
Editors: Michael Dennin, mdennin@uci.edu

Steven Barrett, steveb@uwyo.edu

74	 Copublished by the IEEE CS and the AIP	 1521-9615/08/$25.00 © 2008 IEEE� Computing in Science & Engineering

E d u ca t i o n

Why Computer Architecture Matters:
Thinking through trade-offs in your code
By Cosmin Pancratov, Jacob M. Kurzer, Kelly A. Shaw, and Matthew L. Trawick

I n the previous two installments of this department,
we discussed four principles we can use to leverage
our understanding of computer architecture to create

faster programs:

Choose low-latency instructions: avoid costly instructions
such as floating point division and trigonometric func-
tions in favor of fast integer instructions.
Precalculate values: perform computations outside of a
loop to avoid repeated calculations.
Use temporal locality: change the order of calculations to
re-use data soon after its initial use, when it’s likely to
still be held in cache.
Use spatial locality: reorganize data structures and change
the order of calculations so that data stored together are
accessed at nearly the same time.

We showed how to apply these principles using several
specific techniques, such as array merging and blocking,
that are broadly applicable to many programming tasks.
We incrementally applied these individual techniques to
improve performance.

Sometimes, however, further performance optimiza-
tion requires larger-scale changes, which we can’t achieve
by simply applying a series of independent techniques. In
these cases, it pays to think carefully about how a specific
algorithm functions to discover new ways to apply these
principles to the situation at hand. Resulting improve-
ments might require simultaneous use of a combination of
principles or involve a trade-off of benefits and penalties
between conflicting principles.

Here we continue to work with our example from the
earlier installments of this series, but because the best
combination of principles isn’t easily generalizable from
problem to problem, this time we focus on the actual
thought process involved in making decisions about these
larger-scale modifications.

•

•

•

•

Execution Speed: Finding the Bottleneck
Let’s look back at our orientational correlation program
from previous installments. The data to be analyzed is
a series of N points, possibly from a microscope image,
stored in an array data[N] of structures. Each point
has a location, stored in data[].x and data[].y, as
well as a local orientation, stored in data[].cos6 and
data[].sin6. (Previously, we found it computationally
advantageous to precalculate the sine and cosine for each
given orientation—hence, the two separate fields.) Calcu-
lating the orientational correlation function g(r) for the
data requires calculating the distance between each pos-
sible pair of points i, j,

r x x y yi j i j i j, ,= −() + −()2 2

and accumulating correlation information for all pairs of
points as a function of that distance. Eventually, we cal-
culate an average correlation value g for all pairs of points
separated by each particular distance r. The heart of our
implementation of the algorithm, which follows, requires
calculating the distance r between each pair of points, and
using it as the index of an array accum to which we add the
results of the computation for that pair:

//The first four lines choose each possible

//pair of points i,j in an efficient order to

//maximize locality.

for(A=0; A+2*blocksize<N; A+=blocksize)

 �for(B=A+blocksize; B+blocksize<N;

 B+=blocksize)

 for(i=A; i<A+blocksize; ++i)

 for(j=B; j<B+blocksize; ++j) {

 //For each ij pair, calculate r

 Dx = data[i].x - data[j].x;

 Dy = data[i].y - data[j].y;

 r = sqrt(Dx*Dx + Dy*Dy);

This three-part series shows how applying knowledge about the underlying computer hardware to the code for
a simple but computationally intensive algorithm can significantly improve performance. The final installment
focuses on modifying a specific algorithm by applying general principles of efficient programming.

September/October 2008� 75

Table 1. Three strategies for accumulating results.

