
Lecture Notes: Naive Bayes for Text Classification

CS375: NLP / Williams College / Spring 2023

First, we will derive Bayes theorem. Recall the definition of a conditional probability

P (A|B) =
P (A,B)

P (B)
(1)

Rearranging terms, we have

P (A,B) = P (A|B)P (B) (2)

= P (B|A)P (A) (3)

Let’s substitute Equation 3 into Equation 1,

P (A|B) =
P (B|A)P (A)

P (B)
(4)

This is called Bayes theorem and the various components in the equation are given names

P (A|B)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P (B|A)

prior︷ ︸︸ ︷
P (A)

P (B)︸ ︷︷ ︸
evidence

(5)

Now we will use Bayes theorem to derive an approach to text classification.

Let x1, x2, . . . xn be observed pieces of text (e.g., sentences) in the training data.

Let Y be the set of class labels for the task, e.g., {spam, not spam} for spam detection or {Tolkien, Shakespeare, Austen}
for author identification, and y ∈ Y be a specific class label, e.g., y = spam.

The goal of text classification is to select a class label for each document i given a probabilistic model

ŷi = argmax
y∈Y

P (y|xi) (6)

Here, argmax is the “argument maximum” meaning it returns the argument, y, that gives the maximum
value when plugged into P (y|xi).

Applying Bayes theorem to Equation 6, we obtain

ŷi = argmax
y∈Y

P (xi|y)P (y)

P (xi)
(7)

Because denominator is a constant across all y values, it does not influence the maximum values. So the
equation above simplifies to

ŷi ∝ argmax
y∈Y

P (xi|y)P (y) (8)

(recall ∝ means “proportional to”.)

The “naive” part of “Naive Bayes” is that we make two assumptions:

• A bag-of-words assumption that position of the word in a document doesn’t matter.

1

• A conditional independence assumption that all words in a document are independent conditional
on the class label

P (xi|y) ≈
∏

k∈index i

P (wk|y) (9)

Here, k ∈ index i is shorthand for saying we iterate through every position, or “index” in the document i
and wk is the word-type of the token at index k.

Substituting this assumption into Equation 8, we have

ŷi ≈ argmax
y∈Y

(∏
k∈index i

P (wk|y)

)
P (y) (10)

When finding the argmax, we can apply a monotonic function (a function which is either entirely nonincreas-
ing or nondecreasing) to our expression and the argmax will not change. To prevent underflow in coding
implementations, we use logs which are monotonic functions. Thus,

ŷi = argmax
y∈Y

log

(
P (y)

∏
k∈index i

P (wk|y)

)
(11)

= argmax
y∈Y

(
logP (y) +

∑
k∈index i

logP (wk|y)

)
(12)

Now we’ll calculate the maximum likelihood estimates from the training data. We’ll denote an estimate
with a hat, e.g., P̂ (·). Thus, the estimate of the prior is

P̂ (y) =

∑
i=1,2,...,n 1(yi = y)

n
(13)

where 1 is the indicator function (it might help to think of the Python equivalent which is yi == y) and n
is the number of documents in the training data.

For any word type wj , we calculate the estimates across all documents

P̂ (wj |y) =
Count(wj , y)∑

l=1,2,...,|V | Count(wl, y)
(14)

In the equation above, the numerator is the number of tokens for which the word type wj co-occurs with
class label y among all documents. The denominator is the number of tokens for any word type across the
entire vocabulary V (a vocabulary that is constructed across all class labels in Y) co-occurs with the class
label y among all documents.

In practice, we use Laplace smoothing to ensure that we have no P̂ (wj |y) = 0. This changes Equation 14
to

P̂ (wj |y) =
Count(wj , y) + 1(∑

l=1,2,...,|V | Count(wl, y)

)
+ |V |

(15)

2

