer
e Transfer to device is
synchronous

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/ CS483, University of Illinois, Urbana-Champaign



void vecAdd(float* A, float* B, float* C, int n)
{

int size = n* sizeof(float);
float* A_d, B_d, C_d:

1. // Allocate device memory for A, B, and C

cudaMalloc((void **) &A_d, size): o .
cudaMemcpy(A_d, A, size, cudaMemcpyHostToDevice); MlSS|r|1g Error Checking
cudaMalloc((void **) &B_d, size): Code!
cudaMemcpy(B_d, B, size, cudaMemcpyHostToDevice);

/] copy A and B to device memory
cudaMalloc((void **) &C_d, size):

2. // Kernel launch code - to be shown later

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of lllinois, Urbana-Champaign



3. // copy C from the device memory
cudaMemcpy(C, C_d, size, cudaMemcpyDeviceToHost);

/[ Free device vectors
cudaFree(A_d); cudaFree(B_d); cudaFree (C_d);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of lllinois, Urbana-Champaign



Error Checking CUDA Calls

__host____device__ cudaError t cudaMalloc ( void** devPtr , size_t size )

Allocate memory on the device.

Parameters
devPtr

- Pointer to allocated device memory
size

- Requested allocation size in bytes

Returns
cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Allocates size bytes of linear memory on the device and returns in *devPtr a pointer to the allocated memory. The allocated memory is suitably
aligned for any kind of variable. The memory is not cleared. cudaMalloc() returns cudaErrorMemoryAllocation in case of failure.

The device version of cudaFree cannot be used with a *devPtr allocated using the host API, and vice versa.

Note:
« Note that this function may also return error codes from previous, asynchronous launches.
» Note that this function may also return cudaErrorinitializationError, cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to
initialize internal CUDA RT state.
» Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not
guaranteed to, be returned as a diagnostic in such case.

https://docs.nvidia.com/cuda/cuda-runtime-api/group__ CUDART__ MEMORY.html#group_ CUDART__MEMORY_1g37d37965bfb4803b6d4e59ff26856356



Example: Vector Addition Kernel

/| Compute vector sum C = A+B Device
/[ Each thread performs one pair-wise addition code
__global__
void vecAddKernel(float* A_d, float* B_d, float* C_d, int n)
{

int i = threadldx.x + blockDim.x * blockldx.x;

if(i < n)

C_d[i] = A_d[i] + B_d[il;

Y
int vectAdd(float* A, float* B, float* C, int n) Host
{ code

/] A_d, B_d, C_d allocations and copies omitted

// Run ceil(n/256) blocks of 256 threads each

vecAddKernel<<< ceil(n / 256.0), 256 >>>(A_d, B_d, C_d, n):
¥

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of lllinois, Urbana-Champaign



Specifying Thread Organization

o Specified after kernel name, before argument list
o kernelName<<< B, T>>>>(argument list)

e B: configuration of blocks in grid
o 1D: can just use a number indicating number of blocks
2D or 3D: need to specify dimensions using dim3 variable
o T: configuration of threads in blocks
o 1D: can just use a number indicating number of threads
2D or 3D: need to specify dimension using dim3 variable



dim3 type

Integer vector type based on uint3
Any dimension not specified initialized to 1
Components accessible as variable.x, variable.y, variable.z
Examples
o dim3 block1D(5);
o dim3 block2D(5, 5);
o dim3 block3D(5, 5, 5);
e blockDim and gridDim are both of dim3 type



More on Kernel Launch Host

code
int vecAdd(float* A, float* B, float* C, int n)

{
/] A_d, B_d, C_d allocations and copies omitted
// Run ceil(n/256) blocks of 256 threads each
dim3 DimGrid(n/256, 1, 1);
if (N % 256)
DimGrid.x++;
dim3 DimBlock(256, 1, 1);

vecAddKernel<<<DimGrid,DimBlock>>>(A_d, B_d, C_d, n);

e Any call to a kernel function is asynchronous, explicit synch needed
for blocking

https://docs.nvidia.com/cuda/cuda-runtime-api/group__ CUDART__ MEMORY.html#group_ CUDART__MEMORY_1g37d37965bfb4803b6d4e59ff26856356



Kernel execution in a nutshell

Void vecAdd()
{ void vecAddKernel (float *A d,
dim3 DimGrid(ceil(n/256.0),1,1); float *B_d, float *C_d, int n)
dim3 DimBlock (256,1,1); {
int i = blockIdx.x * blockDim.x
+ threadIdx.x;

} A if ( i<n ) C_d[i] = A _d[i]+B_d[i];

https://docs.nvidia.com/cuda/cuda-runtime-api/group__ CUDART__ MEMORY.html#group_ CUDART__MEMORY_1g37d37965bfb4803b6d4e59ff26856356



More on CUDA Function Declarations

Executed | Only callable

on the: from the:
__device  float DeviceFunc () device device
__global  void KernelFunc() device host
__host___ float HostFunc() host host

e _ global__defines a kernel function

o Each"__" consists of two underscore characters
e A kernel function must return void

o _device__and _host__ can be used together

https://docs.nvidia.com/cuda/cuda-runtime-api/group__ CUDART__ MEMORY.html#group_ CUDART__MEMORY_1g37d37965bfb4803b6d4e59ff26856356



