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E d u ca  t i o n

Why Computer Architecture Matters: 
Thinking through trade-offs in your code
By Cosmin Pancratov, Jacob M. Kurzer, Kelly A. Shaw, and Matthew L. Trawick

I n the previous two installments of this department, 
we discussed four principles we can use to leverage 
our understanding of computer architecture to create 

faster programs:  

Choose low-latency instructions: avoid costly instructions 
such as floating point division and trigonometric func-
tions in favor of fast integer instructions.
Precalculate values: perform computations outside of a 
loop to avoid repeated calculations.  
Use temporal locality: change the order of calculations to 
re-use data soon after its initial use, when it’s likely to 
still be held in cache.
Use spatial locality: reorganize data structures and change 
the order of calculations so that data stored together are 
accessed at nearly the same time.  

We showed how to apply these principles using several 
specific techniques, such as array merging and blocking, 
that are broadly applicable to many programming tasks. 
We incrementally applied these individual techniques to 
improve performance. 

Sometimes, however, further performance optimiza-
tion requires larger-scale changes, which we can’t achieve 
by simply applying a series of independent techniques. In 
these cases, it pays to think carefully about how a specific 
algorithm functions to discover new ways to apply these 
principles to the situation at hand. Resulting improve-
ments might require simultaneous use of a combination of 
principles or involve a trade-off of benefits and penalties 
between conflicting principles. 

Here we continue to work with our example from the 
earlier installments of this series, but because the best 
combination of principles isn’t easily generalizable from 
problem to problem, this time we focus on the actual 
thought process involved in making decisions about these 
larger-scale modifications.

•

•

•

•

Execution Speed: Finding the Bottleneck
Let’s look back at our orientational correlation program 
from previous installments. The data to be analyzed is 
a series of N points, possibly from a microscope image, 
stored in an array data[N] of structures. Each point 
has a location, stored in data[].x and data[].y, as 
well as a local orientation, stored in data[].cos6 and  
data[].sin6. (Previously, we found it computationally 
advantageous to precalculate the sine and cosine for each 
given orientation—hence, the two separate fields.) Calcu-
lating the orientational correlation function g(r) for the 
data requires calculating the distance between each pos-
sible pair of points i, j, 

r x x y yi j i j i j, ,= −( ) + −( )2 2

and accumulating correlation information for all pairs of 
points as a function of that distance. Eventually, we cal-
culate an average correlation value g for all pairs of points 
separated by each particular distance r. The heart of our 
implementation of the algorithm, which follows, requires 
calculating the distance r between each pair of points, and 
using it as the index of an array accum to which we add the 
results of the computation for that pair:

//The first four lines choose each possible 

//pair of points i,j in an efficient order to 

//maximize locality.

for(A=0; A+2*blocksize<N; A+=blocksize) 

  �for(B=A+blocksize; B+blocksize<N;  

    B+=blocksize) 

    for(i=A; i<A+blocksize; ++i)    

      for(j=B; j<B+blocksize; ++j) {

        //For each ij pair, calculate r

        Dx = data[i].x - data[j].x;

        Dy = data[i].y - data[j].y;

        r = sqrt(Dx*Dx + Dy*Dy);

This three-part series shows how applying knowledge about the underlying computer hardware to the code for 
a simple but computationally intensive algorithm can significantly improve performance. The final installment 
focuses on modifying a specific algorithm by applying general principles of efficient programming.
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Table 1. Three strategies for accumulating results.

Accumulation array Size Index calculation Operations

accum[r] MAX_r r = sqrt(Dx*Dx + Dy*Dy) SQRT,*,*,+

accum[r2] MAX_r*MAX_r r2 = Dx*Dx + Dy*Dy *,*,+

accum2d[y_ind][x_ind] MAX_y*MAX_x y_ind = abs(Dy) 
x_ind = ABS(Dx)

ABS,ABS,*,+

        //calculate cos(6 *(t_i – t_j)) 

        //using precalculated sines and

        //cosines. Add the result to accum[r].

        accum[r].g += �data[i].cos6 *  

data[j].cos6 + 

data[i].sin6 *  

data[j].sin6;

        ++accum[r].count;

      }

//Finally, divide through by # of pairs at 

//each r to get average.

for(r=0;r<MAX_r;++r)

  accum[r].g = accum[r].g / accum[r].count;

When we measured the execution speed of this code, 
which we optimized by applying a set of independent 
techniques, we found that while faster than our earliest 
attempts, each iteration of the innermost loop still took a 
disappointing 79.6 clock cycles to complete. How can we 
make this faster?

