Lecture Notes: Naive Bayes for Text Classification

CS375: NLP / Williams College / Spring 2023

First, we will derive Bayes theorem. Recall the definition of a conditional probability

P(A|B) = w (1)
Rearranging terms, we have
P(A,B) = P(AIB)P(B) 2
= P(B4)P(4) B
Let’s substitute Equation 3 into Equation 1,
PalB) = TR 0

This is called Bayes theorem and the various components in the equation are given names

likelihood prior

——
P(BJA) P(4)

P(A|B) = 5
(“1B)= =755 5)
posterior T

Now we will use Bayes theorem to derive an approach to text classification.
Let x1, 3, ... 2, be observed pieces of text (e.g., sentences) in the training data.

Let Y be the set of class labels for the task, e.g., {spam, not spam} for spam detection or { Tolkien, Shakespeare, Austen}
for author identification, and y € Y be a specific class label, e.g., y = spam.

The goal of text classification is to select a class label for each document ¢ given a probabilistic model

y; = argmax P(y|xz;) (6)
yeYy

Here, argmaz is the “argument maximum” meaning it returns the argument, gy, that gives the maximum
value when plugged into P(y|z;).

Applying Bayes theorem to Equation 6, we obtain

X P(x|y) P(y)

Y; = argmax

yey P(z;) @)

Because denominator is a constant across all y values, it does not influence the maximum values. So the
equation above simplifies to

¥; o< argmax P(z;|y)P(y) (8)
yey

(recall o means “proportional to”.)

The “naive” part of “Naive Bayes” is that we make two assumptions:

e A bag-of-words assumption that position of the word in a document doesn’t matter.

e A conditional independence assumption that all words in a document are independent conditional
on the class label

Pzily)~ [Plwly) 9)

k€index 1

Here, k € index i is shorthand for saying we iterate through every position, or “index” in the document i
and wyg is the word-type of the token at index k.

Substituting this assumption into Equation 8, we have
i~ ([Pl) PG) (10)
yey k€index i

When finding the argmax, we can apply a monotonic function (a function which is either entirely nonincreas-
ing or nondecreasing) to our expression and the argmax will not change. To prevent underflow in coding
implementations, we use logs which are monotonic functions. Thus,

7; = argmax log (P(y) H P(wk|y)> (11)
yey kc€index 1%
= argmax <log Py) + Z logP(wk|y)> (12)
yey k€index 1

Now we’ll calculate the maximum likelihood estimates from the training data. We’ll denote an estimate
with a hat, e.g., P(:). Thus, the estimate of the prior is

Ply) = Zi:la,..,,:t]l(yi =vy)

(13)

where 1 is the indicator function (it might help to think of the Python equivalent which is y; == y) and n
is the number of documents in the training data.

For any word type w;, we calculate the estimates across all documents

Count(wj, y)
2i=1,2,..,v| Count(wy, y)

P(wly) = (14)

In the equation above, the numerator is the number of tokens for which the word type w; co-occurs with
class label y among all documents. The denominator is the number of tokens for any word type across the
entire vocabulary V' (a vocabulary that is constructed across all class labels in Y') co-occurs with the class
label y among all documents.

In practice, we use Laplace smoothing to ensure that we have no P(wj|y) = 0. This changes Equation 14

to
Count(w;,y) + 1

Dimi2, V] Count(wl,y)> + V|

P(w;ly) = ((15)

