1. **1/11/2022**: Introduction: Motivation, course overview and requirements. Examples of projects in computational ethics
 - Barbara Grosz talk (2017) *Intelligent Systems: Design & Ethical Challenges*
 - Kate Crawford NeurIPS keynote (2017) *The Trouble with Bias*
 - Yonatan Zunger blog post (2017) *Asking the Right Questions About AI*

2. **1/13/2022**: Human subjects research: History: medical, psychological experiments, IRB and human subjects. Participants, labelers, and data in NLP
 - *The Belmont Report*
 - *The Menlo Report* (Ethical Principles Guiding Information and Communication Technology Research)
 - Vitak, Shilton & Ashktorab (2016) *Beyond the Belmont Principles: Ethical Challenges, Practices, and Beliefs in the Online Data Research Community*. CSCW.
 - Crowdsourcing
 - Many more relevant readings in Chris Callison-Burch’s class
 - http://crowdsourcing-class.org/

3. **1/18/2022**: Human subjects research: Paper discussions
 - **Group 3**: Mor Geva, Yoav Goldberg, Jonathan Berant (2019) *Are We Modeling the Task or the Annotator? An Investigation of Annotator Bias in Natural Language Understanding Datasets* EMNLP

4. **1/20/2022**: Philosophical foundations: Ethical frameworks, benefit and harm, power, automation. Optional readings:
Negish weighing (e.g., of regional utility functions) has been used in the design of macroeconomic policy and treaties, including (according to several sources I found, though none seemed authoritative) the Kyoto Protocol. According to Stanton, it is often portrayed as a “standard technical assumption,” but actually is extremely value-laden. More on the dispute is on Wikipedia, and a response to her criticism is here.

Physiognomy’s New Clothes, Blaise Agüera y Arcas, Margaret Mitchell, and Alexander Todorov, 2017.

The Ethics of Belief, William K. Clifford, Contemporary Review, 1877.

[pending more]

- See the authors’ follow-up post for more detail on the goals of the research and clarification of points in the paper.
- How do the arguments in the paper and post fit into the broader milieu of ethical philosophy? What use might a preference utilitarian, permission-driven deontologist, or social contract theorist have for a model like Delphi?

6. 1/27/2022: Social bias and algorithmic (un)fairness: Psychological foundations of bias; social bias and disparities in NLP data and models.

- NIPS Keynote: Kate Crawford, The Trouble with Bias
- Implicit bias: scientific foundations
 - Stereotypes and Prejudice: Their Automatic and Controlled Components
 - Stereotype threat
 - Breaking the prejudice habit: Mechanisms, timecourse, and longevity.
 - The evolution of cognitive bias
- Psychological experiments to quantify bias: IAT; (Greenwald et al. 1998)
- Summary of non-computational work on microaggressions and the effect of biased attitudes on minorities and marginalized groups: Microaggressions towards racial/ethnic groups [ref1, ref2,]; Qualitative research involving African Americans (Sue, Capodilupo, & Holder, 2008), Asian Americans (Sue, Bucceri, Lin, Nadal, & Torino, 2010), and Latina/o Americans (Rivera, Forquer, & Rangel, 2010) have supported that members of these groups experience microaggressions in their everyday lives and that such experiences have a negative toll on psychological well-being; Microaggressions towards gender [ref1, ref2, ref3, ref4]; Microaggressions towards sexual orientation [ref]; Microaggressions towards physical disability [ref]; Microaggressions towards persons with mental illness [ref]; Microaggressions towards people from religious minority groups: Muslim Americans [ref]; Incivility breeds more incivility [Foulk et al. 2014]; Incivility leads to stress, depression, and lack of commitment [Miner et al. 2012, Lim et al. 2008]; Women are more likely to experience incivility [Cortina et al. 2008]; our work on condescension [TODO: add a pointer];
- Gender bias in the job market: a longitudinal analysis [Tang et al. 2017]
- On gender bias in tech jobs [ref]
 - In open-source software development [Vedres & Vasarhelyi 2019]
 - In NLP [Schluter 2018]
- TechCrunch: 5 unexpected sources of bias in AI
- Daumé III’s blog post (2016) Bias in ML, and Teaching AI
- Biases revealed in online data or downstream applications
 - The dominant class is often portrayed and perceived as relatively more professional (Kay, Matuszek, and Munson 2015)
Males are over-represented in the reporting of web-based news articles (Jia, Lansdall-Welfare, and Cristianini 2015)

Males are over-represented in twitter conversations (Garcia, Weber, and Garimella 2014)

Biographical articles about women on Wikipedia disproportionately discuss romantic relationships or family-related issues (Wagner et al. 2015)

IMDB reviews written by women are perceived as less useful (Otterbacher 2013)