Our previous estimates for this code generously suggest-
ed each iteration should take 50 or fewer clock cycles, so 
something here is taking longer than it should. Examining 
the inner loop closely, one place that might be responsible 
for the delay is the access of the array accum, which along 
with the input data is probably too large to fit entirely 
within the lowest level of our CPU’s cache. Because we in-
dex accum with a random element r (which might be either 
big or small), there is virtually no spatial locality; each new 
element probably has to be loaded from a level of cache far 
from the processor, incurring a significant latency. 

But a second place that might be just as significant a 
source of delay is the calculation of the square root. The 
square root is a high-latency instruction, requiring roughly 
35 clock cycles on our system. That’s a pretty big chunk of 
the 50 or so clock cycles we think each loop should take. It’s 
difficult to know which of these is the greater bottleneck 
without an awful lot of testing, so a reasonable strategy is 
to try to fix one of them and see if the situation improves.

Strategies for Eliminating the Square Root
Let’s consider applying the principle of choosing low-
latency instructions to somehow replace the square-root 
function. Unfortunately, there’s no obvious way to replace 
the square-root function with low-latency instructions that 

achieve the same functionality, so we can’t simply apply a 
single principle in this situation. Instead, we have to con-
sider multiple principles together, trading off the benefits 
of one for the penalty of another. Specifically, we can con-
sider reducing the frequency of executing the square root 
by storing data in larger accumulation arrays, even though 
that will result in poorer spatial locality. 

Table 1 summarizes three different strategies we might 
use to accumulate results in this calculation. The first op-
tion is the status quo: calculating r and accumulating the 
results in an array of size MAX_r. A second option would be 
to avoid the costly SQRT operation within the inner loop by 
accumulating results in an array indexed by r2 instead of by 
r. The square root would eventually have to be performed, 
of course, but only for every nonzero value of accum[r2], 
instead of for every pair of data points. A potential disad-
vantage of this option is the much larger size of the accu-
mulation array, which might not fit in the processor’s cache. 
Accessing this array randomly, without any benefit of spatial 
locality, would likely incur very high latencies.

A third option would be to store the result in a 2D array 
accum2d[y_ind][x_ind]of dimensions MAX_y * MAX_x. 
Again, this avoids the costly SQRT operation within the 
inner loop but at the cost of high latencies for randomly 
accessing the much larger accumulation array. Note that 
while this option avoids the two multiplication operations 
for squaring Dx and Dy, the array indexing arithmetic still 
requires an addition and a multiply to calculate the memo-
ry address for y_ind * MAX_x + x_ind. Additionally, the 
two absolute value operations are needed to avoid nega-
tive array indices. (Note that we’ve ordered our indices as 
[y][x] instead of [x][y]. Later, we diagram 2D arrays 
using the convention that horizontally adjacent elements 
represent neighboring elements in physical memory. The 
C programming language uses row-major order for mul-
tidimensional arrays, where array elements differing by 
one value in the last dimension are contiguous in physi-
cal memory. Our ordering of [y][x] lets the diagram’s 
horizontal axis correspond to [x], as on a standard Car-
tesian plane.)

The trade-offs in speed between these three options 
aren’t at all obvious. The only real way to know whether 
one of the other two options will run faster is to pick one, 
write the code, and test it on a typical data set.  Because the 
array size is smaller in the third option than in the second, 
we chose to test the third option.
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The first two lines of Table 2 shows the results of our 
modification. Where our original strategy of using a 1D 
accumulation array accum[r] yielded a speed of 79.6 clock 
cycles per pair, switching to the 2D accumulation array 
accum2d[y_ind][x_ind] actually took almost twice as 
long, 148.7 clock cycles. Apparently, the latency of ran-
domly accessing the accumulation array is a more impor-
tant consideration than the latency of the SQRT instruction. 
Clearly, the cost of trading poorer data locality exceeded the 
benefit gained from reducing the square root’s frequency. 
Before giving up on this entire approach, however, it makes 
sense to try applying another of our principles (improv-
ing spatial locality) to this larger accumulation array. If we 
can ameliorate the cost of the increased memory usage, we 
might be able to still gain benefits from using the principle 
of removing high-latency instructions.

