
May/June 2008	 Copublished by the IEEE CS and the AIP	 1521-9615/08/$25.00 ©2008 IEEE� 59

Editors: Michael Dennin, mdennin@uci.edu

Steven Barrett, steveb@uwyo.edu

E d u ca t i o n

Why Computer 	
Architecture Matters
By Cosmin Pancratov, Jacob M. Kurzer, Kelly A. Shaw, �
and Matthew L. Trawick

W hen we write computer programs for data
analysis or simulations, we typically translate
the relevant mathematical algorithm into com-

puter code as directly as possible, with little regard for how
the computer will actually perform the computations. We
choose to ignore such details as how individual calculations
are divided among the several arithmetic and floating-point
units (FPUs) on the CPU, how data is shuttled between the
CPU and the main memory, and how recently used data is
temporarily stored in the computer’s various levels of mem-
ory caches. These questions fall under the broad heading of
“computer architecture,” and in many cases, our intentional
ignorance serves us well. A compiler can usually translate
our programs into reasonably efficient machine code quite
effectively—and for many short calculations, modern com-
puters are already many times faster than they need to be.
For longer computations, however, programming with a
little bit of attention to the architecture can sometimes pro-
duce gains in execution speed that are significant enough to
make the extra effort worthwhile.

Computer architecture has changed drastically over the
past 10 to 20 years. Although it goes without saying that
these developments have made computers much faster than
they used to be, what is less obvious is that they’ve also
significantly changed the relative speeds of different types
of operations. Floating-point operations used to be rela-
tively costly, for example, but now their speed is closer to
being on par with integer operations. In contrast, reading
and writing to a computer’s main memory, although faster
than ever before in absolute terms, now represents a huge
bottleneck for modern processors.1 In fact, a modern pro-
cessor with two FPUs can sustain a maximum throughput
of two floating-point calculations per clock cycle, whereas
a single access of main memory could incur a latency of
several hundred clock cycles. When execution speed is im-
portant, these architectural realities must inform our deci-
sions as computer programmers.

Over the course of the next three issues, we present a
discussion of several aspects of computer architecture that
scientific computer programmers should bear in mind
when execution speed is important. We frame our discus-
sion around a single, real-world example: calculating an
orientational correlation function.

A Concrete Example
Many materials consist of small crystallites, each oriented
in a different random direction. For such materials, the ori-
entational correlation function g(r) tells us the character-
istic length scale over which the local orientation remains
uniform; comparing g(r) for different material samples lets
us quantitatively compare crystallite sizes. Suppose that we
have a microscope image of a piece of material from which
we can measure the local crystallographic orientation θi for
N data points (xi, yi) in two dimensions, as shown in Figure
1. For a hexagonal lattice, in which the local orientation
is defined modulo 60 ,̊ we define the orientational correla-
tion between any pair of points (xi, yi, θi) and (xj, yj, θj) as
gi,j = cos[6(θi – θj)]. Its maximum value is gi,j = +1 if the two
orientations are the same or differ by a multiple of 60 ,̊ and
its minimum value is gi,j = –1 if the two orientations dif-
fer by 30 ,̊ the greatest possible misorientation. On aver-
age, we expect gi,j = 0 for two points that are very far apart
because their orientations should be neither positively nor
negatively correlated. (That is, the orientations of two very
distant crystallites are equally likely to differ by any value
between 0˚ and 60 .̊) We define the orientational correla-
tion function g(r) as the average value of gi,j for all pairs of
points separated by a distance

r x x y yi j i j i j, () ()= − + −2 2 ,

that is, g(r) = cos[6(θi – θj)]r, where “r” denotes the average.2
The following code snippet shows a straightforward

implementation of the calculation. We assume that input

Over the course of a three-part series, the authors will walk through the implementation of a simple but
computationally intensive algorithm and show how a series of incremental refinements to the code yields
significant performance gains. In this first installment, they concentrate on instruction selection and scheduling.

E d u ca t i o n

60� Computing in Science & Engineering

data for N points have already been read into three parallel
arrays x[N], y[N], and theta[N]:

//First, accumulate g(r)

//for all pairs of points (i,j).

for(i=0; i<N; ++i) //for each i < N

 for(j=i+1; j<N; ++j) { //for each j > i

 Dx = x[i]-x[j];

 Dy = y[i]-y[j];

 r = sqrt(Dx*Dx+Dy*Dy); //distance r_ij

 g[r] += cos(6*(theta[i]-theta[j]));

 //add g_ij to g(r)

 ++count[r]; //increment count

 } //end of j loop

//Next, divide through by # of pairs

//at each r to get average.

for(r=0; r<MAX_r; ++r)

 g[r] = g[r]/count[r];

Note that because of the doubly nested loop, this code’s
execution time is proportional to N2. For large images
with N  106 points, this code as written takes almost a
day to complete on a typical single-processor workstation.
Clearly, for a calculation that must be performed on several
images, it’s worthwhile to try to improve the speed.