Biases in in the Flickr30K Dataset (Milenburg 2016)

Gender and Dialect Bias in YouTube’s Automatic Captions (Tatman 2017)

Social Bias in Elicited Natural Language Inferences (Rudinger, May, Van Durme 2017)

Racial disparities in off-the-shelf LID tools (Blodgett & O’connor 2016)

Gender bias in syntactic n-grams corpus (Hoyle et al. ACl 2019)

Model bias in detecting aggression in on Twitter (Zhong et al. EMNLP 2019)

Bias in facial recognition systems: (Buolamwini and Gerbu, 2018, FAT)

Quantifying biases: integrating statistical models with (socio)linguistic theories

Respect: Voight et al. (2017) Language from police body camera footage shows racial disparities in officer respect, PNAS

Affect Control Theory: Joseph et al. (2017) Girls rule, boys drool: Extracting semantic and affective stereotypes on Twitter, CSCW

Quantifying biases in text corpora (organized by key approach in the paper)

Lexicon-based approaches

+ Regression/classification (Voight et al. ‘17 [race]; Recasens et al. ‘13)

+ Crowdsourcing (Fast et al. ‘16) [gender]

Language models (Fu et al. ‘16) [gender]

Sociolinguistic knowledge

+ Respect (Voight et al. ‘17)

+ ACT+Latent variable models (Joseph et al. ‘17) [gender]

Word embeddings (Bolukbasi et al. ‘16 [gender]; Caliskan et al. ‘17; Manzini et al. ‘19 [race, religion]; Kurita et al. ‘19, Zhao et al.’19 [contextualized embeddings])

Measuring bias amplification in trained models (Zhao et al. ‘17) [gender]

Latent variable models, gender bias in syntactic n-grams corpus (Hoyle et al. ACl 2019)

Measuring bias in natural language generation models (Sheng et al. EMNLP 2019)

Debiasing
Transforming embeddings: Bolukbasi et al. (2016) Debiasing word embeddings, NIPS

Regularization: Zhao et al. (2017) Reducing gender amplifications in models, EMNLP

Resampling training data: Jurgens et al. (2017) Incorporating Dialectal Variability for Socially Equitable Language Identification [socioeconomic status]

Data balancing for morphologically rich languages (Zmigrod et al. ACL 2019)

Identifying social stereotypes (in social media or in fictional worlds (novels, movies), to understand how media shapes and reflects social perceptions)

Fast et al. (2016) Shirtless and Dangerous: Quantifying Linguistic Signals of Gender Bias in an Online Fiction Writing Community, ICWSM

Sap et al. (2017) Connotation Frames of Power and Agency in Modern Films, EMNLP

Bamman et al. (2014) A Bayesian Mixed Effects Model of Literary Character, ACL

Carpenter et al. (2016) Real Men don’t say 'cute': Using Automatic Language Analysis to Isolate Inaccurate Aspects of Stereotypes, SPPS

Flekova et al. (2016) Analyzing Biases in Human Perception of User Age and Gender from Text, ACL

Effects of annotator biases on crowd-sourced annotations

In NLU data sets (Geva et al. EMNLP 2019)

In hate speech data sets (Sap et al., ACL 2019, Davidson et al. Abusive Language Workshop at ACL 2019)

Surveys

Gender bias studies in NLP: Sun et al. (2019) Mitigating Gender Bias in Natural Language Processing: Literature Review ACL

Racial bias studies in NLP: Field et al. (2021) A Survey of Race, Racism, and Anti-Racism in NLP, ACL

7. 2/1/2022: Social bias in NLP models: Paper discussions

Group 1: Goldfarb-Tarrant, Seraphina, Rebecca Marchant, Ricardo Muñoz Sanchez, Mugdha Pandya, and Adam Lopez. (2021) Intrinsic bias metrics do not correlate with application bias, ACL.

Group 2: Tomalin, Marcus, Bill Byrne, Shauna Concannon, Danielle Saunders, and Stefanie Ullmann. (2021) The practical ethics of bias reduction in machine translation: Why domain adaptation is better than data debiasing, Ethics and Information Technology.