Improving Spatial Locality with Sorting
One strategy we haven’t yet explored is sorting the data 

prior to processing to improve spatial 
locality. Because the data deals with 
spatial coordinates and we’re calcu-
lating distances between the data, we 
might be able to use this fact to our 
advantage. Perhaps there might be 
some way to reorder the data so that 
pairs of points that fall within a par-
ticular region, or that are a particular 
distance apart, are all processed at 
nearly the same time. In this way, the 
accumulation array, whether indexed 
by [r], [r2], or [Dy][Dx], might be 
accessed with some spatial locality, re-
ducing the latency. Although it’s dif-
ficult to imagine a scheme in which we 
could arrange the data to yield pairs 
neatly sorted by r, using the 2D ac-
cumulation array accum2d offers a 
fairly straightforward way to achieve 
a similar effect.

As Figure 1 illustrates, we start by 
sorting the input data according to the 
value of data[].y, and by data[].
x within each value of y. (The sort-
ing can be accomplished with a stan-
dard library routine requiring order 
N logN calculations, a negligible cost 
compared to the order N2 calculations 

of our main program.) By sorting the data in this way, for 
each pair of points i,j, a small change in either i or j yields 
small changes in Dy and Dx. Using our blocking technique 
on the input data, each set of blocks A and B are guaran-
teed to yield pairs of points with little or no variation in 
Dy, and minimal variation in Dx as well. This greatly im-
proves the spatial locality in the accumulation array—and 
all with no square-root calculation in the inner loop! As 
an additional small bonus, we no longer need an absolute 
value operation for y_ind, because Dy is now guaranteed 
to be positive or zero. 

We can further improve spatial locality for the new ac-
cumulation array by making a subtle change in the block-
ing technique introduced in the second installment. In our 
original implementation, we held block A constant as we 
incremented block B through the entire data set. But by 
doing so now, data in each new block B would have larger 
y values than data from the previous block B, causing an 
increase in Dy for the resulting pairs of points. As a result, a 

Table 2. Effects on execution time of using a 2D accumulation array (as 
well as cosine precalculation, array merging, and blocking, described in 
previous installments).

Execution time (sec) Clock cycles per pair 

With square root 2,634 79.6

With 2D output, not sorted 4,920 148.7

With 2D output, sorted 553 16.7

With all tricks 347 10.5

Data:
(sorted by y,
then x) Block A (Next Block A)

…

Spacing

x_ind = abs(xj-xi)

y_ind = abs(yj-yi)

accum2d:

(a)

(b)

Block B (Next Block B)

Figure 1. A revised blocking scheme for use with sorted data, showing (a) the 
sorted input array data, and (b) the 2D output array accum2d. The pair of blocks A 
and B in the input array shown in blue yield i,j pairs whose x and y displacements 
are localized in a region of accum2d, shown as blue dots.  For the next pair of 
blocks A and B, shown in red, the spacing between the two blocks is held constant, 
yielding a set of pairs with similar x and y displacements, shown as red dots.
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new portion of the array accum2d would be accessed, with 
some penalty in increased latency. 

To avoid this, we can instead hold the spacing between 
blocks A and B constant, incrementing both A and B simul-
taneously, as Figure 1 shows. Assuming the data are uni-
formly distributed in x and y, the same portion of accum2d 
will be accessed for each set of blocks A, B of a given spacing. 
The trade-off for the increased spatial locality in accum2d 
is a decrease in spatial locality in the data array, but since 
the active portion of accum2d is larger than the size of a 
block in the data array, this seems like a good trade. 

The code snippet that follows shows the implementation 
of the 2D accumulation array and the revised blocking 
scheme:

//Sorting of input data already done 

//previously.

