
Lecture Notes: N-gram Language Models

CSCI 375: NLP / Katie Keith /Williams College / Fall 2024

1 Probability Review

• A random variable maps outcomes of a random process to real numbers. We will use capital letters
(e.g., X) to refer to random variable and lowercase letters (e.g., x) to refer to specific values the random
variable takes. For example, if the event is a coin flip, X, we can use X = 1 to indicate when the coin
comes up heads and X = 0 to indicate the coin comes up tails and X = x to refer to either.

• We can estimate probabilities using a relative frequency estimator, calculating the ratio of how
many times an event occurred in a series of trials, divided by the total number of trials conducted. For
example, let’s flip a coin 1000 times and count the number of times it lands heads, 498 times. Then

P (X = heads) = P (X = 1) =
Count(heads)

Total trials
=

498

1000
(1)

As the number of trials approaches infinity, the probability estimated by the relative frequency esti-
mator will approach the true probability (it is unbiased).

• We denote the joint probability of random variables X and Y as P (X,Y). In other classes, you may
have used different notation such as P (X ∩ Y).

• We define the conditional probability of a random variable X given random variable Y as P (X|Y) =
P (X,Y)/P (Y)

• We define the marginal probability of random variable (also called “the law of total probaiblity”) X as
P (X) =

∑
y∈domain(Y) P (X,Y = y)

2 Language Models

We formally define a language model as a model that, given a discrete vocabulary V (created after to-
kenization), computes the probability of a sequence of n words. Note, here we are dropping the capital
random variables for simplicity,

P (w1, w2, . . . , wn) (2)

For example, we may want the probability of the sentence attributed to Pablo Picasso “Computers are
useless, they only give you answers”.

Language modeling can also refer to the task of computing the probability of an upcoming word given its
context (the preceding n− 1 words)

P (wn|w1, w2, . . . , wn−1) (3)

which we also sometimes abbreviate as
P (wn|w1:n−1). (4)

Returning to our running example, a first approach is to use a relative frequency estimator to calculate

P (Computers are useless, they can only give you answers) (5)

=
Count(Computers are useless, they can only give you answers)

Count(all sentences)
(6)

This estimator is:

1

• Unbiased. With infitite data, this estimated probability will be corrected. However, the estimator
has

• High variance. Suppose we cap sentences as n = 20 words long and we only have a vocabulary size
of |V| = 105. Then we have |V|20 = (105)20 = 10100 (a googol!) possible sequences. So even gramatical
sentences will have probability zero if we never saw them in our data.

Thus, we need to make a simplifying assumption, which we call Markov assumption, that the probability
of the nth word only depends on the previous N − 1 words

P (wn|w1:n−1) ≈ P (wn|wn−(N−1):n−1) (7)

= P (wn|wn−N+1:n−1) (8)

If N = 2 this is called a bigram Markov assumption and the equation above simplifies to

P (wn|w1:n−1)) ≈ P (wn|wn−2+1:n−1) (9)

= P (wn|wn−1:n−1) (10)

= P (wn|wn−1) (11)

Using this bigram assumption with a relative frequency estimator we get

P (wn|wn−1) =
Count(wn−1, wn)∑
x∈V Count(wn−1, x)

(12)

The denominator makes this a valid probability; we need
∑

x∈V P (x|wn−1) = 1. Now, we can simplify the
denominator (since the sum of all bigram counts that start with a given word must be equal to the unigram
counts of that word), and arrive at

P (wn|wn−1) =
Count(wn−1, wn)

Count(wn−1)
(13)

2

	Probability Review
	Language Models