Accumulation array Size Index calculation Operations

accum[r] MAX_r r = sqrt(Dx*Dx + Dy*Dy) SQRT,*,*,+

accum[r2] MAX_r*MAX_r r2 = Dx*Dx + Dy*Dy *,*,+

accum2d[y_ind][x_ind] MAX_y*MAX_x y_ind = abs(Dy)
x_ind = ABS(Dx)

ABS,ABS,*,+

 //calculate cos(6 *(t_i – t_j))

 //using precalculated sines and

 //cosines. Add the result to accum[r].

 accum[r].g += �data[i].cos6 *

data[j].cos6 +

data[i].sin6 *

data[j].sin6;

 ++accum[r].count;

 }

//Finally, divide through by # of pairs at

//each r to get average.

for(r=0;r<MAX_r;++r)

 accum[r].g = accum[r].g / accum[r].count;

When we measured the execution speed of this code,
which we optimized by applying a set of independent
techniques, we found that while faster than our earliest
attempts, each iteration of the innermost loop still took a
disappointing 79.6 clock cycles to complete. How can we
make this faster?

Our previous estimates for this code generously suggest-
ed each iteration should take 50 or fewer clock cycles, so
something here is taking longer than it should. Examining
the inner loop closely, one place that might be responsible
for the delay is the access of the array accum, which along
with the input data is probably too large to fit entirely
within the lowest level of our CPU’s cache. Because we in-
dex accum with a random element r (which might be either
big or small), there is virtually no spatial locality; each new
element probably has to be loaded from a level of cache far
from the processor, incurring a significant latency.

But a second place that might be just as significant a
source of delay is the calculation of the square root. The
square root is a high-latency instruction, requiring roughly
35 clock cycles on our system. That’s a pretty big chunk of
the 50 or so clock cycles we think each loop should take. It’s
difficult to know which of these is the greater bottleneck
without an awful lot of testing, so a reasonable strategy is
to try to fix one of them and see if the situation improves.

Strategies for Eliminating the Square Root
Let’s consider applying the principle of choosing low-
latency instructions to somehow replace the square-root
function. Unfortunately, there’s no obvious way to replace
the square-root function with low-latency instructions that

achieve the same functionality, so we can’t simply apply a
single principle in this situation. Instead, we have to con-
sider multiple principles together, trading off the benefits
of one for the penalty of another. Specifically, we can con-
sider reducing the frequency of executing the square root
by storing data in larger accumulation arrays, even though
that will result in poorer spatial locality.

Table 1 summarizes three different strategies we might
use to accumulate results in this calculation. The first op-
tion is the status quo: calculating r and accumulating the
results in an array of size MAX_r. A second option would be
to avoid the costly SQRT operation within the inner loop by
accumulating results in an array indexed by r2 instead of by
r. The square root would eventually have to be performed,
of course, but only for every nonzero value of accum[r2],
instead of for every pair of data points. A potential disad-
vantage of this option is the much larger size of the accu-
mulation array, which might not fit in the processor’s cache.
Accessing this array randomly, without any benefit of spatial
locality, would likely incur very high latencies.

A third option would be to store the result in a 2D array
accum2d[y_ind][x_ind]of dimensions MAX_y * MAX_x.
Again, this avoids the costly SQRT operation within the
inner loop but at the cost of high latencies for randomly
accessing the much larger accumulation array. Note that
while this option avoids the two multiplication operations
for squaring Dx and Dy, the array indexing arithmetic still
requires an addition and a multiply to calculate the memo-
ry address for y_ind * MAX_x + x_ind. Additionally, the
two absolute value operations are needed to avoid nega-
tive array indices. (Note that we’ve ordered our indices as
[y][x] instead of [x][y]. Later, we diagram 2D arrays
using the convention that horizontally adjacent elements
represent neighboring elements in physical memory. The
C programming language uses row-major order for mul-
tidimensional arrays, where array elements differing by
one value in the last dimension are contiguous in physi-
cal memory. Our ordering of [y][x] lets the diagram’s
horizontal axis correspond to [x], as on a standard Car-
tesian plane.)

The trade-offs in speed between these three options
aren’t at all obvious. The only real way to know whether
one of the other two options will run faster is to pick one,
write the code, and test it on a typical data set. Because the
array size is smaller in the third option than in the second,
we chose to test the third option.

