
GPUs and CUDA 
programming

Lecture 12
April 10, 2025



To Dos

Reading for next time (GPUs!)

Program 4 presentations 



CPUs: Latency Oriented Design
● Optimize for single thread 

performance
● High clock frequency
● Large caches

○ Convert long latency 
memory accesses to short 
latency cache accesses

● Sophisticated control
○ Branch prediction for 

reduced branch latency
○ Data forwarding for 

reduced data latency
● Powerful ALU

○ Reduced operation latency



Latency Hiding Techniques

● Non-blocking caches
● Out-of-order execution
● Speculative execution
● Hyperthreading



Why Switch To Multiprocessor Systems?

● Loss of ability to gain speed by shrinking technology 
● Hard to transmit signal across entire chip in small clock cycle
● Difficult to verify increasingly complex chip designs
● Difficult to extract more instruction level parallelism from sequential 

applications



Move to Multi-Core and Many Core Systems



Concurrently, Multimedia/Graphics were 
Growing as Application Domains

Multimedia/Graphics applications 
● Lots of data
● Lots of computation on independent groups of data (data parallelism)
● Latency less important than throughput
● In graphics programs, increased demand for programmability



GPUs: Throughput Oriented Design

● Moderate clock frequency
● Small caches

○ To boost memory 
throughput

● Simple control
○ No branch prediction
○ No data forwarding

● Energy efficient ALUs
○ Many, long latency but 

heavily pipelined for high 
throughput

● Require massive number of 
threads to tolerate latencies



Applications Benefit from Both CPU and GPU

CPUs for sequential parts where 
latency matters
● CPUs can be 10+X faster than 

GPUs for sequential code

GPUs for parallel parts where 
throughput wins
● GPUs can be 10+X faster 

than CPUs for parallel code



Writing Applications to use GPUs
Write code for CPU and for GPU
● CPU is in control
● CPU must transfer data to GPU device memory
● CPU invokes GPU kernel and typically waits for completion
● CPU transfers data from GPU device memory back to CPU memory

Developers job
● Must orchestrate movement of data between CPU and GPU
● Must orchestrate movement of data into special, fast, software 

managed memory
● Must orchestrate the collaboration of threads and the sharing of fast 

memory among threads



Issues That Impact GPU Performance

● Global Memory Bandwidth
○ Need to keep parallel compute resources fed with data
○ Need to have enough computation to use all resources and hide 

memory latency



Global Memory Bandwidth
Ideal Reality

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of 
Illinois, Urbana-Champaign



Issues That Impact GPU Performance

● Global Memory Bandwidth
○ Need to keep parallel compute resources fed with data
○ Need to have enough computation to use all resources and hide 

memory latency
● Need to prevent load imbalance

○ Need to decrease likelihood of divergent control paths
● Need to prevent serialization due to locks



Conversion of a color image to grey–scale 
image



Pixels can be calculated independently 



CUDA/OpenCL – Execution Model
Integrated host+device app C program
● Serial or modestly parallel parts in host C code
● Highly parallel parts in device SPMD kernel C code



Compiling A CUDA Program

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, University of Illinois, Urbana-Champaign

Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ 
Linker

Host Code Device Code (PTX)

Device Just-in-Time 
Compiler

Heterogeneous Computing Platform with
CPUs, GPUs


