<

GPUs and CUDA
programming

Lecture 12
April 10, 2025

Reading for next time (GPUs!)

Program 4 presentations

To Dos

CPUs: Latency Oriented Design

Optimize for single thread
performance
High clock frequency | ALU ALU
Large caches Control
o Convert long latency | ALU ALU
memory accesses to short
latency cache accesses
Sophisticated control
o Branch prediction for
reduced branch latency
o Data forwarding for
reduced data latency
Powerful ALU
o Reduced operation latency

Latency Hiding Techniques

Non-blocking caches
Out-of-order execution
Speculative execution
Hyperthreading

Why Switch To Multiprocessor Systems?

Loss of ability to gain speed by shrinking technology

Hard to transmit signal across entire chip in small clock cycle
Difficult to verify increasingly complex chip designs

Difficult to extract more instruction level parallelism from sequential
applications

Move to Multi-Core and Many Core Systems

Control

COntroI

L

L

Control %‘ L Control W“ L

Multi-core

= Sontr Atg Sontr Atg
~$/Mem ~$/Mem $/Mem
2t Atg i Atg pont Atﬂ
Ly Contro’al | Controta "L
~$/Mem $/Mem

Many-Core

Concurrently, Multimedia/Graphics were
Growing as Application Domains

Multimedia/Graphics applications

Lots of data

Lots of computation on independent groups of data (data parallelism)
Latency less important than throughput

In graphics programs, increased demand for programmability

GPUs: Throughput Oriented Design

Moderate clock frequency

O
S sl W B [[[[[[[[[T [T
throughput i i i
Simplo Gortro HIIIIIII]GHIIIIIII
o Nobranchpredicton EEEEEE E EE E
> No data forwarding T B s T
Energy efficient ALUs |

o Many, long latency but
heavily pipelined for high
throughput

Require massive number of
threads to tolerate latencies

Applications Benefit from Both CPU and GPU

ALU

ALU

Control

ALU

ALU

CPUs for sequential parts where
latency matters

e CPUs can be 10+X faster than

GPUs for sequential code

i

GPUs for parallel parts where
throughput wins

e GPUs can be 10+X faster
than CPUs for parallel code

Writing Applications to use GPUs

Write code for CPU and for GPU

CPU is in control

CPU must transfer data to GPU device memory

CPU invokes GPU kernel and typically waits for completion

CPU transfers data from GPU device memory back to CPU memory

Developers job

Must orchestrate movement of data between CPU and GPU
Must orchestrate movement of data into special, fast, software
managed memory

e Must orchestrate the collaboration of threads and the sharing of fast
memory among threads

Issues That Impact GPU Performance

e Global Memory Bandwidth
o Need to keep parallel compute resources fed with data
o Need to have enough computation to use all resources and hide
memory latency

Global Memory Bandwidth
|deal

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of
Illinois, Urbana-Champaign

Issues That Impact GPU Performance

e Global Memory Bandwidth
o Need to keep parallel compute resources fed with data
o Need to have enough computation to use all resources and hide
memory latency
o Need to prevent load imbalance
o Need to decrease likelihood of divergent control paths
o Need to prevent serialization due to locks

Conversion of a color image to grey-scale
image

Pixels can be calculated independently

Input Array
I

Output Array
O

I[N-1]

r,gb

I[0] I[1] 1[2]] 1[4]
r,g b r,g b rgb rgb
O[0] O[1] 0[3]

o

L

L=r*0.21+¢g*0.72 + b *0.07

O[N-1]

CUDA/OpenCL - Execution Model

Integrated host+device app C program

e Serial or modestly parallel parts in host C code
e Highly parallel parts in device SPMD kernel C code

Serial Code (host)

Parallel Kernel (device) SN
KernelA<<< nBlk, nTid >>>(args); ||»#W

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408 / CS483, University of
Illinois, Urbana-Champaign

Compiling A CUDA Program

Integrated C programs with CUDA extensions

-

NVCC Compiler

Host Code ‘ ' Device Code (PTX)

Host C Compiler/ Device Just-in-Time
Linker Compiler

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408 /CS483, University of Illinois, Urbana-Champaign