E d u ca t i o n

76� Computing in Science & Engineering

The first two lines of Table 2 shows the results of our
modification. Where our original strategy of using a 1D
accumulation array accum[r] yielded a speed of 79.6 clock
cycles per pair, switching to the 2D accumulation array
accum2d[y_ind][x_ind] actually took almost twice as
long, 148.7 clock cycles. Apparently, the latency of ran-
domly accessing the accumulation array is a more impor-
tant consideration than the latency of the SQRT instruction.
Clearly, the cost of trading poorer data locality exceeded the
benefit gained from reducing the square root’s frequency.
Before giving up on this entire approach, however, it makes
sense to try applying another of our principles (improv-
ing spatial locality) to this larger accumulation array. If we
can ameliorate the cost of the increased memory usage, we
might be able to still gain benefits from using the principle
of removing high-latency instructions.

Improving Spatial Locality with Sorting
One strategy we haven’t yet explored is sorting the data

prior to processing to improve spatial
locality. Because the data deals with
spatial coordinates and we’re calcu-
lating distances between the data, we
might be able to use this fact to our
advantage. Perhaps there might be
some way to reorder the data so that
pairs of points that fall within a par-
ticular region, or that are a particular
distance apart, are all processed at
nearly the same time. In this way, the
accumulation array, whether indexed
by [r], [r2], or [Dy][Dx], might be
accessed with some spatial locality, re-
ducing the latency. Although it’s dif-
ficult to imagine a scheme in which we
could arrange the data to yield pairs
neatly sorted by r, using the 2D ac-
cumulation array accum2d offers a
fairly straightforward way to achieve
a similar effect.

As Figure 1 illustrates, we start by
sorting the input data according to the
value of data[].y, and by data[].
x within each value of y. (The sort-
ing can be accomplished with a stan-
dard library routine requiring order
N logN calculations, a negligible cost
compared to the order N2 calculations

of our main program.) By sorting the data in this way, for
each pair of points i,j, a small change in either i or j yields
small changes in Dy and Dx. Using our blocking technique
on the input data, each set of blocks A and B are guaran-
teed to yield pairs of points with little or no variation in
Dy, and minimal variation in Dx as well. This greatly im-
proves the spatial locality in the accumulation array—and
all with no square-root calculation in the inner loop! As
an additional small bonus, we no longer need an absolute
value operation for y_ind, because Dy is now guaranteed
to be positive or zero.

We can further improve spatial locality for the new ac-
cumulation array by making a subtle change in the block-
ing technique introduced in the second installment. In our
original implementation, we held block A constant as we
incremented block B through the entire data set. But by
doing so now, data in each new block B would have larger
y values than data from the previous block B, causing an
increase in Dy for the resulting pairs of points. As a result, a

Table 2. Effects on execution time of using a 2D accumulation array (as
well as cosine precalculation, array merging, and blocking, described in
previous installments).

Execution time (sec) Clock cycles per pair

With square root 2,634 79.6

With 2D output, not sorted 4,920 148.7

With 2D output, sorted 553 16.7

With all tricks 347 10.5

Data:
(sorted by y,
then x) Block A (Next Block A)

…

Spacing

x_ind = abs(xj-xi)

y_ind = abs(yj-yi)

accum2d:

(a)

(b)

Block B (Next Block B)

Figure 1. A revised blocking scheme for use with sorted data, showing (a) the
sorted input array data, and (b) the 2D output array accum2d. The pair of blocks A
and B in the input array shown in blue yield i,j pairs whose x and y displacements
are localized in a region of accum2d, shown as blue dots. For the next pair of
blocks A and B, shown in red, the spacing between the two blocks is held constant,
yielding a set of pairs with similar x and y displacements, shown as red dots.

September/October 2008� 77

new portion of the array accum2d would be accessed, with
some penalty in increased latency.

