
Parallel 
Processing
Lecture 1
February 5, 2025



What is this course about?

1https://www.javatpoint.com/graph-algorithms
2Intel Core i7-3960X
3NVIDIA Turing GPU Architecture White Paper
4https://en.wikipedia.org/wiki/Field-programmable_gate_array
5https://www.researchgate.net/figure/Processing-in-Memory-PIM-concept_fig2_330116237
6https://en.wikipedia.org/wiki/Supercomputer
7https://www.datacenterknowledge.com/hyperscalers/a-glimpse-inside-google-s-data-centers
8https://www.anandtech.com/show/10340/googles-tensor-processing-unit-what-we-know

New Workload1

Analyze Resource
Demands

MP2 GPU3

Map To Existing 
Architectures

FPGA4 PIM5

Supercomputer6 Data Center7

TPU8



3

What algorithm 
characteristics 
impact its interaction 
with hardware?
● Degree / type of parallelism
● Communication frequency
● Computational intensity
● Memory intensity
● Branch frequency

 



Why Graph Algorithms? Graphs Are Everywhere

Social Network Graph1 Chemical Compound2 Protein Structure3

1https://commons.wikimedia.org/wiki/File:Social_Network_Diagram_%28large%29.svg
2https://commons.wikimedia.org/wiki/File:An_example_of_a_lead_compound.png
3https://commons.wikimedia.org/wiki/File:Spombe_Pop2p_protein_structure_rainbow.png



Graph Learning

Graph Mining

Graph Analytics
Determine strength / direction of relationships in 
graph (e.g., PageRank)

Machine learning which learns from graphs to 
make predictions (e.g., unsupervised learning)

Extraction of novel and useful knowledge from 
data (e.g., pattern matching)

Different Types of Algorithms



6

What are the 
strengths and 
weaknesses of an 
architecture?
● Degree / type of parallelism
● Programmability 
● Communication bandwidth and 

speed
● Memory system capacity, 

bandwidth, speed
● Compute resources
● Branch performance

 



 Topics 

Quantifying resource demands

Modeling performance 

Concurrency and parallelism

Multiprogramming w/ processes

Message passing

Threads and synchronization

Graphics and vector processing

AI/ML processing

Cluster computing

Accelerators / PIM



What are 
the course 
objectives?

Learn about and learn how to program 
parallel systems

Learn to assess application resource 
demands

Experiment (including failing well)

Learn about graph algorithms

Collaborate and learn together

Develop model for mapping 
applications to hardware



 Introductions

What should we call you?

What's the coolest CS concept you've learned so far?

What do you do for fun?

Anything else you want to share?

Why interests you about this class?



Logistics
● Meeting times

○ TuTh 9:55-11:10
● Help hours

○ when2meet poll
○ Likely in CS majors lab
○ Or by appointment

● Online help 
○ http://cs338-parallelprocess.slack.com

● Course materials
○ https://cs.williams.edu/~kshaw/cs338
○ Glow course page

● Course activities
○ Class participation (5%)
○ Reading and short comprehension 

quizzes (5%)
■ 2 lowest dropped

○ Programming assignments (40%)
■ Including writeup / presentation

○ Midterm (30%)
■ Thursday, March 13

○ Final project (20%)
■ Map new algorithm OR
■ Map algorithm to new system



Collaboration!
● This class is all about learning together 

and from one another.

● Assignments will be partner eligible
○ Don't create solutions with 

non-partners

● In class presentations of findings / 
insights

● Don't look for solutions online, but use 
online resources



Books
● Unix Systems Programming: Communication, 

Concurrency, and Threads (2nd Edition), by Kay 
Robbins and Steve Robbins

● An Introduction to Parallel Programming (2nd 
Edition), by Peter S. Pacheco and Matthew 
Malensek

● (Recommended) Programming Massively Parallel 
Processors: A Hands-on Approach (4th Edition), 
by David B. Kirk, Wen-mei W. Hwu, and Izzat El Hajj



Questions?Let's Talk About Failing Well
https://www.youtube.com/watch?v=Gb9tjnJWu5g



● CPU executes instructions
○ ALU
○ Memory
○ Control

● Memory hierarchy gives illusion of lots of 
fast memory
○ Caches
○ Main memory
○ Disk

● Time-share resources between different 
processes

● Performance enhancers
○ Exploiting memory locality
○ Branch prediction
○ Using less expensive compute ops

Computer Architecture Review



Concurrency

● Definition: sharing of resources or performing of tasks in progress at the same time
● Motivation

