OpenMP

Lecture 10
March 18, 2025

Reading for next time

Program 4 presentations

To Dos

How Do We Know We

Can Parallelize Code?

OpenMP

o API for specifying parallelism for shared memory programming
e Runtime system and compiler decide which threads do what

o Allows incremental conversion of sequential program to parallel
program

o Preprocessor directives based (i.e., #pragma)

Compiling OpenMP programs

e Consists of library of functions and macros so include
o #include <omp.h>

o Compile flag: - fopenmp

Basic Parallel Code Block

e Structured block of code:
o One point of entry and one point of exit (although calls to exit ()
are allowed)
e #pragma omp parallel
o Specifies structured block of code should be run in parallel
according to number of threads runtime system indicates
e #pragma omp parallel num threads (4)
o num threads clause modifies directive to specify number of
threads
o Creates team of threads with implicit barrier at end
o Each thread uses rank to specify what it should be doing
o omp get thread num(void)
o omp get num threads (void)

What About Shared Data?

e f#pragma omp critical
o Creates critical section around structured block of code

How accessible are variables within a parallel
block?

e Variables declared in the parallel block are private

o Variables declared outside of the parallel block are shared

But we can explicitly specify access...

Reduction Variables

Reduction operator - associative binary operator (e.g., + or *)
e Reduction - computation that repeatedly applies reduction operator to
sequence of operands to get single result
e Reduction variable - place where intermediate values of reduction are
stored
o reductionclause [+ * -, & |, " &&, ||]
o reduction (operator: variable)
o e.d., reduction(+: global result)
e Each thread has private reduction variable and OpenMP adds a critical
section where private reduction variables combined together
o these private variables initialized with identity value for operator

Parallel for Code Block

o Creates team of threads to execute structured block thatis a for loop
#pragma omp parallel for num threads (4)
for(1 = 1; 1 < n; 1++)
result += 1i;

e Runtime system divides loop iterations among threads, typically using
block partitioning as default scheduler
o Default variable scope: private

How accessible are variables within a parallel
block (addendum)?

We can explicitly specify access...

e #pragma omp parallel for (4) private(data,...)
o All variables in private clause' parentheses are private, with each
thread having its own copy
e #pragma omp parallel for (4) shared(data,...)
o All variables in private clause' parentheses are shared
e fpragma omp parallel for (4) default (none)
o No variable have default access, so each much be specified for
private/shared

Thread pools

#pragma omp parallel for (4) private(data, ...)//createthreads
// do some work
#pragma omp for [/use threads created above for parallel execution

for(i =1 ; 1 < n; i++) {

Scheduling Parallel Blocks

Assigning loop iterations to threads is called scheduling

o Default scheduling for parallel directive is block partitioning
Scheduling for parallel for and for directives can be specified
with schedule clause

schedule (<type>) [, <chunksize>])
type: static, dynamic Or guided, auto, runtime

chunksize: positive integer representing number of iterations in block to
be executed serially (not for auto or runtime)

e Runtime overhead associated with using schedule clause
o hone < static < dynamic < guided

How to Get Different Types of Partitioning
with schedule clause

e block partitioning
e cyclic partitioning

e Dblock-cyclic

Schedule types: static

e chunksize iterations assigned in round-robin fashion
o default chunksize typically iterations / thread
good if time of iterations changes linearly as loop executes

Schedule types: dynamic and guided

dynamic

Allocations donein chunksize quantities

Each thread initially gets one chunksize. Must ask for next
chunksize setwhen it completes

Default chunksizeis1

Good if iterations do unpredictable amounts of work

Overhead associated with asking runtime system for work

guided

Like dynamic, but allocation size decreases as chunks are completed
Typically allocations are /2 of remaining number of iterations
If chunksizespecified, allocation size decreases down to chunksize

Schedule types: runtime

e Runtime system uses environment variable OMP SCHEDULE to
determine t ype of schedule
o e.d., OMP SCHEDULE="static,2"

