
Lecture Notes: Binary logistic regression

CSCI 375: NLP / Williams College / Fall 2024

1 Deriving NLL for one document

Let’s derive our loss function1 for binary logistic regression: negative log likelihood.2 We will find weights,
θ, that minimize the loss function and use them in our logistic regression classifier.

Notation. We begin with a bit of notation. Our training data consists of a matrix, X, the featurized version
of the input text data, and ~y, the labels (typically annotations on the documents by humans).

We index into a single element of these (a single document and a single label) with i, resulting in (~xi, yi)
where yi ∈ {0, 1}. In a bag-of-words feature representation, |~x| = |V | where V is the set of vocabulary words.

Set-up. Recall, the weights in our logistic regression model are θ and our model gives a prediction for the
probability of the positive class given the input

p̂i := Pθ(y = 1|xi) =
1

1 + e−xi·θ
(1)

Now let’s use the fact that yi is binary to write a generic probability that incorporates the case in which
yi = 1 and yi = 0. We can rewrite this as

pθ(yi|xi) = p̂yii (1− p̂i)1−yi (2)

Why does this work? Well suppose the true label yi = 1 then we have

pθ(yi|xi) = p̂1i (1− p̂i)1−1 (3)

= p̂i (4)

If instead yi = 0 then

pθ(yi|xi) = p̂0i (1− p̂i)1−0 (5)

= 1− p̂i (6)

Both of these are true for how we defined p̂i in Equation 1.

Loss function.

We’ll use principles of maximum likelihood estimation to define a loss function. We want to set parameters
θ that maximize the likelihood of the data, Pθ(yi|xi). For reasons we’ll see later, this is equivalent to saying
we want to minimize the negative likelihood (NL):

NL(p̂i, yi) = −Pθ(yi|xi) (7)

= −p̂yii (1− p̂i)1−yi (8)

by substituting Equation 2.

1Other books might call this a “objective function” or a “cost function”.
2Note, our book calls this “cross entropy loss”.

1

Like we’ve seen before, it’ll be easier to use logs in implementation so we take the log of both sides and this
becomes the negative log likelihood (NLL)

NLL(p̂i, yi) = − log

(
p̂yii (1− p̂i)1−yi

)
(9)

= −yi log p̂i − (1− yi) log(1− p̂i) (10)

Intution. Why does the negative log likelihood work?

Suppose the true label is yi = 1 and our model predicts p̂i = 0.99.

Then from Equation 10 we have

NLL(0.99, 1) = −1 log(0.99)− (1− 1) log(1− 0.99) (11)

= −1 log(0.99) (12)

= −1 ∗ (−0.01) (13)

= 0.01 (14)

which is very close to zero and intuitively we consider this “successful.”

If instead we predicted for this same example i, p̂i = 0.6 we have

NLL(0.6, 1) = −1 log(0.6)− (1− 1) log(1− 0.6) (15)

= −1 log(0.6) (16)

= −1 ∗ (−0.51) (17)

= 0.51 (18)

this gives us a higher number (which is worse) indicating that we were not as successful with our model.

Try out similar examples for yourself for yi = 0.

2 Deriving NLL for entire training set

Let’s be even more explicit about why we want this negative log likelihood for the entire training data, X
and y. First we assume that our examples are independent and identically distributed (iid).

Recall, two variables, let’s call them A and B, are independent if an only iff P (A,B) = P (A), P (B)

Under this i.i.d. assumption, the log likelihood of the entire training data is

log p(y|X) = log p(y1, y2, . . . , yn|~x1, ~x2, . . . ~xn) = log
∏

i=1,2,··· ,n
p(yi|xi) (19)

=
∑

i=1,2,··· ,n
log p(yi|xi) (20)

= −
∑

i=1,2,··· ,n
NLL(θ, xi, yi) (21)

2

3 Gradient of NLL

We use gradient descent to find the weights θ that minimize the negative log likelihood objective function.
Let’s keep things simple and just look at this gradient for a single document i

θ̂ = argmin
θ

NLL(p̂i, yi) (22)

= argmin
θ

(
− yi log p̂i − (1− yi) log(1− p̂i)

)
(23)

= argmin
θ

(
− yi log

(1

1 + e−xi·θ

)
− (1− yi) log

(
1− 1

1 + e−xi·θ

))
(24)

Now we need the gradient of the NLL with respect to ~θ,

∇θNLL(~θ) := [
∂

∂θ1
NLL(θ),

∂

∂θ2
NLL(θ), . . . ,

∂

∂θk
NLL(θ),] (25)