To avoid this, we can instead hold the spacing between
blocks A and B constant, incrementing both A and B simul-
taneously, as Figure 1 shows. Assuming the data are uni-
formly distributed in x and y, the same portion of accum2d
will be accessed for each set of blocks A, B of a given spacing.
The trade-off for the increased spatial locality in accum2d
is a decrease in spatial locality in the data array, but since
the active portion of accum2d is larger than the size of a
block in the data array, this seems like a good trade.

The code snippet that follows shows the implementation
of the 2D accumulation array and the revised blocking
scheme:

//Sorting of input data already done

//previously.

//The first four lines choose each possible

//pair of points i,j in an efficient order to

//maximize locality.

for(�spacing = blocksize;

spacing < (N-2)*blocksize;

spacing += blocksize)

 for(A=0; A+2*blocksize<N; A+=blocksize) {

 B=A+spacing;

 for(i=A; i<A+blocksize; ++i)

 for(j=B; j<B+blocksize; ++j) {

 //For each ij pair, calculate r

 x_ind = abs(data[j].x - data[i].x);

 y_ind = data[j].y - data[i].y;

 accum2d[y_ind][x_ind].g +=

 �data[i].cos6 * data[j].cos6 +

�data[i].sin6 * data[j].sin6;

 ++accum2d[y_ind][x_ind].count;

 }

 }

//Finally, divide through by # of pairs at

//each r to get average.

for(y=0;y<MAX_y;++y)

  for(x=0;x<MAX_x;++x) {

 r = sqrt(x*x +y*y);

 �g[r]= accum2d[y][x].g /

 accum2d[y][x].count;

 }

The third line of Table 2 shows the tremendous speed
increase we gained by sorting the data. Each iteration of
the inner loop now requires only 16.7 clock cycles, a whop-
ping nine-fold speed increase from the unsorted version
and almost five times faster than the version with the 1D
accumulation array. Now that we’ve removed the bottle-
necks due to calculating the square root and accessing the
accumulation array, the spatial and temporal locality we
achieved through blocking is truly paying dividends! Thus,
making a trade-off between computation and memory,
applying a combination of performance improving tech-
niques, and incorporating application-specific knowledge
about the data, we were able to make a set of modifications
that significantly enhanced our already optimized code.

When Do We Stop?
At this point, having achieved some spectacular speed
gains for only a small amount of work, it’s worthwhile to
take stock in our progress. Table 3 provides an estimate of
the instructions executed in one iteration of the innermost
loop of our code. Examining the table carefully, we see
that it’s composed entirely of relatively fast instructions
like multiplication and addition that have a low latency
and can often be pipelined. If we’re looking for additional
targets of opportunity for significant latency reductions—
high latency instructions like square roots, division, or
trigonometric functions—there’s no obvious low-hanging
fruit here.

Of the 20 instructions per loop iteration listed in the table,
16 are integer operations handled by our processor’s three
arithmetic logic units (ALUs). In the best possible theoretical
limit, all instructions could be pipelined, and the most heav-
ily scheduled ALU would handle six of these instructions,
completing one loop iteration in just six clock cycles.

Table 3. Operations required for modified code, both for explicit instructions and address arithmetic.

Code line Explicit operations Address arithmetic

Integer Float Array Likely operations used

for(j=B; j<B+blocksize; ++j) { 2 (+,<)

x_ind = abs(data[j].x - data[i].x); 2(ABS,-) x[j] 1

y_ind = data[j].y - data[i].y; 1(-) y[j] 1

accum2d[y_ind][x_ind].g +=
 data[i].cos6 * data[j].cos6 +
 data[i].sin6 * data[j].sin6;

4 (+,*,+,*) accum2d[][]
data[j].cos
data[j].sin

4
1
1

++accum2d[y_ind][x_ind].count; 1(+) accum2d[][] 2

Totals 6 4 10

E d u ca t i o n

78� Computing in Science & Engineering

In reality, there will certainly be some overhead for “load”
and “store” operations, as well as several three-clock-cycle
latencies to retrieve items from the L1 cache. So, an actual
time of two to four times that many clock cycles per loop
would be a reasonable expectation. Since our measured time
of 16.7 clock cycles per loop falls easily within that range,
we can conclude that the program is now executing rea-
sonably efficiently, no longer hampered by any particularly
long latencies from memory access. As a practical matter,
we shouldn’t expect further code refinements to produce
more than an additional 10 to 30 percent speed improve-
ment. For most applications, this is fast enough.