8. 2/3/2022: NLP for detecting bias and stereotypes: **Paper discussions**

9. 2/8/2022: Hate speech: NLP for identifying and countering hate speech/toxicity/abuse
 - Surveys, books, book chapters
 - **Definition of Hate Speech** (Nockleby, J. Encyclopedia of the American Constitution 2000)
 - **A Survey on Hate Speech Detection using Natural Language Processing** (Schmidt & Wiegand SocialNLP’17)
 - **Understanding Abuse: A Typology of Abusive Language Detection Subtasks** (Waseem et al. 1st Workshop on Abusive Language Online’17)
 - **Gendered Cyberhate, Victim-Blaming, and Why the Internet is More Like Driving a Car on a Road Than Being Naked in the Snow**
 - **Misogyny Online**
 - B. Vidgen & L. Derczynski (2020) **Directions in Abusive Language Training Data: Garbage In, Garbage Out** PLOS One
 - Wenjie Yin & Arkaitz Zubiaga (2021) **Towards generalisable hate speech detection: a review on obstacles and solutions** In *PeerJ Comput Sci*

- Workshops
 - 1st Workshop on Abusive Language Online (WOAH 2017)
 - WOAH 2 (2018)
 - WOAH 3 (2019)
 - WOAH 6 https://www.workshopononlineabuse.com/
 - Gendered violence online: a scholarly 'slam'

- Computational approaches to detecting hate speech, abusive and toxic language
 - Detecting Hate Speech on the World Wide Web (Warner & Hirschberg LSM'12)
 - Abusive Language Detection in Online User Content (Nobata et al. WWW'16)
 - Analyzing the Targets of Hate in Online Social Media (Silva et al. ICWSM'16)
 - Hate Speech Detection with Comment Embeddings (Djuric et al. WWW'15)
 - Hate is not Binary: Studying Abusive Behavior of #GamerGate on Twitter (a good example of the offline effects of online abuse Chatzakou et al. ACM Hypertext'17)
 - The Bag of Communities: Identifying Abusive Behavior Online with Preexisting Internet Data (Chandrasekharan et al. CHI'17)
 - Automated Hate Speech Detection and the Problem of Offensive Language (Davidson et al. ICWSM'17)
 - Mean Birds: Detecting Aggression and Bullying on Twitter (Chatzakou et al. arxiv'17)
 - Using Convolutional Neural Networks to Classify Hate-Speech (Gambäck & Sikdar 1st Wrshp on Abusive Language'17)
 - A Unified Deep Learning Architecture for Abuse Detection (Founta et al. AAAI’18)
 - Ethical Challenges in Data-Driven Dialogue Systems (Henderson et al. arxiv'17)
 - Hateful Symbols or Hateful People? Predictive Features for Hate Speech Detection on Twitter (Waseem and Hovy, NAACL 2016)
 - The Linguistic Ideologies of Deep Abusive Language Classification (Castelle, ALW ’18)
 - The Risk of Racial Bias in Hate Speech Detection (Sap et al., ACL 2019)
 - Effects of moderation of hate speech: (Chandrasekharan et al., CHI 2017)

- Other types of toxic behaviors in communication
- Trolling (Cheng et al. ICWSM’15, CSCW’17)
- Politically incorrect language: (Emile Hine et al. ICWSM 2017)

- Fighting hate speech with counterspeech
 - Susan Benesch et al. (2016) Counterspeech on Twitter: A Field Study.
 - Mathew B. et al. (2019) Thou Shalt Not Hate: Countering Online Hate Speech. ICWSM
 - Jing Qian, Anna Bethke, Yinyin Liu, Elizabeth Belding and William Yang Wang, (2019) A Benchmark Dataset for Learning to Intervene in Online Hate Speech EMNLP

- Leaderboards:
 - https://paperswithcode.com/task/hate-speech-detection

- Tutorial plans:

10. 2/10/2022: Hate speech: Paper discussions
- **Group 4**: Xiaochuang Han, Yulia Tsvetkov (2020) Fortifying Toxic Speech Detectors Against Veiled Toxicity. In Proc. EMNLP

11. 2/15/2022: Misinformation: NLP for fact-checking and fake news detection. Computational propaganda and political misinformation
- Fake news/Fact verification
 - Method for real-time fact checking, including a discussion of major challenges (Computation+Journalism 2019)
 - Discussion of ClaimReview Markup and method for retrieving documents that are relevant to human-generated fact-checks (WWW 2018)
 - Fact Extraction and Verification Workshop (FEVER)
■ Exploration and mitigation of biases in the FEVER data set (EMNLP 2019)
■ Adversarial attacks on fact-checking systems (EMNLP, 2019)
■ Survey of field across disciplines, highlighting the importance of evidence (COLING 2018)
■ r/Fakeddit: A New Multimodal Benchmark Dataset for Fine-grained Fake News Detection (Nakamura et al. LREC 2020)
■ CoVerifi: A COVID-19 news verification system (Kolluri & Murthy In Online Social Networks and Media)
■ Where Are the Facts? Searching for Fact-checked Information to Alleviate the Spread of Fake News (Vo & Lee EMNLP 2020)
■ A survey on stance detection for mis-and disinformation identification (Hardalov et al. arxiv)
 ○ Propaganda and media bias (newspaper articles)
 ■ “In Plain Sight”, annotated data set for types of media bias (Fan et al. EMNLP 2019)
 ■ Shared task and data set on detecting propaganda strategies in newspaper articles (NLP4IF Workshop 2019 and SemEval 2020 Shared Task)
 ■ Media manipulation strategies in Russian Newspaper articles (Field et al. EMNLP 2018)
 ■ BREAKING! Presenting Fake News Corpus for Automated Fact Checking (Pathak & Srihari ACL 2019)
 ■ Fine-Grained Analysis of Propaganda in News Articles (San Martino et al. EMNLP 2019)
 ○ Propaganda/manipulation on social media
 ○ Censorship
 ○ Neural misinformation
 ■ Defending Against Neural Fake News (Zellers et al. NeurIPS 2019)
 ■ A Decade of Social Bot Detection
 ■ The Limitations of Stylometry for Detecting Machine-Generated Fake News (Schuster et al. Computational Linguistics)
 ■ Approaches to evaluating the factual consistency of generated texts ()
Group 1: Eddie Yang and Margaret E. Roberts (2021) Censorship of Online
Encyclopedias: Implications for NLP Models In Proc. FAccT