Let’s start by taking the partial derivative (gradient in one dimension) of θ1 for a single exmaple i. Then

∂

∂θ1

(
− yi log

(
1

1 + e−xi·θ

)
− (1− yi) log

(
1− 1

1 + e−xi·θ

))
(26)

First, we showed the derivative of the logistic function, σ(·) in HW0

∂

∂u
σ(u) =

∂

∂u

(
1

1 + e−u

)
(27)

=
∂

∂u
(1 + e−u)−1 (28)

= (−1)(1 + e−u)−2(e−u)(−1) (29)

=
e−u

(1 + e−u)2
(30)

Now a clever algebra trick, let’s do some rearranging of the following expression

1− σ(u) = 1− 1

1 + e−u
(31)

=
1 + e−u

1 + e−u
− 1

1 + e−u
(32)

=
1 + e−u − 1

1 + e−u
(33)

=
e−u

1 + e−u
(34)

Using Equation 34 in Equation 30, we have

∂

∂u
σ(u) =

e−u

(1 + e−u)2
(35)

=
e−u

1 + e−u
· 1

1 + e−u
(36)

= (1− σ(u))σ(u) (37)

3

Back to the derivative of our negative log likelihood equation. Let’s chunk it off and first look at

∂

∂θ1

(
yi log(σ(xi · θ))

)
(38)

Recall, the chain rule of taking the derivative of a function f with respect to a variable v,

∂f

∂v
=
∂f

∂u
· ∂u
∂v

(39)

Now call u = xi · θ and let’s first look at

∂

∂u

(
yi log(σ(u))

)
= yi(σ(u))−1(1− σ(u))σ(u) (40)

= yi(1− σ(u)) (41)

Then

∂u

∂θ1
(xi · θ) = xi,1θ1 + xi,2θ2 + · · ·+ xi,nθn = xi,1 (42)

since we are are taking the partial derivative with respect to θ1 and (by the definition of partial derivatives),
every other variable is a constant.

Altogether,

∂

∂θ1

(
yi log(σ(xi · θ))

)
= yi(1− σ(xi · θ))xi (43)

= xi,1yi(1− σ(xi · θ)) (44)

Let’s now expand the second part of the NLL. (Note, we did not go over this in lecture, but I encourage you
to try it on your own and then check your answer.)

∂

∂θ1

(
(1− yi) log(1− σ(xi · θ))

)
=

∂

∂θ

(
log(1− σ(xi · θ))− yi log(1− σ(xi · θ))

)
(45)

Let’s break these up into terms again, the left-most term we have

∂

∂θ1

(
log(1− σ(xi · θ))

)
= (1− σ(xi · θ))−1(−1)(1− σ(xi · θ))σ(xi · θ)xi1 (46)

= −xi,1σ(xi · θ) (47)

for the right-most term we have

∂

∂θ1

(
− yi log(1− σ(xi · θ))

)
= yiσ(xi · θ)xi,1 (48)

Let’s now combine all these terms (paying attention to when we dropped negative signs) and for simplicity

4

call xi,1 = x, yi = y and σ(xi · θ) = σ, then

∂

∂θ1
NLL(θ, x, y) = −xy(1− σ)−

(
− xσ + xyσ

)
(49)

= −xy + xyσ + xσ − xyσ (50)

= −xy + xσ (51)

= (σ − y)x (52)

= (σ(xi · θ)− yi)xi,1 (53)

If we then repeated this whole process with ∂
∂θ2

, we would find

∂

∂θ2
NLL(θ, xi, yi) = (σ(xi · θ)− yi)xi,2 (54)

Notice, the only term that changes is the final xi,2 (which is coming from the chain rule and derivative of

~ẋ~θ).

On all the training documents and for the gradient of the entire vector, ~theta, we have

∇NLL(θTrain, XTrain, yTrain) = [

n∑
i=1

(σ(xi · θ)− yi)xi,1,
n∑
i=1

(σ(xi · θ)− yi)xi,2, . . . ,
n∑
i=1

(σ(xi · θ)− yi)xi,k] (55)

The vectorized version of this is

∇NLL(θTrain, XTrain, yTrain) = (σ(X · θ)− y)T ·X (56)

Typically, we normalized by the number of examples, n, that we are taking the gradient with respect to. In
mini-batch stochastic gradient descent, this is the number of examples in the batch.

∇NLL(θbatch, Xbatch, ybatch) =
1

nbatch
(σ(X · θ)− y)T ·X (57)

5

	Deriving NLL for one document
	Deriving NLL for entire training set
	Gradient of NLL

