GETTING STARTED IN UNDERGRADUATE RESEARCH

Kelly A. Shaw
Associate Professor
Department of Math and Computer Science
University of Richmond
What is Research?

- Collaborative and evolutionary process
 - Standing on the shoulders of giants
- All results advance scientific field
Benefits of Doing Research

• It’s fun!
• Develops skills
 • New programming languages
 • New tools
 • Data analysis
 • Experiment creation
 • Collaboration
• Conversation starter
 • Future employers
 • Grad school applications
• New relationships
Discovering Research Opportunities

• Look locally
 • Department presentations about research
 • Explore faculty member webpages
 • Talk to faculty members

• Think nationally
 • NSF Research Experiences for Undergraduates
 • CRA-W/CDC Distributed Research Experiences for Undergraduates
 • Research universities
 • MIT
 • Princeton
 • Caltech
 • Government agencies and national labs
Choosing a Project

• Does the topic interest you?
 • Read papers or presentations
 • Come up with a question or two
 • Talk to researcher

• Do you like the research advisor’s style?
 • Talk to other student researchers
 • Ask about interaction styles
 • Ask about expectation

• What time can you commit?
 • One unit course
 • 10 hour a week
 • Summer fellowship
Learning About the Problem

- Ask for a couple of related papers or textbooks
- Find additional papers
 - Look at papers cited in this paper
 - Find papers that cite this paper
 - Look at other work by paper’s authors
Reading Technical Papers

• Read introduction to see if interesting
• Decide if paper is worth reading
• Skim for unknown words and look up
• Read paper
• Ask yourself
 • What problem is being solved?
 • Who cares and why?
 • What is the pivotal insight?
 • What is the proposed solution?
 • How effective is the solution?
 • What limitations are there?
Learning the Tools

• Determine what tools you’ll need to use
 • Data collection
 • Data analysis
 • Data visualization

• Find online resources
 • Web pages / Wikis
 • Online examples
 • O’Reilly electronic books
 • Discussion groups

• Familiarize yourself with tool top-down
 • Map out overall design structure of modules
 • Understand role of each module
Designing Experiments

- What question am I trying to answer?
- What data do I need to collect to answer that question?
 - Global metrics vs. local metrics
- How do I collect that data?
 - What mechanism/tool will I use to collect data?
 - What inputs do I need to provide for each test?
 - How do I need to configure the mechanism for each test?
Analyzing Data

• Verify correctness of your tool
 • Create simple tests with known answer
• Verify reasonableness of results
 • Calculate best possible result
 • Calculate worst possible result
 • Is your result in that range?
• Visualize results to detect patterns
 • Try different graph types
 • Use different axes
Best Wishes!

A little step may be the beginning of a great journey.