Lecture Notes: N-gram Language Models

CS375: NLP / Williams College / Spring 2023

Recall basic definitions of probability

- We denote the joint probability of random variables X and Y as $P(X, Y)$. In other classes, you may have used different notation such as $P(X \cap Y)$.
- We define the conditional probability of random variable X given random variable Y as $P(X \mid Y)=$ $P(X, Y) / P(Y)$
- We define the marginal probability of random variable X as $P(X)=\sum_{y \in \operatorname{domain}(Y)} P(X, Y=y)$
- Random variables X and Y are independent if and only if $P(X, Y)=P(X) P(Y)$
- The chain rule of probability follows from the definitions above

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, X_{2}, \ldots, X_{k-1}\right)
$$

As example, suppose $n=3$, then by the chain rule of probability

$$
\begin{equation*}
P\left(X_{1}, X_{2}, X_{3}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}, X_{1}\right) \tag{1}
\end{equation*}
$$

We formally define a language model as one that computes the probability of a sequence of words

$$
\begin{equation*}
P(W)=P\left(w_{1}, w_{2}, \ldots, w_{n}\right) \tag{2}
\end{equation*}
$$

or computes the probability of an upcoming word

$$
\begin{equation*}
P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right) \tag{3}
\end{equation*}
$$

which we also sometimes rewrite as

$$
\begin{equation*}
P\left(w_{n} \mid w_{1: n-1}\right) \tag{4}
\end{equation*}
$$

Using the definition of conditional probabilities (chain rule), we can rewrite the previous equation as

$$
\begin{equation*}
P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)=\frac{P\left(w_{1}, w_{2}, \ldots, w_{n}\right)}{P\left(w_{1}, w_{2}, \ldots, w_{n-1}\right)} \tag{5}
\end{equation*}
$$

How do we estimate the probability above from data? We can use the maxium likelihood estimate (MLE) which is the relative frequency based on the empirical counts in a training set

$$
\begin{equation*}
P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)=\frac{\operatorname{Count}\left(w_{1}, w_{2}, \ldots, w_{n}\right)}{\operatorname{Count}\left(w_{1}, w_{2}, \ldots, w_{n-1}\right)} \tag{6}
\end{equation*}
$$

The issue is that if n is sufficiently large, we'll never see enough data to estimate the counts. So we need to make a simplifying assumption, called the Markov assumption that the probability of word n only depends on the previous $N-1$ words

$$
\begin{align*}
P\left(w_{n} \mid w_{1: n-1}\right) & \approx P\left(w_{n} \mid w_{n-(N-1): n-1}\right) \tag{7}\\
& =P\left(w_{n} \mid w_{n-N+1: n-1}\right) \tag{8}
\end{align*}
$$

If $N=2$ this is called a bigram assumption and the equation above simplifies to

$$
\begin{align*}
\left.P\left(w_{n} \mid w_{1: n-1}\right)\right) & \approx P\left(w_{n} \mid w_{n-2+1: n-1}\right) \tag{9}\\
& =P\left(w_{n} \mid w_{n-1: n-1}\right) \tag{10}\\
& =P\left(w_{n} \mid w_{n-1}\right) \tag{11}
\end{align*}
$$

Combining this bigram assumption with the maximum likelihood estimate we get

$$
\begin{equation*}
P\left(w_{n} \mid w_{n-1}\right)=\frac{\operatorname{Count}\left(w_{n-1}, w_{n}\right)}{\operatorname{Count}\left(w_{n-1}\right)} \tag{12}
\end{equation*}
$$