Not All Operations Are Created Equal
Examining the five lines of code inside the inner loop, we
can get a very rough idea of the computational load that
this calculation should require. Each pair appears to have
six regular additions or subtractions, three multiplications,
one square root, and one cosine. (We discuss the addition-
al computational load associated with address arithmetic
later.) Table 1 shows typical latencies for some of these cal-
culations, in which latency is the number of clock cycles
required to perform a single operation. Although the wide
range for each latency makes it hard to make many gen-
eralizations, it’s clear that we should avoid the use of divi-
sion, square roots, and especially trigonometric functions
wherever possible.

Of course, we can often avoid unnecessary division op-
erations by paying attention to order of operations—for
instance, we’d expect the expression (x/y)/z to have a
higher latency than x/(y * z). Likewise, when dividing a
series of numbers by π within a loop, it helps to first define
a variable inv_pi = 1.0/3.1415 outside the loop, replac-
ing each division inside with a multiplication.

Of the instructions in our code, the cosine function is by
far the most costly. In this example and in other calcula-
tions, finding some way to avoid trigonometric functions
is a good place to start looking for efficiency gains. Some
possible strategies include approximations using a Taylor
expansion (cos x = 1 – x2/2! + x4/4! – …) or creating a small
lookup table of precomputed values if we can sacrifice some
precision for greater speed.

For our example case, it’s possible to remove the calcula-
tion of the cosine from the inner loop with no loss of preci-
sion using the trigonometric identity

cos(θi – θj) = cosθicosθj + sinθisinθj.

Although this would appear to replace a single trigono-
metric function with four of them, the advantage is that
we need to calculate each of the four only N times, once
for each of N individual data points, rather than an order
N 2 times, once for each pair. Within the inner loop, we’ve
now replaced the cosine operation, one subtraction, and

rij

θi

θjθj

yi

yj

xi xj

rij

θi

Figure 1. Material composed of two crystallites of different
orientations. The local orientation θ of the lattice at a
location (x, y) is defined by the orientation of a line segment
joining two adjacent lattice points.

Table 1. Typical latencies for integer and floating-point
operations on current processors.*

Operation Typical latency

Integer
operations

Addition/subtraction
Multiplication
Division

1–4
3–6
16–42

Floating-point
operations

Addition/subtraction
Multiplication
Division
Square root
Trigonometric
functions

4–6
4–6
16–38
6–70
92–200

*The range for each entry reflects differences depending on
the sizes of the operands and where they’re stored, as well as
differences between architectures.

May/June 2008� 61

the multiplication by six with two multiplications and one
addition. Our code snippet now looks like this:

//First, calculate all sines and cosines

for(ii=0; ii<N; ++ii) { 	

 sin6[ii] = sin(6*theta[ii]);

 cos6[ii] = cos(6*theta[ii]);

}

//Now, accumulate data for all pairs of

//points (i,j).

for(i=0; i<N; ++i)

 for(j=i+1; j<N; ++j) {

 Dx = x[i]-x[j];

 Dy = y[i]-y[j];

 r = sqrt(Dx*Dx+Dy*Dy);

 g[r] += cos6[i]*cos6[j]+sin6[i]*sin6[j];

 ++count[r];

 }

To test this optimization’s effect on speed, we ran both
versions of our code on a test system. (Our test system
consisted of an AMD Athlon 64 3500+ processor [at 2.2
GHz] on a Gigabyte GA-K8NXP-SLI motherboard, with
2 Gbytes of RAM. We used the same system on all tests
throughout this series.) Table 2 shows the results of apply-
ing the cosine precalculation; in this case, it resulted in a
speed increase of more than a factor of two. (When applied
in conjunction with other optimizations described later in
this series, the speed increase yielded by the cosine pre-
calculation varies somewhat, typically reducing execution
time by between 50 and 150 clock cycles per pair.)

Logic Units and Pipelines
Turning our attention to the other operations in the in-
ner loop, multiplications and additions are all handled
by arithmetic logic units (ALUs) for fixed-point (integer)
calculations and FPUs for floating-point calculations.
Our AMD Athlon CPU has three ALUs and two FPUs
(one for addition/subtraction/shifts and one for multipli-
cation/division/square root); the CPU schedules tasks on
these functional units based on which is free. Although
each arithmetic or floating-point operation takes several
clock cycles to run from start to finish, pipelining lets a new
calculation start and a previous calculation complete every
clock cycle. With pipelining, each functional unit takes the
form of a miniature assembly line, as Figure 2 shows. Like
an object in an assembly line, each instruction must have

a series of operations performed on it in a specific order.
When building the functional unit, the chip designer cre-
ates stages in the hardware corresponding to these opera-
tions and then connects them in a series. At any given time,
an instruction can be in exactly one stage, allowing other
instructions to simultaneously use other stages. Thus, the
maximum CPU throughput is one calculation per clock
cycle for each functional unit (although whether this can
be maintained depends on the order of operations a partic-
ular computation requires).3 In some cases, operations that
don’t directly depend on each other can also be processed
out of order, allowing the functional units to be scheduled
more efficiently.

