
OpenMP

Lecture 10
March 18, 2025

To Dos

Reading for next time

Program 4 presentations

Questions?How Do We Know We
Can Parallelize Code?

OpenMP

● API for specifying parallelism for shared memory programming

● Runtime system and compiler decide which threads do what

● Allows incremental conversion of sequential program to parallel
program

● Preprocessor directives based (i.e., #pragma)

Compiling OpenMP programs

● Consists of library of functions and macros so include
○ #include <omp.h>

● Compile flag: -fopenmp

Basic Parallel Code Block
● Structured block of code:

○ One point of entry and one point of exit (although calls to exit()
are allowed)

● #pragma omp parallel
○ Specifies structured block of code should be run in parallel

according to number of threads runtime system indicates
● #pragma omp parallel num_threads (4)

○ num_threads clause modifies directive to specify number of
threads

● Creates team of threads with implicit barrier at end
○ Each thread uses rank to specify what it should be doing
○ omp_get_thread_num(void)
○ omp_get_num_threads(void)

What About Shared Data?
● #pragma omp critical

○ Creates critical section around structured block of code

How accessible are variables within a parallel
block?

● Variables declared in the parallel block are private

● Variables declared outside of the parallel block are shared

But we can explicitly specify access…

Reduction Variables

● Reduction operator - associative binary operator (e.g., + or *)
● Reduction - computation that repeatedly applies reduction operator to

sequence of operands to get single result
● Reduction variable - place where intermediate values of reduction are

stored
● reduction clause [+, *, -, &, |, ,̂ &&, ||]

○ reduction (operator: variable)
○ e.g., reduction(+: global_result)

● Each thread has private reduction variable and OpenMP adds a critical
section where private reduction variables combined together
○ these private variables initialized with identity value for operator

Parallel for Code Block
● Creates team of threads to execute structured block that is a for loop

● Runtime system divides loop iterations among threads, typically using
block partitioning as default scheduler

● Default variable scope: private

#pragma omp parallel for num_threads(4)
for(i = 1; i < n; i++)

result += i;

How accessible are variables within a parallel
block (addendum)?

We can explicitly specify access…
● #pragma omp parallel for (4) private(data,...)

○ All variables in private clause' parentheses are private, with each
thread having its own copy

● #pragma omp parallel for (4) shared(data,...)
○ All variables in private clause' parentheses are shared

● #pragma omp parallel for (4) default(none)
○ No variable have default access, so each much be specified for

private/shared

Thread pools

#pragma omp parallel for (4) private(data,...)//create threads
// do some work

#pragma omp for // use threads created above for parallel execution
for(i = 1 ; i < n; i++) {

….

}

Scheduling Parallel Blocks
● Assigning loop iterations to threads is called scheduling
● Default scheduling for parallel directive is block partitioning
● Scheduling for parallel for and for directives can be specified

with schedule clause

● Runtime overhead associated with using schedule clause
○ none < static < dynamic < guided

schedule(<type>) [, <chunksize>])

type: static, dynamic or guided, auto, runtime
chunksize: positive integer representing number of iterations in block to
be executed serially (not for auto or runtime)

How to Get Different Types of Partitioning
with schedule clause

● block partitioning

● cyclic partitioning

● block-cyclic

Schedule types: static

● chunksize iterations assigned in round-robin fashion
● default chunksize typically iterations / thread
● good if time of iterations changes linearly as loop executes

Schedule types: dynamic and guided

dynamic
● Allocations done in chunksize quantities
● Each thread initially gets one chunksize. Must ask for next

chunksize set when it completes
● Default chunksize is 1
● Good if iterations do unpredictable amounts of work
● Overhead associated with asking runtime system for work
guided
● Like dynamic, but allocation size decreases as chunks are completed
● Typically allocations are ½ of remaining number of iterations
● If chunksizespecified, allocation size decreases down to chunksize

Schedule types: runtime

● Runtime system uses environment variable OMP_SCHEDULE to
determine type of schedule
○ e.g., OMP_SCHEDULE="static,2"