○ Multiple physical resources 
○ Independent tasks

● Multiple locations
○ Hardware level
○ Application level

● Systems with concurrency
○ Operating System
○ Parallel Computer
○ Distributed System



Parallelism

● Having multiple physical resources that can be used at the same time
● Typically, when we talk about parallel computing, the compute resources 

are working jointly to solve the same problem
● Reasons for it:

○ We have enough transistors to duplicate resources
○ We canʼt figure out ways to speed up sequential programs in HW 

anymore
○ Some applications have a lot of independent tasks that can run 

concurrently

Sequential Parallel





Modern Computer Chips Have Parallel Resources



Parallel Computing

● Lots of compute resources
● Close physical location
● Resources used to solve parts of single 

problem simultaneously
● Trends:

○ Multiple processing cores on single chips
○ Systems with multiple chips housed 

together
○ Specialized processors



Distributed Computing

● Often commodity parts
● Loosely coupled computation
● Connected by internet
● Think “data centers”



Operating System Process Concept Enables 
Timesharing and Multiprogramming
● Timesharing

○ Resources are shared amongst multiple tasks in time
■ Creates illusion that tasks execute simultaneously even though only 

one CPU
● Multiprogramming

○ More than one task ready to execute 
○ Switch between tasks when waiting for resource or input

■ Enables efficient use of resources, keeping them from being idle when 
in need



What is an Operating System?

● Layer of software that manages a computer s̓ resources 
for its users and their applications

Operating System

Hardware

AppApp App



What does an 
OS do?

• Resource allocation among users, apps
• Isolation of different users, apps
• Communication between users, apps

Referee

• Each app thinks it has entire machine to itself
• Infinite number of processors, infinite amount of 

memory, reliable storage, reliable network 
transport

Illusionist

• Common services facilitate sharing across apps
• Libraries, user interface widgets, etc.

Glue



Example: File 
Systems

• Prevent users from accessing each other’s 
files without permission

• Even after a file is deleted and its space 
re-used

Referee

• Files can grow (nearly) arbitrarily large
• Files persist even when the machine 

crashes in the middle of a save

Illusionist

• Named directories, printf, …

Glue



Unit of Work: Process
● Program is a static concept

○ Executable file contains sequences of instrs to perform 
tasks and initialize data

● Process is the corresponding dynamic concept
○ It is an executing program
○ It is the abstraction for protected execution provided by 

kernel. Asks OS for permission to do stuff.
● If you have many instances of the same program running, 

you have many processes running
● The OS allocates resources (CPU, files, memory, etc.) to 

processes



Process Abstraction
● Process: an instance of a program, running with limited rights

○ Thread: a sequence of instructions within a process
■ Potentially many threads per process (for now 1:1)

○ Address space: set of rights of a process
■ Memory that the process can access
■ Other permissions the process has (e.g., which 

system calls it can make, what files it can access)
○ Process identifier (PID) to identify process
○ Has connections to ancestor and child processes



Tracking Processes
● OS keeps track of all processes
● Process Control Block (PCB) stores all info about process

○ where process stored in memory
○ where executable resides on disk
○ which user invoked it
○ what privileges process has
○ ...

● Processes can be standalone or interact with other processes 
through OS constructs
○ Filesystem, pipes, signals, shared memory, network



Process Address Space

● Each process has an address space
○ The logical memory it can access

● The address space is divided into 
segments:
○ Text

■ Instructions
○ Initialized Data

■ Globals
○ Uninitialized Data or Heap

■ new allocates space here
○ Stack

■ local variables are given space here

Stack

Text

Initialized Data

Uninitialized Data
(Heap)

0x0

0x7fffffff

Reserved

0x1000000

0x40000



Process is a 
Running Program

● Starts at a given instruction 
(e.g., main)

● Executes on CPU
○ Current instruction address
○ Current register state



How Do the OS and Processes Interact?

● OS lets process run on hardware resources, but how does it control it and help it?
● Interrupts

○ Peripheral device can set a HW flag indicating it needs service
○ HW always checks if flag set
○ If flag set, OS will cause interrupt handler to run, taking CPU away from 

process
● Signals

○ SW notification of an event
○ OS may send process a signal based on interrupt
○ Process may generate signal (e.g., divide by zero) that it must then handle via 

signal handler 
○ Inter-process communication between unrelated processes

● System calls 
○ Process explicitly asks OS to do something on its behalf

■ e.g., read from console, write to disk