Because the pipeline for floating-point operations is lon-
ger than that for fixed-point operations (meaning each in-
dividual floating-point operation takes longer to complete
than each integer operation), we might suspect we could
improve performance by converting floating-point num-
bers to integers where feasible. For example, we could mul-
tiply our precalculated sines and cosines currently stored as
floating-point numbers by, say, 1,000, and then store them
as integers, with an acceptable loss of precision. In our ex-
ample, applying this “optimization” yields mixed results,
sometimes speeding up the code by 10 to 20 percent and

Table 2. Effects of cosine precalculation on execution
time.*

Execution time
(N = 382,000
points)

Clock cycles
per pair (inner
loop only)

Without cosine
precalculation

10,976 seconds 331.7

With cosine
precalculation

4,422 seconds 133.6

*In this and subsequent tables, “clock cycles per pair”
includes only the time for processing the inner loop.

.

.

.

Stage 1:

Stage 2:

Stage 3:

Stage 1:

Stage 2:

Stage 3:

.

.

.
Instruction 4

Instruction 3

Instruction 2

Instruction 1

Instruction 4

Instruction 3

Instruction 2

Instruction 1

(a) (b)

Figure 2. Instructions executed in a pipelined instructional unit
with three stages. (a) Instruction 1 has just entered the first
stage of the pipeline. (b) Two clock cycles later, instruction 1 is
in the last stage, and instruction 3 has just begun.

E d u ca t i o n

62� Computing in Science & Engineering

sometimes slowing it down by roughly the same amount,
depending on what other optimizations we use. Apparent-
ly, one can negate the shorter ALU pipeline’s advantage if
the ALUs are more heavily scheduled than the FPUs (for
instance, for address arithmetic), a condition known as a
structural hazard.1

Counting Operations in the Inner Loop
In considering further optimizations, it helps to make a
rough count of the operations currently used in our code’s
inner loop (see Table 3). The columns in the table under
“Explicit operations” show the specific arithmetic opera-
tions, such as additions and multiplications, required in each
line of the code. (Note that Table 3 doesn’t count any of the
“load” or “store” operations that many architectures require.
Our table is meant to serve as a very rough estimate of the
computational load, a full accounting of which would re-
quire careful examination of the compiled assembly code.)

Table 3 also includes two operations associated with
the “for” loop itself: one integer addition to increment the
value of j and one “less than” operation to compare the
value of j to N and determine whether to return to the
loop code or continue to the code following the loop. (De-
pending on the architecture, this comparison and branch
to the appropriate next instruction might take one or two
instructions per loop iteration.) To avoid this branch over-
head on every loop iteration, compilers frequently use
a technique called loop unrolling.1 With this technique,
the compiler schedules multiple loop iterations for each
branch determination.

Address Arithmetic: A Hidden Drain
The final two columns in Table 3 provide an estimate of
the additional computational load required for address

arithmetic, such as calculating the actual memory location
associated with an array’s ith or jth element. As Figure 3
shows, for example, accessing the jth element of array x[]
typically implies multiplying index j by the size of each
array element (4 bytes, for a long integer) and adding this
to the address of the array’s first element. Thus, to a first
approximation, each reference to a one-dimensional array
element would require two integer operations—similarly
each reference to a two-dimensional array element would
require four integer operations.

However, a good compiler can minimize the load for
address arithmetic in various ways. For one, it can save
recently calculated addresses in registers to avoid un-
necessary calculations—in our code, for example, the
value of x[i] remains the same throughout all the inner
loop’s iterations, so the value would likely be held in a
register rather than be recalculated with each iteration.
Therefore, Table 3 doesn’t show any operations as being
required for x[i].

The compiler can also reduce the load for calculating
x[j]. Because the inner loop code only uses the variable j
as an array index and increments it sequentially with each
loop iteration, a good compiler will probably avoid the cost
of multiplication by keeping an address of the current array
element and simply adding (or subtracting) the array ele-
ment’s size on each loop iteration. Thus, only one integer
operation persists, but the processor uses a register to retain
the current array element address. With multidimensional
arrays in which only one dimension changes in a given loop,
the compiler will store the current address of array elements
in the current row. Table 3 estimates only one operation
will be required for referencing x[j], y[j], cos6[j], and
sin6[j]. Even assuming the compiler can take all available
shortcuts, we still estimate that address arithmetic will re-

Table 3. Operations required for our sample code, both for explicit instructions and address arithmetic.