Address Arithmetic:
Taking Over the Controls
For some applications, pursuing an additional 10 to 30 per-
cent is still worthwhile, and there are a few more tactics we
can employ. Looking at Table 3, we see that 10 of the 16
integer operations are due to address arithmetic required for
calculating the memory addresses of particular array ele-
ments. If we really want to squeeze the last few extra clock
cycles out of the program, a good place to start is by think-
ing through how the processor handles address arithmetic.
It might be possible to reduce the number of computations
needed for this implicit code if we’re willing to trade less
readable code for improved performance.

For example, the output array accum2d is a 2D array of
structures of type OutputStruct, each with two fields,
g and count. The processor finds the memory address of
accum2d[y_ind][x_ind].g by calculating

address of accum2d[0][0].g +

 (size of OutputStruct) *

 (x_ind + y_ind*MAX_x)

Notably, the multiplication by MAX_x takes place each it-
eration, and we can move it outside of the inner loop if we
take over some of this address arithmetic from the com-
piler and handle it ourselves explicitly.

We start by defining accum2d as a 1D array of size
MAX_y * MAX_x. Instead of addressing it as
accum2d[y_ind][x_ind], we use accum2d[x_ind +
MAX_x * y_ind]. Because y_ind comes directly from the
y values in the data array, we can simply multiply all values
of data[].y by MAX_x at the start of the program. From
that point on, we simply address the accumulation array
as accum2d[x_ind + y_ind].g, having eliminated the
need for a multiplication by MAX_x inside the inner loop.
Thus, we can remove computation on every iteration
through precomputation and by modifying our algorithm
and its data storage based on application-specific informa-
tion. However, the code does become less readable.

(The astute reader will note that the implicit multipli-
cation by the size of OutputStruct could also be pre-
calculated in much the same way, removing yet another
instruction from the inner loop. However, the C code for
doing so looks so ghastly that we can’t bring ourselves to
include it here. Instead, we’ll leave it as an exercise for the
reader who enjoys that sort of thing.)

A final tactic we can employ to remove some computa-
tion requires a willingness to change data structures in a
way that makes them less intuitive and less directly expres-
sive of an algorithm’s logic. In this vein, Figure 2 illustrates
one final bit of trickery to remove the last remaining ABS
operation, which is there to prevent the x part of the array
index from ever being negative. Because we’re handling the
array arithmetic for the array accum2d ourselves anyway,
we can handle negative x-values with no trouble, provided
we create an array that’s twice as big as before, and we scale
all of the y-indices appropriately. Furthermore, once we re-
move the absolute value from the calculation of the index,
it’s clear that we can eliminate another operation by group-
ing the data[i] terms together. Our index for accum2d
becomes data[j].x + data[j].y + d_i, where we
calculate d_i = – data[i].x - data[i].y outside
of the innermost loop. The trade-off here is that the ar-
ray accum2d is now twice as large as before, and there is
a chance that we could suffer from reduced spatial local-
ity as a result. In fact, the trade works in our favor this
time. The last line of Table 2 shows that with these last
changes, including our takeover of address arithmetic from
the compiler, our program’s execution time is now down to
10.5 clock cycles per iteration.

Extra part, for negative x values Original array

accum2d:

x = –2
y = 3

x = 2
y = 3

Figure 2. A modification to the accumulation array for
avoiding an ABS calculation. With the original 2D array,
shown in dark blue, an ABS calculation was required to keep
the x part of the index from being negative. By extending
the width of the array in x, and adjusting indices accordingly,
this constraint is no longer necessary.