//The first four lines choose each possible 

//pair of points i,j in an efficient order to 

//maximize locality.

for(�spacing = blocksize;  

spacing < (N-2)*blocksize; 

spacing += blocksize)

  for(A=0; A+2*blocksize<N; A+=blocksize) { 

    B=A+spacing;

    for(i=A; i<A+blocksize; ++i)    

      for(j=B; j<B+blocksize; ++j) {

        //For each ij pair, calculate r

        x_ind = abs(data[j].x - data[i].x);

        y_ind =     data[j].y - data[i].y;

        accum2d[y_ind][x_ind].g += 

           �data[i].cos6 * data[j].cos6 +  

�data[i].sin6 * data[j].sin6;

        ++accum2d[y_ind][x_ind].count;

      }

  }

//Finally, divide through by # of pairs at  

//each r to get average.

for(y=0;y<MAX_y;++y)

  for(x=0;x<MAX_x;++x) {

    r = sqrt(x*x +y*y);

    �g[r]= accum2d[y][x].g / 

   accum2d[y][x].count;

  }

The third line of Table 2 shows the tremendous speed 
increase we gained by sorting the data. Each iteration of 
the inner loop now requires only 16.7 clock cycles, a whop-
ping nine-fold speed increase from the unsorted version 
and almost five times faster than the version with the 1D 
accumulation array. Now that we’ve removed the bottle-
necks due to calculating the square root and accessing the 
accumulation array, the spatial and temporal locality we 
achieved through blocking is truly paying dividends! Thus, 
making a trade-off between computation and memory, 
applying a combination of performance improving tech-
niques, and incorporating application-specific knowledge 
about the data, we were able to make a set of modifications 
that significantly enhanced our already optimized code.

When Do We Stop?
At this point, having achieved some spectacular speed 
gains for only a small amount of work, it’s worthwhile to 
take stock in our progress. Table 3 provides an estimate of 
the instructions executed in one iteration of the innermost 
loop of our code. Examining the table carefully, we see 
that it’s composed entirely of relatively fast instructions 
like multiplication and addition that have a low latency 
and can often be pipelined. If we’re looking for additional 
targets of opportunity for significant latency reductions—
high latency instructions like square roots, division, or 
trigonometric functions—there’s no obvious low-hanging 
fruit here. 

Of the 20 instructions per loop iteration listed in the table, 
16 are integer operations handled by our processor’s three 
arithmetic logic units (ALUs). In the best possible theoretical 
limit, all instructions could be pipelined, and the most heav-
ily scheduled ALU would handle six of these instructions, 
completing one loop iteration in just six clock cycles. 

Table 3. Operations required for modified code, both for explicit instructions and address arithmetic.

Code line Explicit operations Address arithmetic

Integer Float Array Likely operations used

for(j=B; j<B+blocksize; ++j) { 2 (+,<)  

x_ind = abs(data[j].x - data[i].x); 2(ABS,-) x[j] 1

y_ind = data[j].y - data[i].y; 1(-) y[j] 1

accum2d[y_ind][x_ind].g +=
       data[i].cos6 * data[j].cos6 +
       data[i].sin6 * data[j].sin6;

4 (+,*,+,*) accum2d[][]
data[j].cos
data[j].sin

4
1
1

++accum2d[y_ind][x_ind].count; 1(+) accum2d[][] 2

Totals 6 4 10
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In reality, there will certainly be some overhead for “load” 
and “store” operations, as well as several three-clock-cycle 
latencies to retrieve items from the L1 cache. So, an actual 
time of two to four times that many clock cycles per loop 
would be a reasonable expectation. Since our measured time 
of 16.7 clock cycles per loop falls easily within that range, 
we can conclude that the program is now executing rea-
sonably efficiently, no longer hampered by any particularly 
long latencies from memory access. As a practical matter, 
we shouldn’t expect further code refinements to produce 
more than an additional 10 to 30 percent speed improve-
ment. For most applications, this is fast enough.

Address Arithmetic:  
Taking Over the Controls
For some applications, pursuing an additional 10 to 30 per-
cent is still worthwhile, and there are a few more tactics we 
can employ. Looking at Table 3, we see that 10 of the 16 
integer operations are due to address arithmetic required for 
calculating the memory addresses of particular array ele-
ments. If we really want to squeeze the last few extra clock 
cycles out of the program, a good place to start is by think-
ing through how the processor handles address arithmetic. 
It might be possible to reduce the number of computations 
needed for this implicit code if we’re willing to trade less 
readable code for improved performance.