Code line Explicit operations Address arithmetic

Integer Float Array Likely
operations used

for(j=i+1; j<N; ++j) { 2 (+,<)

Dx = x[i]-x[j]; 1(-) x[j] 1

Dy = y[i]-y[j]; 1(-) y[j] 1

r = sqrt(Dx*Dx + Dy*Dy); 3(*, +, *) 1(sqrt)

g[r] +=
 cos6[i]*cos6[j]+
 sin6[i]*sin6[j];

4(+, *, +, *) g[r]
sin6[j]
cos6[j]

2
1
1

++count[r]; 1(+) count[r] 2

Totals 8 5 8

May/June 2008� 63

quire eight integer operations, equal to the eight integer op-
erations that are explicitly a part of our code’s inner loop.

Estimating Clock Cycles
By our estimation in Table 3, our inner loop should require
roughly 16 integer operations. In the very best theoretical
limit, these operations could all be distributed efficiently
on the three ALUs so that the most heavily scheduled unit
would have six pipelined instructions per loop, all optimal-
ly pipelined with a throughput of one operation per clock
cycle, for a total time of six clock cycles per iteration. Given
the number of complications we’ve swept under the rug, an
actual number of two to four times that would be a reason-
able expectation for the integer instructions alone.

The five floating-point instructions in our inner loop are
more likely to be the limiting factor because they include a
costly square root that, on our test system, requires 35 clock
cycles and can’t be pipelined. Again, accounting for some
amount of overhead in our calculations, and taking into
consideration that it might not be possible to schedule all
integer operations simultaneously with the floating-point
operations, we might reasonably guess that each iteration
of the inner loop might require roughly 50 clock cycles.

However, Table 2 shows a different story: in fact, after
precalculating the sines and cosines, each iteration actu-
ally requires more than 130 clock cycles. This discrepancy
indicates that significant inefficiencies remain in our code,
and that further scrutiny is warranted.

A s it turns out, the major reason for this large discrep-
ancy is the latency associated with reading a value

from the computer’s main memory into the CPU. In part
two of this series, we will examine some of the architectur-
al intricacies of the memory system on a typical computer,
and examine ways in which data can be organized to take
advantage of it (or at least avoid being heavily penalized by
it). In the third and final part, we look at how some addi-
tional minor tweaks to an algorithm can yield substantial
gains in performance.�

References
J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quantitative
Approach, 3rd ed., Morgan Kaufmann, 2003.

P.M.Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics,
Cambridge Univ. Press, 1995.

J.P. Shen and M.H. Lipasti, Modern Processor Design: Fundamentals of
Superscalar Processing, McGraw Hill Higher Education, 2005.

1.

2.

3.

Cosmin Pancratov is a research assistant and undergraduate student

at the University of Richmond. His research interests include con-

densed matter physics and computer science. Contact him at cosmin.

pancratov@richmond.edu.

Jacob M. Kurzer is a research assistant and undergraduate student

at the University of Richmond. His research interests include algo-

rithms and performance optimization. Contact him at jacob.kurzer@

richmond.edu.

Kelly A. Shaw is an assistant professor of computer science at the

University of Richmond. Her research interests include the interac-

tion of hardware and software in chip multiprocessors. Shaw has a

PhD in computer science from Stanford University. Contact her at

kshaw@richmond.edu.

Matthew L. Trawick is an assistant professor of physics at the Univer-

sity of Richmond. His research interests include the physics of block

copolymer materials and their applications in nanotechnology, as

well as atomic force microscopy. Trawick has a PhD in physics from

the Ohio State University. Contact him at mtrawick@richmond.edu.

j0 1 2

Address of x[0]

Size of element

address of x[j] = address of x[0]
 + (size of element) * j

x

(a)

(b)

x

address of x[i][j] = address of x[0][0]
 + (size of element) * (i*elements per row + j)

[0][0] [0][1] [0][2] [1][0] [1][1] [1][2]

Size of element

Address of x[0][0]

Figure 3. Address arithmetic for arrays. (a) The storage
arrangement of a one-dimensional array and how it’s
referenced, and (b) the storage arrangement of a two-
dimensional (2 × 3) array and how it’s referenced.

How to Contact CiSE

Writers
Visit www.computer.org/cise/author.htm.

Subscribe
Visit https://www.aip.org/forms/journal
_catalog/order_form_fs.html or
www.computer.org/subscribe/.

Missing or Damaged Copies
For CS subscribers, email help@computer.org.
For AIP subscribers, email claims@aip.org.