Group 2: Yuanzhi Chen and Mohammad Rashedul Hasan (2021) Navigating the

Group 3: Sihao Chen, Daniel Khashabi, Wenpeng Yin, Chris Callison-Burch and
Dan Roth (2019) Seeing Things from a Different Angle: Discovering Diverse
Perspectives about Claims In Proc. NAACL

The Limitations of Stylometry for Detecting Machine-Generated Fake News
Computational Linguistics

13. 2/22/2022: Privacy: Privacy and anonymity in NLP. Writer profiling and adversarial
defenses.

Advertising and Microtargeting
- Investigating sources of PII used in Facebook’s targeted advertising
 (Proceedings on Privacy Enhancing Technologies, 2019)
- “Endorsements on Social Media: An Empirical Study of Affiliate Marketing
 Disclosures on YouTube and Pinterest” (Best Paper award CSCW 2018)
- TheGuardian article on Cambridge Analytica
- User Data Privacy: Facebook, Cambridge Analytica, and Privacy Protection
 (IEEE Computer Society 2018)

Web tracking / Author profiling / Deanonymization
- On the dual use of profiling techniques: How Despots Use Twitter to Hunt
 Dissidents
- “The Princeton Web Transparency and Accountability Project”
 (Transparent Data Mining for Big and Small Data, 2017)
- Discriminating Gender on Twitter (EMNLP 2011)
- How well can machine learning predict demographics of social media
 users? (2017)
- Writer Profiling Without the Writer's Text SocInfo'17
- On the Feasibility of Internet-Scale Author Identification (Text-based via
 writing style, IEEE Symposium on Security and Privacy, 2012)
- Personal Information Leakage Detection in Conversations. EMNLP’20
- Broad overview (Manuscript, 2019)

Obfuscation / Privacy protection
- Obfuscating Document Stylometry to Preserve Author Anonymity (ACL
 2006)
- Obfuscating Gender in Social Media Writing (CSS+NLP 2016)
- Deep Reinforcement Learning-based Text Anonymization against
 Private-Attribute Inference (EMNLP 2019)
- Towards Differentially Private Text Representations (SIGIR’20)
- TextHide: Tackling Data Privacy in Language Understanding Tasks
 (Findings of EMNLP 2020)
Large language models can be strong differentially private learners (arxiv'21)

- Using NLP to improve user understanding of privacy
 - Q&A system for privacy policies (EMNLP 2019)
- Slides from previous talks on Privacy+NLP
 - Lectures at CMU 1, 2, 3
 - Lecture at UW 1

14. 2/24/2022: Privacy: Paper discussion
- **Group 3**: Xu, Qiongkai, Lizhen Qu, Zeyu Gao, and Gholamreza Haffari. (2020) "Personal Information Leakage Detection in Conversations." In Proc. EMNLP

15. 3/1/2022: Green NLP: Paper discussions
- **Group 1+3** Peter Henderson, Lauren Gillespie, Dan Jurafsky (2021) Environment (Sec. 5.3 in On the Opportunities and Risks of Foundation Models, pp. 139–144)

Additional readings on Green NLP:

- Roy Schwartz, Jesse Dodge, Noah A. Smith, Oren Etzioni (2020) Green AI Communications of the ACM
- Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, Joelle Pineau Towards the Systematic Reporting of the Energy and Carbon Footprints of Machine Learning Preprint
- CodeCarbon
- Lynn Kaack, Priya Donti, Emma Strubell, George Kamiya, Felix Creutzig, David Rolnick (2022) Aligning artificial intelligence with climate change mitigation Preprint