For example, the output array accum2d is a 2D array of 
structures of type OutputStruct, each with two fields, 
g and count. The processor finds the memory address of 
accum2d[y_ind][x_ind].g by calculating 

address of accum2d[0][0].g +  

   (size of OutputStruct) * 

   (x_ind + y_ind*MAX_x)

Notably, the multiplication by MAX_x takes place each it-
eration, and we can move it outside of the inner loop if we 
take over some of this address arithmetic from the com-
piler and handle it ourselves explicitly. 

We start by defining accum2d as a 1D array of size  
MAX_y * MAX_x. Instead of addressing it as  
accum2d[y_ind][x_ind], we use accum2d[x_ind + 
MAX_x * y_ind]. Because y_ind comes directly from the 
y values in the data array, we can simply multiply all values 
of data[].y by MAX_x at the start of the program. From 
that point on, we simply address the accumulation array 
as accum2d[x_ind + y_ind].g, having eliminated the 
need for a multiplication by MAX_x inside the inner loop.  
Thus, we can remove computation on every iteration 
through precomputation and by modifying our algorithm 
and its data storage based on application-specific informa-
tion. However, the code does become less readable. 

(The astute reader will note that the implicit multipli-
cation by the size of OutputStruct could also be pre-
calculated in much the same way, removing yet another 
instruction from the inner loop. However, the C code for 
doing so looks so ghastly that we can’t bring ourselves to 
include it here. Instead, we’ll leave it as an exercise for the 
reader who enjoys that sort of thing.)

A final tactic we can employ to remove some computa-
tion requires a willingness to change data structures in a 
way that makes them less intuitive and less directly expres-
sive of an algorithm’s logic. In this vein, Figure 2 illustrates 
one final bit of trickery to remove the last remaining ABS 
operation, which is there to prevent the x part of the array 
index from ever being negative. Because we’re handling the 
array arithmetic for the array accum2d ourselves anyway, 
we can handle negative x-values with no trouble, provided 
we create an array that’s twice as big as before, and we scale 
all of the y-indices appropriately. Furthermore, once we re-
move the absolute value from the calculation of the index, 
it’s clear that we can eliminate another operation by group-
ing the data[i] terms together. Our index for accum2d 
becomes data[j].x + data[j].y + d_i, where we 
calculate d_i = – data[i].x - data[i].y outside 
of the innermost loop. The trade-off here is that the ar-
ray accum2d is now twice as large as before, and there is 
a chance that we could suffer from reduced spatial local-
ity as a result. In fact, the trade works in our favor this 
time. The last line of Table 2 shows that with these last 
changes, including our takeover of address arithmetic from 
the compiler, our program’s execution time is now down to 
10.5 clock cycles per iteration. 

Extra part, for negative x values Original array

accum2d:

x = –2
y = 3

x = 2
y = 3

Figure 2. A modification to the accumulation array for 
avoiding an ABS calculation. With the original 2D array, 
shown in dark blue, an ABS calculation was required to keep 
the x part of the index from being negative. By extending 
the width of the array in x, and adjusting indices accordingly, 
this constraint is no longer necessary.
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M any introductory programming textbooks stress 
the importance of using algorithms that scale effi-

ciently—for instance, with execution times proportional to 
NlogN instead of N2. By contrast, most textbooks pay little 
if any attention to the actual proportionality constant itself. 
But computer architecture has evolved in recent years to a 
point where CPUs can perform some calculations at a rate 
of several operations per clock cycle, roughly 1,000 times 
faster than the rate at which individual bytes of data can 
be loaded from main memory. In this environment, that 
proportionality constant can make the difference between 
“fast enough” and “too slow to be useful.” 

In this three-part series, we started with a simple algo-
rithm consisting of roughly six lines of code, and we used 
a few broadly applicable general principles to increase its 
speed by more than a factor of 30. Although we’re pleased 
at the near optimal efficiency of our final program, the 
huge improvement we achieved is ultimately due to hav-
ing begun from a starting point of maximum stupidity. In 
fact, the main lesson to be learned from this example is that 
most of the stupidity could have been easily avoided from 
the start if we had initially written our program with some 
attention to how our computer hardware would actually 
execute it. The real take-home message of this series is that 

even for casual programmers, computer architecture really 
does matter!�
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