| Due Date | To Turn In: | To Do On Own: | Solutions: | 
| 9/15 | 1.3.5, 1.3.7, 1.6.2 + program | 1.3.1abc, 1.3.2a, 1.3.9, 1.6.1, 1.6.5 | Solutions 1 | 
| 9/17 | 1.4.1, 1.5.2, 1.5.5, 1.5.6 | 1.4.2ab, 1.5.3, 1.5.7, 1.5.8 | Solutions 2 | 
| 9/20 | 1.7.2c, 1.7.4ab | 1.7.3, 1.7.5, 1.7.6 | Solutions 3 | 
| 9/22 | 1.8.3ab | 1.8.2abcd,1.8.5abcd | Solutions 4 | 
| 9/24 | 2.1.2d, 2.1.3ad, 2.1.4a(i+ii) | 2.1.1, 2.1.2abc, 2.1.3bc | Solutions 5 | 
| 9/27 | 2.2.2b, 2.2.3ac | 2.2.1ab, 2.2.2a, 2.2.4, create ndfa accepting (a U b)*ab+(aaa U aba)b* | Solutions 6 | 
| 9/29 | 2.2.6, create dfa accepting (a U b)*ab+(aaa U aba)b* | 2.2.7, 2.2.9b, 2.2.10 | Solutions 7 | 
| 10/1 | 2.3.3, 2.3.6ag, 2.3.11a | 2.3.1, 2.3.2, 2.3.5, 2.3.6f | Solutions 8 | 
| 10/4 | 2.3.7b | 2.3.4b,2.3.7a | Solutions 9 | 
| 10/6 | 2.4.3ad, 2.4.4, 2.4.5a, 2.4.8ac | 2.4.2,2.4.3bce,2.4.8b | Solutions 10 | 
| 10/8 | 2.5.2, Find min state dfa equiv to dfa here | 2.5.1(i)(iii), both parts a and b | Solutions 11 | 
| 10/11 | Describe an algorithm to determine, given M1 and M2,
if L(M1) and L(M2) are disjoint. |  | Solutions 12 | 
| 10/13 | 3.1.3ab, 3.1.5b,3.1.7 | 3.1.2, 3.1.3c, 3.1.4, 3.1.5a, 3.1.9ad | Solutions 13 | 
| 10/15 | 3.2.2 | 3.2.3,3.2.4b | Solutions 14 | 
| 10/20 | 3.3.2b,3.3.3 | 3.3.1,3.3.2acd,3.4.1 | Solutions 15 | 
| 10/25 | No homework because of take-home test |  |  | 
| 10/27 | 3.5.1ab, 3.5.2cd, show {aibjcidj | 
i,j >= 0} is not a cfl | 3.5.1cd | Solutions 16 | 
| 10/29 | 3.5.3a, 3.7.5a | 3.7.1a | Solutions 17 | 
| 11/1 | 4.1.5 | 4.1.1, 4.1.4 | Solutions 18 | 
| 11/3 | 4.2.1 | 4.2.2 | Solutions 19 | 
| 11/5 | 4.3.3 | 4.3.1a | Solutions 20 | 
| 11/8 | 4.5.3 | 4.5.1, 4.5.2 | Solutions 21 | 
| 11/10 | 4.7.1 (do carefully - no handwaving!) | 4.7.2bc | Solutions 22 | 
| 11/12 | 4.7.3 |  | Solutions 23 | 
| 11/15 | (1) Prove for all n succ n = n+1.
(2) Prove for all m, n, Plus m n = m+n.  
(Use induction on m.) |  | Solutions 24 | 
| 11/17 | Define monus in the lambda calculus. | Define rem(m,n) in the lambda calculus. | Solutions 25 | 
| 11/19 | None:  Midterm 2 due |  |  | 
| 11/29 | 5.4.1 | 5.4.2a-d | Solutions 26 | 
| 12/1 | 5.4.3, 5.7.7e |  | Solutions 27 | 
| 12/3 | Let G be cfg.  Show L(G) is infinite iff there is a w in L(G) s.t. 
n<=|w|<2n, where n is the number given by the pumping lemma. |  | Solutions 28 | 
| 12/6 | 5.4.2eh |  | Solutions 29 | 
| 12/8 | Show the computation of Ref(r,w,i) | client(r,w,v).
Show the interference that can occur when running
Ref(r,w,i) | client(r,w,v) | client(r,w,v'), i.e., show the client sending 
v can actually get back v'. |  |  |