September/October 2008� 79

M any introductory programming textbooks stress
the importance of using algorithms that scale effi-

ciently—for instance, with execution times proportional to
NlogN instead of N2. By contrast, most textbooks pay little
if any attention to the actual proportionality constant itself.
But computer architecture has evolved in recent years to a
point where CPUs can perform some calculations at a rate
of several operations per clock cycle, roughly 1,000 times
faster than the rate at which individual bytes of data can
be loaded from main memory. In this environment, that
proportionality constant can make the difference between
“fast enough” and “too slow to be useful.”

In this three-part series, we started with a simple algo-
rithm consisting of roughly six lines of code, and we used
a few broadly applicable general principles to increase its
speed by more than a factor of 30. Although we’re pleased
at the near optimal efficiency of our final program, the
huge improvement we achieved is ultimately due to hav-
ing begun from a starting point of maximum stupidity. In
fact, the main lesson to be learned from this example is that
most of the stupidity could have been easily avoided from
the start if we had initially written our program with some
attention to how our computer hardware would actually
execute it. The real take-home message of this series is that

even for casual programmers, computer architecture really
does matter!�

Cosmin Pancratov is a research assistant and undergraduate stu-

dent at the University of Richmond. His research interests include

condensed-matter physics and computer science. Contact him at

cosmin.pancratov@richmond.edu.

Jacob M. Kurzer is a research assistant and undergraduate student

at the University of Richmond. His research interests include algo-

rithms and performance optimization. Contact him at jacob.kurzer@

richmond.edu.

Kelly A. Shaw is an assistant professor of computer science at the

University of Richmond. Her research interests include the interac-

tion of hardware and software in chip multiprocessors. Shaw has a

PhD in computer science from Stanford University. Contact her at

kshaw@richmond.edu.

Matthew L. Trawick is an assistant professor of physics at the Univer-

sity of Richmond. His research interests include the physics of block

copolymer materials and their applications in nanotechnology, as

well as atomic force microscopy. Trawick has a PhD in physics from

the Ohio State University. Contact him at mtrawick@richmond.edu.

Advertising Sales
Representatives

Mid Atlantic
(product/recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: db.ieeemedia@
ieee.org

New England (product)
Jody Estabrook
Phone: +1 978 244 0192
Fax: +1 978 244 0103v
Email: je.ieeemedia@
ieee.org

New England (recruit-
ment)
John Restchack
Phone: +1 212 419 7578
Fax: +1 212 419 7589
Email: j.restchack@
ieee.org

Connecticut (product)
Stan Greenfield
Phone: +1 203 938 2418

Fax: +1 203 938 3211
Email: greenco@
optonline.net

Midwest (product)
Dave Jones
Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@
ieee.org

Will Hamilton
Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@
ieee.org

Joe DiNardo
Phone: +1 330 626 5412
Fax: +1 330 626 5412
Email: jd.ieeemedia@
ieee.org

Southeast (recruitment)
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@
mindspring.com

Southeast (product)
Bill Holland
Phone: +1 770 435 6549
Fax: +1 770 435 0243
Email: hollandwfh@
yahoo.com

Midwest/Southwest
(recruitment)
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@
ieee.org

Southwest (product)
Shaun Mehr
Phone: +1 949 923 1660
Fax: +1 775 908 2104
Email: shaun@
shaunmehr.com

Northwest (product)
Lori Kehoe
Phone: +1 650 458 3051
Fax: +1 650 458 3052
Email: l.kehoe@ieee.org

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@
ieee.org

Northwest/Southern CA
(recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Japan
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Europe (product)
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@
impressmedia.com

Advertiser Index
September/October 2008

Advertiser� Page

The Portland Group� 7
Princeton University Press� 11

Advertising Personnel

Marion Delaney
EEE Media, Advertising Dir.
Phone: +1 415 863 4717
Email: md.ieeemedia@ieee.org

Marian Anderson
Sr. Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
Sr. Business Development Mgr.
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

